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Time-frequency voiced and unvoiced excitation
models for harmonic speech systems

Miguel Arjona Ramı́rez

Abstract— A time-frequency voiced model (TFVEX) is pro-
posed for the excitation of a harmonic autoregressive (AR)
wideband speech analysis-synthesis system, which is integrated
with a previously proposed unvoiced time-frequency model in
the time-frequency unvoiced-voiced excitation (TFUVEX) frame-
work. The voiced component model has low time resolution
defined by the concentration of the excitation signal distribution
in the modulation domain while the time-frequency unvoiced
excitation (TFUNEX) model has cycle time discrimination with
lower amplitude resolution and while the frequency resolution for
both models is an octave in the high time resolution domain. The
speech reconstructed by the compound TFUVEX model is rated
above the speech degraded by a modulated noise reference unit
(MNRU) at 25 dB in listening tests while yielding a parametric
compression of over ten times.

Index Terms— speech analysis, speech coding, sparse represen-
tations, modulation transform, time-frequency analysis,voiced-
unvoiced decision

I. I NTRODUCTION

H ARMONIC speech representations have been used for
coding at medium to low bit rates [1] even when

they fail to achieve perfect reconstruction. However, it is
desirable to have a nearly perfect reconstruction (NPR) front-
end representation since it is not bounded in performance at
high rates.

The classification of speech segments into voiced and un-
voiced classes is important for speech modification and speech
coding since they are processed differently. Besides, sparse
speech representations are useful for source separation [2] and,
if conceptually designed, they may be the basis for pattern
playback in signal processing education [3].

Usually, a model is fit to the voiced harmonic ampli-
tudes [1], [4] for ease of manipulation and often as an
intermediate stage in coding. Somehow unexpectedly, an un-
voiced model is important in making a harmonic system
deliver natural-sounding speech [1], [5] or, for that matter,
any synthesized audio signal [6], in particular music [7], [8]
since any instrumental performance requires some random
fluctuations in order to sound natural.

In this work a voiced model is proposed for an NPR front-
end representation [9] and this model fits into a framework
that includes the unvoiced model previously proposed [10] so
that sparse speech representations may be achieved. Unlike
usual harmonic representations which apply hard decision
for voiced and unvoiced speech classification in the time
and/or in the frequency domain, the voiced-unvoiced decision
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in this analysis-synthesis system (ASyS) is equivalent to a
soft decision because the separation is implemented in the
modulation domain.

The nature of the voiced-unvoiced classification will be
appreciated after the description of ASyS, when the criteria
for classifying and segmenting speech excitation into voiced
part and unvoiced part are presented in Section II. The voiced
model (TFVEX) is developed in Section III upon specific
time-frequency features of voiced excitation, which are tobe
contrasted with those of the unvoiced model (TFUNEX) [10]
that follows in Section IV. Then, the compound voiced-
unvoiced model (TFUVEX) is presented in Section V with the
introduction of the spectral weighting in the pitch-synchronous
domain. Finally, the three excitation models are assessed in
Section VI and remarks are drawn in conclusion.

II. SPEECH EXCITATION CLASSIFICATION AND

SEPARATION

Sinusoidal representations of speech are related to harmonic
speech systems [11]. In fact, sinusoidal models may even
represent an inharmonic signal segments(n), which may be
expressed by the modeling equation

s̃(n) =
K
∑

l=1

Al cos (ωln+ φl) , (1)

whose parameters are the frequenciesωl, the amplitudesAl

and the phasesφl for l = 1, 2, . . . ,K. When the signal
segments(n) is periodic, the model may be simplified to the
harmonic expression

s̃(n) =

K
∑

l=1

Al cos (lω0n+ φl) , (2)

which has a simplified frequency description by having all
frequencies satisfyingωl = lω0, for l = 1, 2, . . . ,K, that is,
they are harmonically related to the fundamental frequency
ω0 = 2π/p0, wherep0 is the pitch period.

More advanced implementations of sinusoidal coders derive
their amplitudes and phases from the frequency response
H

(

ejω
)

of a synthesis filterH(z) so that the synthesized
signal segment is represented as

s̃(n) =

K
∑

l=1

Re
{

H
(

ejlω0

)

exp (jlω0n)
}

. (3)

This terminal model may be further decomposed into a model
for the excitation signal segment

d̃(n) =

K
∑

l=1

Re {exp (jlω0n)} (4)
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which is applied to the input of the synthesis filter.
If we are now to model the excitation signal directly, we

must obtain it by filtering the speech signal segments(n) by
the analysis filter, which is the inverse filter

A(z) =
1

H(z)
. (5)

For ASyS, the analysis filter is the linear prediction (LP)
whitener block in Fig. 1. It is a spectrum whitener because
the frequency components at its output tend to be very near
in amplitude. In fact, for the source-filter sinusoidal excitation
model in Eq. (4), the harmonic amplitudes are exactly the
same.

The speech excitation signal for ASyS is obtained from the
speech signals(n) as the linear prediction (LP) residual signal
r(n) in Fig. 1. This whitened signal has a lower dynamic
range in the time-frequency domain [12]. The order of this
AR model is consistent with sound propagation in the air
inside a typical 17-cm long male vocal tract, which in a
neutral configuration has one formant per kilohertz in its
spectrum [13]. Additionally, two poles may be included to
account for glottal and radiation effects so that, overall,typical
AR models orders are 10 and 12 for narrowband speech [14]
and 16 for wideband speech [15].

But Rosenberg argues that, for source spectra of natural
speech, the typical asymptotic spectral decay is 12 dB/oct [16],
which requires two units of order to be assigned in accounting
for the glottal pulse shape so that our count for wideband
speech speech would rise to 17th order. For ASyS, at a
sampling rate of 16 kHz, 18th-order AR modeling has been
found adequate.

The signal is windowed with square-root von Hann win-
dows, which support perfect reconstruction under trans-
form analysis and synthesis. The window length is 20 ms,
which is compatible with quasistationarity for LP analysisof
speech [17]. Additionally, a frame rate of 400 Hz allows for
high temporal resolution.

The prediction residual signal is then time-warped torw(ν),
for ν ∈ Z, by means of bandlimited sinc functions in order
to hold the pitch period length constant atP0 samples [10]
as depicted in Fig. 1 whereas the original pitch trackp(n) is
separated. This allows intrapitch variations to be captured by
the pitch-synchronous transform in Fig. 2 due to the constant
pitch period after the time warper while preserving the pitch
period information in the pitch track for further synthesis.

Consequently, at this point the signal power is more evenly
distributed in both the time and the frequency domains as
illustrated in Fig. 2, where the time-frequency distributions
of the power in the speech signal and in the residual signal
are represented by a spectrogram and by the intensity of a
pitch-synchronous transform (PST), respectively.

The time-warped residual undergoes a pitch-synchronous
transform, which is a modulated lapped transform (MLT) [18]
that produces the harmonic tracks

cl(k) =

(k+2)P0−1
∑

ν=kP0

rw(ν)φl (µk(ν)) (6)

for pitch cyclesk ∈ Z, harmonic indicesl ∈ {0, 1, . . . P0−1}
and local warped timeµk(ν) = ν + [4− (k mod 4)] 2P0,
where the basis functions are

φl(µk) =

√

2

P0
cos

[

2π
(

l + 1
2

) (

µk −
P0

2 + 1
2

)

2P0

]

wk (µk) .

(7)
The PST is evaluated at each pitch cycle over a two-cycle long
window wk(µk), which is a modified square-root von Hann
window

wk (µk(ν)) =

√

√

√

√

1

2
−

1

2
cos

[

2π
(

µk(ν) +
1
2

)

2P0

]

(8)

for thekth pitch cycle. In fact, any smooth symmetric window
could be used as long as its sum of squares isP0 so that it
satisfies the perfect reconstruction condition.

The modulation transforms (MTs) of the resulting PST time
tracks, forl ∈ {0, 1, . . . P0 − 1}, are obtained in modulation
segmentm as

eql(m) =

k0m+Qm−1
∑

k=k0m

cl(k)ψmq (χm(k)) (9)

where Qm is the segment length with initial cycle index
k0m, local cycle indexχm(k) = k −

∑m−1
i=0 Qi and type-II

DCT [19], [20] basis functions

ψmq(χm) =

√

2

Qm

γq cos

(

qπ

Qm

χm +
qπ

2Qm

)

wm(χm)

(10)
for modulation frequencies (MFs)q ∈ {0, 1, . . . , Qm − 1},
where coefficientγq is defined as

γq =

{ 1√
2

if q = 0 mod Qm

1 if q 6= 0 mod Qm

and wm (χm(k)) represents the rectangular window for the
mth modulation segment, which is supported within the inter-
val {k0m, k0m + 1, . . . , k0m +Qm − 1} .

It should be noted that the analysis process shown in Fig. 1
can be inverted perfectly for obtaining the excitation signal
back. The MT and the PST can be inverted perfectly within the
numerical precision of the system and the LP-whitener plus
time-warper cascade couple can be inverted with segmental
SNR of around 50 dB for obtaining the reconstructed speech
signal as verified in our experiments. In fact, reconstruction
signal-to-noise ratios in the 60 dB to 70 dB range are reported
to have been obtained with this subsystem [9].

The concentration measure of the time-frequency distri-
bution (CMTFD) used for the modulation transform is the
unnormalized modified Zakai’s entropy

CE(m,Qm) = −

Qm−1
∑

q=0

√

√

√

√

P0−1
∑

l=0

e2ql(m) (11)

where the square root replaces the original log function [21]
while preserving the convexity of the measure. The dimension
of the DCT space is increased one step further if its CMTFD
satisfies the inequality

CE(m,Qm + 1) ≥ CE(m,Qm) + CE(m+ 1, 1)− λ (12)
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Fig. 1. Block diagram of the analysis process in ASyS.

whereCE(m,Qm) is the CMTFD for the current modulation
segment andCE(m+1, 1) is the CMTFD for the next single-
cycle segment whileλ is the difference CMTFD threshold,
which should be unity for wideband speech with unit-variance
residual signal. By increasing the modulation segment length
in unit steps, the actual lengthQm is reached when inequal-
ity (12) fails to hold.

The baseline for voiced-unvoiced separation is a quite
periodic residual whose energy lies completely in the DC
modulation coefficient for all harmonic tracks. In general,
the most energetic voiced coefficients are at low modulation
bands [9] and speech itself has its energy concentrated in rather
low modulation frequencies [22]. In fact, for a sequence of
nonidentical pitch cycles, it has been found that the lower

qvm = max{3, ⌊0.2Qm⌋} (13)

MT coefficients represent the voiced part while the rest de-
scribe the unvoiced part [10]. Therefore, this voiced-unvoiced
separation criterion effectively setsqvm − 1 as the voicing
cutoff frequency for modulation segmentm.

Finally, transients are envelope-detected and modeled like
the voiced part. As a result, the average modulation segment
length is around twelve pitch cycles and may be controlled
by the CMTFD threshold. Further, the number of MFs in the
unvoiced region is noted to be rather larger than that in the
voiced region due to the voiced-unvoiced separation criterion.

III. T HE TIME-FREQUENCY VOICED EXCITATION MODEL

The TFVEX model is based on the concept that a voiced
model can have lower time resolution [1] and must have
greater spectral amplitude resolution. In addition, a high-
fidelity representation for the low-frequency PST tracks em-
phasizes the harmonic structure.

The time resolution for the TFVEX model is the varying
modulation segment length since it is a good estimate of the
range of local stationarity. An algebraic sign applied to each
local standard deviation estimates provides adequate spectral
amplitude resolution.

Moreover, the representation will be more useful if it can
be controlled by an easily manageable set of parameters.
The third-octave band resolution used in audio analysis has
motivated the clustering of frequency bands into nine bands.
For wideband speech, theLh = P0 = 256 modulation
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(a) Wideband spectrogram.
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(b) Pitch-synchronous transform intensity plot.

Fig. 2. Wideband spectrogram of the speech signal and PST intensity plot
of the prediction residual for the phrase “She had your dark suit...”, uttered
by a male speaker.

tracks of same MF are assigned to9 octave bands that hold
1, 1, 2, 4, . . . , 128 tracks, respectively.

But precision is not compromised since low-frequency fi-
delity is achieved by including in full precision the voiced
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MT coefficients for the lower compound bandBd = {l}3l=0 .
In this way, the model can reach on average sixth-octave
resolution at low frequency. This happens to be so because
the constant pitch periodP0 = 256, or fundamental frequency
F0 = 31.25 Hz, after time warping achieves a 6.4-fold increase
in resolution for an average fundamental frequency of 200 Hz.

The total number of bands has been chosen to approximate
one band per octave at the lower fundamental frequency of
31.25 Hz. This clustering of PST tracks has a decreasing
resolution as the frequency increases, which is consistent
with hearing perception and has been found adequate in
experiments.

For the set of upper five PST bandsBu =
8
⋃

b=4

Bb, the

estimated MT voiced coefficient variance is evaluated as the
mean square modulation intensity over its octave band by

(

σ̂
(v)
qb (m)

)2

=
1

2b−1

2b−1
∑

l=2b−1

(

e
(v)
ql (m)

)2

(14)

for each upper bandBb =
{

2b−1, 2b−1 + 1, . . . , 2b − 1
}

for
b = 4, 5, . . . , 8 and MFs in the voiced range0 ≤ q ≤ qvm−1,
where qvm − 1 is the highest MF in the voiced region for
modulation segmentm.

Given the structure above, MT coefficients for the voiced
model are retained for the lower band and made equal to the
estimated variances affected by the original signs for the upper
bands, that is,

ê
(v)
ql (m) =

{

e
(v)
ql (m) l ∈ Bd

sign
(

e
(v)
ql (m)

)

σ̂
(v)
qb (m) l ∈ Bb ⊂ Bu

(15)
for l = 0, 1, . . . , P0 − 1 and0 ≤ q ≤ qvm − 1. This modeled
modulation segment is built immune to spillover across the
voiced-unvoiced boundary by additionally defining

ê
(v)
ql (m) = 0 (16)

for MFs in the unvoiced regionqvm ≤ q ≤ Qm − 1 and
harmonic tracksl = 0, 1, . . . , P0 − 1.

Therefore, the TFVEX model consists of 8 MT coefficients,
5 variances and 248 signs. Packing signs into sets of sixteen
16-bit coded values, it amounts to a total of 29 parameters per
voiced MF.

The framework for the voiced model is consistent with the
unvoiced model, proposed in [10] and outlined in Section IV.
However, TFVEX and TFUNEX differ in their time-frequency
footprints and their amplitude resolution within.

IV. T HE TIME-FREQUENCY UNVOICED EXCITATION MODEL

The TFUNEX model is based on the facts that an unvoiced
model can have lower spectral resolution [1] and must have
greater time resolution. The latter is fulfilled by allowing
TFUNEX to have pitch cycle resolution. This is consistent
with the observation that the noise in the voiced regions of
speech is coherent with the voiced part [8], [5].

The estimated variances for the upper bands are

(

σ̂
(u)
b (k)

)2

=
1

2b−1

2b−1
∑

l=2b−1

(

c
(u)
l (k)

)2

(17)

for b = 4, 5, . . . , 8. They shape the pitch-synchronous model
tracks

c
(0)
l (k) =

{

c
(u)
l (k) for l ∈ Bd

σ̂
(u)
b (k)xl(k) for l ∈ Bb ⊂ Bu

(18)

for l = 0, 1, . . . , P0−1 andk in modulation segmentm, where
xl(k) are generated by independent and identically distributed
zero-mean, unit-variance Gaussian processes.

These tracks are modulation-transformed toe(0)ql (m), that
lead to the final model, which is obtained as

ê
(u)
ql (m) =

{

0 for 0 ≤ q ≤ qvm − 1

e
(0)
ql (m) for qvm ≤ q ≤ Qm − 1

(19)

for l = 0, 1, . . . , P0 − 1, where qvm − 1 is the voicing
cutoff frequency defined in Section II. In the PST domain,
the unvoiced excitation model for modulation segmentm is
ĉ
(u)
l (k) for k in modulation segmentm and harmonic tracks
l = 0, 1, . . . , P0 − 1.

In total, the TFUNEX model consists of 13 parameters per
pitch cycle, which are 8 PST coefficients and 5 variances.
Since the number of unvoiced MFs is usually much greater
than the number of voiced MFs as noted in closing Section II,
the compression effected by TFUNEX is greater than that
achieved by TFVEX and the finer time resolution necessary
for the unvoiced model is not a heavy penalty. Besides, this
explains in part why the unvoiced model has been proposed
first [10].

V. THE COMPOUND TIME-FREQUENCY UNVOICED-VOICED

EXCITATION MODEL

The TFVEX model proposed in Section III and the TFU-
NEX model described in Section IV can be linearly combined
in the modulation domain, giving rise to TFUVEX, the com-
pound unvoiced-voiced model

ê
(uv)
ql (m) = ê

(v)
ql (m) + ê

(u)
ql (m), (20)

for modulation frequencies0 ≤ q ≤ Qm − 1 in the mth
modulation segment and harmonic tracks0 ≤ l ≤ P0 − 1,

whereê(v)ql (m) is the voiced model modulation coefficient for
MF q of the lth harmonic track given by Eq. (15) or (16)
and ê(u)ql (m) is the unvoiced model modulation coefficient
for MF q of the lth harmonic track given by Eq. (19). This
combination is actually a time-frequency juxtaposition due
to the antialiasing operations carried out in the modulation
domain in the determination of both models.

It is interesting to note that while the TFUVEX model
juxtaposes the models for the voiced and for the unvoiced parts
in the modulation domain for flexible processing, the unvoiced
model in [8] consists of wavelet transforms around each
harmonic peak, which provides for a better recombination.

The TFUNEX model may cause distortion upon reconstruc-
tion in the lower frequency region as found in Fig. 3(b) in
comparison to Fig. 3(a). The spectral fitting performance for
TFUVEX is illustrated in Fig. 3(c), where it can be seen
to follow rather closely the lower magnitude envelope. This
improved rendition with two models lends support to their
virtuous integration.
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(a) Reference low-frequency speech signal spectrum.
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(b) Spectrum reconstructed with the TFUNEX model.
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(c) Spectrum reconstructed with the TFUVEX model.

Fig. 3. Low-frequency speech signal spectrum (a) and its reconstruction with
ASyS using the time-frequency unvoiced model and original voiced part (b)
and using the compound time-frequency unvoiced-voiced model (c).

Further, a spectral enhancement has been found beneficial
for better low frequency representation and smooth voiced-
unvoiced recombination. It is applied to the unvoiced model
in the PST domain, where it does not interfere with the
periodicity in the signal.

At first, a highpass filter with cyclic cutoff frequencyfc =
11/P0 is designed by means of the sinc function

sinc(n) =
sin(πn)

πn
(21)

to have the impulse response

wh(n) = (1− 2fc) (−1)
n sinc[(1− 2fc) (n− 32)] (22)

for n = 0, 1, . . . , 64.
The pitch-synchronous spectral weighting (PSSW) vector

plotted in Fig. 4 is defined by sampling the frequency response
of the highpass filter as

w(l) =Wh

(

ej2πfl
)

(23)

at the cyclic frequenciesfl = l/(2P0), for l = 0, 1, . . . , P0−1.
Finally, the enhanced model coefficients for unvoiced exci-

tation are obtained by applying PSSW as

ĉ
(u)′
l (k) = w(l)ĉ

(u)
l (k) (24)

for l = 0, 1, . . . , P0 − 1.
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Fig. 4. Pitch-synchronous spectral weights.

VI. EXPERIMENTAL RESULTS

For the listening tests, four male and four female utterances
were chosen so that each speaker couple belongs to a different
dialect region in the TIMIT database [23] for a total length of
448 thousand samples at a sampling rate of 16 kHz. Each
signal was synthesized by ASyS in seven test conditions:
the analyzed Voiced Part; the modeled Voiced Part plus the
analyzed Unvoiced Part – TFVEX; the modeled Voiced Part
singled out – TFVEX Alone; the analyzed Voiced Part plus
the modeled Unvoiced Part – TFUNEX; the analyzed Voiced
Part plus the modeled Unvoiced Part with PSSW emphasis –
TFUNEX-PSSW; the modeled Voiced Part combined with the
modeled Unvoiced Part – TFUVEX; and the modeled Voiced
Part plus the modeled Unvoiced Part with PSSW – TFUVEX-
PSSW.

Additionally, five control conditions were prepared for each
signal, including the hidden reference and the following four
anchors: modulated noise reference unit (MNRU) processed
versions at 20 dB, 25 dB, and 30 dB SNR levels; and a 3.5 kHz
lowpass-filtered version.

The twelve conditions above were presented to six female
and six male listeners as a multi-stimulus with hidden ref-
erence and anchors (MUSHRA) test [24] whose results are
displayed in Fig. 5.
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Fig. 5. Mean MUSHRA scores with 95% confidence intervals superimposed
in subjective assessment of ASyS provided with TFVEX, TFUNEX and
TFUVEX models.

It is striking that the TFVEX Model is rated somewhat
above the analyzed Voiced Part and just a bit below when
singled out, holding evidence to the high quality of the voiced
model. Moreover, all single-model conditions are scored above
25 dB MNRU and the only two-model condition which rises
above this level is TFUNEX-PSSW, underlining the distinctive
contribution of the unvoiced model to higher fidelity.

Furthermore, the analyzed unvoiced part matters because
“TFVEX” is better than “TFVEX Alone”. But it is paradoxical
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that “TFUVEX” is rated slightly below “TFVEX Alone” as if
the addition of the modeled unvoiced part would not improve
the modeled voiced part. In fact, the modeled unvoiced part
leaks into the voiced region while the analyzed unvoiced part
does not. As shown in Section V, this interference is attenuated
by means of the PSSW emphasis, but, in Fig. 5, its effect is not
so outstanding since “TFUVEX-PSSW” is rated only slightly
above “TFVEX Alone”.

Besides, all test conditions provide wideband enhancement
since their Q values stand significantly above the 20 dB
equivalent narrowband version.

The equivalent Q-value is the SNR in dB of the MNRU-
impaired signal with the same score as a given condition and
provides an inequivocal scale, with a universal meaning [25].
Scores are known to be cultural and they may acquire a
universal meaning by their equivalent Q-values. Therefore,
by using MNRUs at different levels, it is possible to make
fair comparisons with other representation methods or test
conditions. For instance, the adaptive multirate wideband
(AMR-WB) coder has been rated at an equivalent Q-value
of 24 dB when operating at 12.65 kbit/s [15].

In order to compare the performance under the same condi-
tions, the AMR-WB coder has been applied to the same speech
signals at the rates of 12.65 kbit/s and 23.85 kbit/s by means
of the perceptual evaluation of speech quality (PESQ) [26],
[27] with results shown in Fig. 6, where all time-frequency
models perform above the coded speech.
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Fig. 6. Mean opinion scores (MOS-LQO – listening quality objective)
with 95% confidence intervals superimposed in objective assessment of ASyS
provided with TFVEX, TFUNEX, TFUVEX models compared to AMR-WB
coded speech at two rates.

The test database has 4569 pitch cycles with 1644 voiced
MFs for 1170 thousand raw coefficients. Since TFUNEX
represents the unvoiced part of each cycle with 13 parameters,
it uses 59 thousand parameters altogether. As for TFVEX,
since it requires 29 parameters to represent each voiced MF
across all harmonic tracks, it uses 48 thousand parameters
altogether. Therefore, as detailed in Table I, the parametric
compression ratios are about 9 for TFVEX over the voiced
coefficient set and 1.5 overall, 13 for TFUNEX over the
unvoiced coefficient set and 2.4 overall and 11 for TFUVEX
over all coefficients.

VII. C ONCLUSION

A voiced excitation model is proposed for a harmonic
time-frequency autoregressive speech analysis-synthesis sys-
tem, which is integrated with a previously proposed unvoiced

excitation model, giving rise to a voiced-unvoiced excita-
tion model. The system features a time-frequency nearly
perfect reconstruction (NPR) front-end for representation of
the prediction residual that is transferred to a modulation
domain within modulation segments of varying length based
on a concentration measure of the time-frequency distribution.
These modulation segments are the seat for voiced-unvoiced
separation so that the voiced part and the unvoiced part
are appropriately recombined all across the extent of the
pitch-synchronous time-frequency transform. The length of
the modulation segment also defines the time resolution for
the TFVEX model while the TFUNEX model has pitch-cycle
time resolution and lower amplitude resolution than TFVEX.
Both model s have octave-band frequency resolution in the
high time resolution domain so that they are conveniently com-
bined into a compound TFUVEX unvoiced-voiced model with
spectral weighting. The TFUVEX model generates speech of
quality rated above that of speech degraded by 25 dB MNRU
while providing a compression of over ten times relative to
the NPR time-frequency representation that results in a lower
rate parameter coding.
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