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Bayesian Inference, Stochastic Simulation and Their
Applications in Wireless Communication Systems

Flávio R. Ávila and Michel P. Tcheou

Abstract—Bayesian inference has been successfully applied
in fields as varied as anti-spam filtering, DNA sequencing,
war codebreaking and election forecasting. Founded on the
apparently simple Bayes’ theorem, which relates the previous
distribution of a parameter with its distribution after evidence
is collected, Bayesian tools allow for incorporating all existing
knowledge about the phenomenon under study in order to
improve parameter estimation. Because of the stochastic nature
of the wireless channel, Bayesian inference is particularly well
suited to the problem of symbol detection in many modern digital
communication systems. When combined with Markov Chain
Monte Carlo (MCMC) techniques, Bayesian receivers are capable
of achieving minimum Bit Error Rate (BER) while avoiding
the prohibitively high computational complexity associated with
standard Maximum Likelihood (ML) or Maximum A Posteriori
(MAP) estimators. In addition, such receivers are capable of nu-
merically integrating out channel coefficients and noise variance,
thus avoiding the need to use sub-optimal estimates of these
parameters. This tutorial presents the rudiments of Bayesian
statistics and MCMC in general, and discusses their applications
in wireless communications in particular. The paper also details
the design of Bayesian MCMC receiver in a system employing
BPSK and subject frequency-selective fading and Gaussian noise.
Afterwards, recent advances in Bayesian receivers are surveyed
for several important practical wireless transmission schemes,
including MIMO, CDMA and OFDM. In addition, the paper
addresses the application of Bayesian tools in challenging channel
conditions — namely, nonlinear, non-Gaussian, underwater and
fast fading channels.

Index Terms—Bayesian inference, Markov Chain Monte Carlo,
Wireless communications, Symbol detection.

I. INTRODUCTION

From the most prosaic questions, as to whether bring an
umbrella when going outside, to complex ones, such as which
profession to choose, life requires the ability to make decisions
in an uncertain world. Coping effectively with such problems
involves evaluating the likelihood of alternative hypotheses,
assessing the risk of a decision, predicting future outcomes and
so on. The field of statistical inference helps us to accomplish
these tasks in a rigorous and systematic way.

Two schools of statistics, Bayesian and Frequentist [1]–
[3], contest for primacy over inference methods and data
analysis. The fundamental difference between them lies in
the interpretation of probability and, as a consequence, in
the treatment of the quantity one wishes to estimate — the

The Ad Hoc Associate Editor coordinating the review of this manuscript
and approving it for publication was Prof. Lisandro Lovisolo.
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parameters, in statistical jargon. The frequentists understand
probability as the limit of the relative frequency of occurrence
of an event in a universe of possibilities, and thus restrict
the probabilistic analysis to repeatable events. In contrast, the
Bayesian view is founded on the notion of probability as a
subjective measure for the degree of belief in the likelihood
of some event happening or on the veracity of a sentence.

As a consequence, frequentists argue that the parameters
should be treated as unknown fixed constants, while Bayesians
interpret them as random variables, even when they are pre-
defined. Since the latter group understands probability as a
degree of belief, the parameters being unknown is a legitimate
reason for them to be treated as random variables with their
associated probability distributions.

Although it was condemned as anti-scientific by high-
caliber statisticians such as Ronald Fisher and Karl Pearson [4]
because of its assumed subjective nature, the Bayesian view
continued to be adopted during most of the XX century
because it allowed solutions to problems for which the fre-
quentist view failed. After decades of scorn, Bayesianism
became more palatable for the statistical mainstream thanks
to theoretical advances made by mathematicians such as Jef-
freys [5], De Finetti [6] and Savage [7]. However, its definitive
popularization came only at the end of the 80s, when the
appearance of numerical techniques based on Markov Chain
Monte Carlo (MCMC) [8] [9] allowed Bayesian tools to be
applied in many problems that were previously inaccessible
because of intense computational demand. Currently, Bayesian
methods are present in the core of myriad applications in
machine learning, genetics, anti-spam filtering [10], forensics,
election forecasting [11] and other fields.

In engineering problems, including ones in telecommunica-
tions [12], effective solutions can be obtained by exploiting the
flexibility of the Bayesian paradigm. The ability to introduce
any prior knowledge — often subjective and hard to quantify
— is valuable in real situations in which data are scarce. In a
wireless communication system [13], the previous knowledge
about the typical behavior of the channel in a given environ-
ment, in addition to the statistical properties of the transmitted
signals, can be incorporated in the solution in order to allow
more accurate detection of the transmitted symbols. The view
of parameters as random variables, prerogative of the Bayesian
philosophy, allows for the marginalization of the quantities
that are not of immediate interest, yielding optimal solutions
to the parameters that one wishes to estimate — for instance,
the transmitted signal.

This paper presents the rudiments of Bayesian inference and
the techniques of stochastic simulation that allow it to be ap-
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plied to complex problems. We will describe their application
to the task of symbol detection and channel estimation in dig-
ital wireless communications systems, in which the frequency
selective and noisy channel produce a problem that is adequate
for Bayesian tools. Even though most of these problems can be
conveniently tackled by Sequential Monte Carlo [14] methods,
especially in fast fading channel conditions, we chose to focus
on batch processing, while dedicating one section to sequential
solutions. A good exposition of both batch and sequential
approaches in signal processing can be found in [15].

The first sections of the tutorial introduce the foundations
of Bayesian data analysis, and include an exposition of Bayes’
theorem, the formalization of the concept of prior distribution
(in particular, the conjugate and the non-informative prior
distributions), the Bayesian hierarchical model and parameter
elimination. In the latter sections, we turn on the numeri-
cal techniques for distribution simulation based on Markov
Chain Monte Carlo (MCMC), which allow for the solution of
inference problems that would be otherwise intractable. The
focus will be on the popular and powerful Metropolis-Hastings
algorithm and the Gibbs sampling. The remainder of the paper
surveys possible Bayesian approaches to the problem of signal
detection in a wireless communication system for important
modern wireless communications systems.

II. BAYES’ THEOREM

We use statistic inference to obtain information about hid-
den quantities through observable data described by proba-
bilistic models. In a CDMA system (Code Division Multiplex
Access) [16], for example, several users share the same
communication medium, transmitting in the same frequency
band, and having their messages affected by channel distortion
and noise. The receiver is responsible for processing this
complicated combination of signals — which only depend on
the transmitted messages indirectly — and inferring the most
probable information sent by each user.

We formalize the concept of inference by defining the possi-
bly multidimensional data set x, whose distribution is referred
to as p(x|θ). Here, θ congregates the unknown parameters
to be estimated — although sometimes, as in the context
of wireless communications, such parameters can represent
unknown data (e.g. transmitted symbols).

The frequentist school understands the parameters θ as un-
known and fixed values. Consequently, the inference is carried
out based on the distribution p(x|θ), known as the likelihood
function, and understood as a probability distribution of the
observed data for a certain set of parameters θ. In contrast,
the Bayesian school sees the parameters as random variables
with certain associated distributions. Before data are observed,
the parameters distribution quantifies the confidence level of
the expert on their possible values, and is called a priori
(or simply prior) distribution, p(θ). After considering data,
we can build the so-called a posteriori (or simply posterior)
distribution p(θ|x), which combines the prior knowledge with
newly acquired information.

The connection between these quantities is stated by Bayes’
theorem (or Bayes’ rule), first proposed by reverend Thomas

Bayes (posthumously published in [17]) and later reformulated
by Laplace [18]. By using the theorem, we can obtain the
a posteriori distribution from the a priori distribution, con-
sidering observed data. The theorem states that the posterior
distribution is obtained essentially by the product of the
likelihood function and the prior distribution:

p(θ|x) = p(x|θ)p(θ)
p(x)

. (1)

In this expression p(x) is the probability density of data
vector x considering all possible θ. As x is known, p(x) is
a proportionality constant that makes the quotient integrate to
one. Thus, p(x) is given by

p(x) =

∫
θ

p(x|θ)p(θ)dθ. (2)

Because p(x) does not affect the shape of function p(θ|x),
one usually removes p(x) from Bayes’ theorem expression
and rewrites it as a proportionality relation:

p(θ|x) ∝ p(x|θ)p(θ). (3)

Bayes’ theorem can be informally summarized as: the
posterior probability of an event corresponds to the product
between the prior distribution and the likelihood function
generated from the observable data:

Posterior probability = Likelihood× Prior probability (4)

In summary, the theorem allows us to weigh prior knowl-
edge along with new information after performing the exper-
iment, producing new and refined knowledge.

1) Medical Testing: We illustrate the theorem in a situa-
tion of practical importance that unfortunately confuses both
laymen and specialists. We present here a concise version of
the problem exposed in [4]. A woman received a mammogram
with abnormal evaluation. What is the probability that she has
breast cancer? To answer this question, we need some basic
statistics, namely:

(i) Probability of abnormal mammogram in the absent of
disease: 10%.

(ii) Probability of abnormal mammogram in the presence of
disease: 80%.

(iii) Probability of any woman suffering from breast cancer:
0.4%.

Many would claim that the probability of a woman having
cancer is 80% — the percentage of abnormal results when
disease is present. A crucial piece of information is often
forgotten: the prior probability — before examination has been
carried out — of any woman suffering from breast cancer.
Considering disease rareness (0.4 %), the evidence needs to
be very strong to significantly increase the probability from its
initial baseline. Certainly, we expect that the abnormal result
increases this initial probability, but due to exam imperfection,
we anticipate that the posterior probability is an intermediate
value between 0.4 and 80 %.

Bayes’ theorem allows us to calculate it exactly. Let A
denote the event “woman has cancer” and B, the event
“abnormal mammography”. We wish to calculate the posterior
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probability of a woman having the disease when we know the
abnormal test result, that is,

p(B|A) = p(A|B)p(B)

p(A)
. (5)

Using the given information, we have

(i) p(A|B) = 0.8
(ii) p(B) = 0.004

(iii) p(A) = p(A|B)p(B) + p(A|B)p(B) = 0.8 × 0.004 +
0.1× 0.996 = 0.1028.

Note that p(A) is the probability of abnormal test result
achieved by summing the probabilities of abnormal test results
when a woman has cancer and when she is healthy. The bar
above the event denotes its complementary, i.e., its negation.

Finally, by replacing these values in Eq. (5), we have

p(B|A) = 0.8× 0.004

0.1028
= 0.311 = 3.11% (6)

This counter-intuitive result shows the importance of con-
sidering these prior probabilities and recommends that medical
tests should be carefully interpreted.

2) Binary Symmetric Channel: Fig. 1 illustrates a commu-
nication channel where binary symbols are transmitted (0 or
1) and, due to channel imperfections, there is a probability p
usually smaller than 1 that a symbol is correctly detected [12].
Consider p0 as the probability of sending bit 0, implying,
p1 = 1− p0.

Let X be the sent symbol and Y , the received one. It is
useful to calculate the inverse probability that symbol X has
been sent knowing that Y was received. By considering Bayes’
theorem, we have

p(X|Y ) =
p(Y |X)p(X)

p(Y )
(7)

where p(Y = 1) = p1p + p0(1 − p) e p(Y = 0) = p0p +
p1(1− p)

Thus,

p(X = 1|Y = 1) =
pp1

p1p+ p0(1− p)
(8)

p(X = 0|Y = 0) =
pp0

p0p+ p1(1− p)
(9)

Naturally the probability that there is a transmission error
in each case is obtained by calculating the complementary of
each of the above expressions.

p

p

(1− p)

(1− p)

0

1

0

1

Fig. 1. Binary symmetric binary. Binary symbols are transmitted with error
probability (1− p)

III. BAYESIANS VS. FREQUENTISTS

The detailed exposition of the differences and similarities
between the Bayesian and frequentist schools is clearly beyond
the scope of this paper. Here we will limit ourselves to provide
a glimpse of what we judge essential about the subject and we
discuss two examples in which the differences between the
schools is salient.

Let us informally illustrate the difference between the
schools by invoking the familiar experiment of die toss. We
wish to calculate, for instance, the probability that the face
on the top is an even number. In the early development of
probability, the solution would be based on the symmetry of
the experiment, which yields to elementary events of equal
probabilities. Then, the rules of probabilistic inference would
be used to calculate the chances of more complex events.
Because of symmetry, the six possible results in one toss
should be equally likely, and since it is required that the sum
of probabilities equals 1, it follows that the probability of each
face turning up is 1/6. The probability of an even face would
then be the ratio between the amount of even numbers between
1 and 6 (that is 2, 4 and 6) and the total number of possible
results (6), yielding a probability of 1/2.

Notwithstanding its intuitive appeal, this argument would
be rejected by a frequentist. Being the relative frequency of
events, probability cannot be assigned to events before any
experiment is performed. In this example, the probability of
an even number is obtained by counting the times when the
numbers 2, 4 or 6 were effectively obtained in a long sequence
of tosses, and then dividing the result by the total number of
tosses. Because of the law of large numbers, it is expected
that this ratio will approach the classical solution (1/2) when
the number of tosses tends to infinity provided the die is fair.
However, one should only judge the fairness of the die after
experiments are performed.

The Bayesian view can be seen as lying amidst the clas-
sical and the frequentist: symmetry considerations matter, but
variations are allowed when new experiments are performed.
Before the first toss, all six sides can be reasonably considered
equally likely; for each new toss, the probabilities can vary in
one direction or another, according to the sequence of results
obtained up to that moment. Probability is, thus, a dynamic
quantity, which starts with a plausible value and becomes
progressively more accurate as more evidence is acquired. In
the limit, after infinitely many trials, the Bayesian and the
frequentist tend to agree with each other.

To assess the differences more formally, let us explore
further the role of the likelihood function on Bayesian and
frequentist statistics. As stated in a previous section, the
likelihood function, p(x|θ), consists of the distribution of
the data x when parameters θ are assumed to be correct.
Frequentist inference is usually based solely on p(x|θ), and
θ is understood as the set of parameters that specify the
distribution of x and not as a conditioning variable. In contrast,
Bayesians use the likelihood as the link between the prior and
the posterior distributions — via Bayes’ theorem as shown in
the previous section — and θ is seen as a variable that helps
specifying the distribution of the data x.
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The criteria of Maximum Likelihood (ML) [1] is one of
the most popular tools in the frequentist repertoire. The idea
behind the ML estimate is intuitively appealing: the estimated
parameters are those that make the observed data more likely
to be obtained. In practice, it is obtained by finding the value
of θ that maximizes the likelihood function.

The Bayesian school also allows for point estimates akin to
ML, but the many possible criteria are based on the posterior
distribution, not the likelihood. The Bayesian Minimal Squared
Error (BMSE) and the Maximum a Posteriori (MAP) [3] [2]
are some of the most popular choices. The BMSE is based
on minimizing the expected squared error of the estimate,
which results in the expected value of the parameter posterior
distribution. The MAP results from simply maximizing the
posterior distribution, and it is a consequence of minimizing
a hit-or-miss cost function.

Next sections illustrate these estimators for a simple and
didactic scenario of coin toss and for the linear model, which
is widespread in engineering problems.

1) Coin Toss: One wants to estimate the probability θ of
heads being obtained in a coin toss. We have seen previously
that symmetry considerations are controversial, despite their
intuitive appeal. A frequentist would argue that experiments
ought to be performed before a meaningful answer can be
given. He then tosses the coin three times and results are, say,
tails in the three cases. He proceeds to calculate the likelihood
p(x|θ), that is, the probability that the result x = [1 1 1]
— representing three tails — will be obtained considering
all possible values of θ ∈ [0 1]. Assuming the results to
be mutually independent, the probability of three tails is the
product of each individual probability, p(x|θ) = (1 − θ)3.
Since the likelihood is maximized when θ = 0, the frequentist
ML criteria produces the estimate θML = 0.

Challenged by the same problem, a Bayesian statistician
would start by defining a prior distribution p(θ) that quantifies
the previous knowledge about the experiment. It is reasonable
to assume that θ has higher chances of being around 1/2 than
in the extremes (0 or 1). One possibility would be the curve in
blue in Fig. 2(a). By combining this prior with the likelihood
via Bayes’ theorem, the Bayesian would obtain the posterior
(green in the figure), whose maximization yields a MAP
estimate for θ on the left of 1/2. If more experiments could
be performed, more informative posteriors would be obtained
(Fig 2(b)), resulting in more accurate estimates. Accordingly,
the ML estimate would become more accurate with more data,
and the ML and MAP estimates would be typically more
similar.

2) Linear Model: The so-called linear model is commonly
used in many electrical engineering problems [2], including
in telecommunications. It describes a situation in which the
observed data have a linear relation with the set of parameters,
and the measurement is corrupted with additive noise. The
model can be used, for instance, to describe a signal composed
by sinusoids with unknown characteristics added to noise, or
to represent the received signal in a wireless communications
system with multi-path and additive noise.

More formally, the N -elements vector containing the ob-
served data, x, is the sum of a product of matrices product
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Fig. 2. Calculating the probability of ‘head’ in a coin toss experiment. (a)
Example of a prior distribution, a likelihood function and a posterior dis-
tribution. (b) The posterior distribution gets progressively more concentrated
around the true value (1/2) when the number of experiments n increases.

and noise v:

x = Gθ + v (10)

where the product Gθ determines the linear relation between
the data x and the unknown parameters θ. In many applica-
tions, v can be approximated as white Gaussian noise of zero
mean and variance σ2

v (often unknown). If the matrix G is
known, the distribution of x given θ equals the distribution of
v with mean shifted by Gθ. Hence, the likelihood is:

p(x|θ) = pv(x−Gθ) =

1

(2πσ2
v)
N/2

exp

{
− 1

2σ2
v

(x−Gθ)T (x−Gθ)

}
. (11)

The maximization of this function with respect to θ is
equivalent to minimizing the argument of the exponential. By
making the gradient of the argument equal to zero, we obtain
the ML estimate:

θML = (GTG)−1GTx. (12)

This problem would be solved differently in the Bayesian
school. The parameters θ would be treated as random vari-
ables with associated prior distribution, reflecting the previous
knowledge about the parameters. Considering, for the sake of
illustration, a Gaussian prior with mean mθ and covariance
matrix Cθ, we would have a posterior whose maximization
would generate the following estimator for θ:

θMAP = (GTG+ σ2
vC
−1
θ )−1(GTx+ σ2

vC
−1
θ mθ). (13)

If the elements of Cθ in the above formula are large, the
terms introduced by the prior distribution would be of little
relevance, and the MAP solution would approximate the ML.
This is plausible, since the large values for Cθ reflect a vague
prior, which implies a larger importance for the observed data
in the final result. On the other hand, if a large quantity of data
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is obtained, and thus x is a high dimensional vector, the terms
depending on G and x would dominate the terms depending
on the prior parameters, which are fixed. In this case, with
abundance of data, the MAP estimator would approximate the
ML, regardless of the prior.

These two examples allow us to conclude that the Bayesian
and frequentist schools tend to agree with each other when a
lot of data is available. Nevertheless, the schools can wildly
disagree when data are scarce and previous knowledge is
relevant.

IV. ELEMENTS OF BAYESIAN INFERENCE

The following sections present elements that are unique to
the Bayesian school and are present in all major textbooks on
Bayesian statistics [3] [2].

A. Hierarchical Bayesian Model

In many practical problems in engineering, the observed
data depend on many parameters hierarchically related to each
other. In wireless communications, for example, the received
signal depends on the channel, which can be characterized
by a linear filter with unknown coefficients. In this context,
a Bayesian would assign a probabilistic model to the channel
coefficients, and since the parameters of this model are un-
known, the statistician would describe then in a probabilistic
fashion in terms of other parameters — which would then be
called hyperparameters.

Figure 3 illustrates this concept more generally. The pos-
sibly multivariate data sets x1, x2, . . ., xn, depend on the
parameters θ1, θ2, . . ., θn, respectively, which, in their turn,
are instances of a random variable described by the hyperpa-
rameter φ. This model could represent, for example, the grades
of students from n different schools, each one with a certain
mean θi i ∈ {1, . . . , n}, which depends on a more fundamental
distribution that can be written in terms of φ (possibly the
general mean of the students in that region).

φ

θ1 θ2 θn−1 θn

x1 x2 xn−1 xn
...

Fig. 3. Example of Bayesian hierarchical model. The data set x1, x2, . . .,
xn, depends on parameters θ1, θ2, . . ., θn, respectively, which are instances
of random variables described by the parameter φ.

Bayes’ theorem yields the posterior distribution of the
unknown parameters as a function of the observed data.
In this example, the posterior distribution is denoted by

p(θ|x1, . . . , xn), and the prior distribution of θ depends on
φ, which is characterized by its prior p(φ). Hence,

p(θ,φ|x1, . . . , xn) =
p(x1, . . . , xn|θ,φ)p(θ|φ)p(φ)

p(x1, . . . , xn)
, (14)

in which we used p(θ, φ) = p(θ|φ)p(φ).

B. Parameter Elimination

It is common for the set of parameters to contain elements
that are not of interest for estimation. When modeling a
communication system, the channel coefficients are necessary
for a complete model of the transmission process; but the
main goal is the estimation of the transmitted data. Because
it treats the parameters as random variables, the Bayesian
school authorizes us to work with some variables of interest,
while integrating out the so-called nuisance parameters. By
partitioning θ between the nuisance parameters and those one
wishes to estimate, in such a way that θ = (φ,ψ), the
posterior for the parameters of interest can be calculated as:

p(φ) =

∫
ψ

p(φ,ψ|x)dψ. (15)

This integral cannot always be evaluated analytically or with
classical numerical integration techniques. The difficulty is
especially severe when the distribution is multivariate and does
not have a known form. In these cases, the algorithms based
on MCMC to be discussed later are especially recommended.

C. Prior Distribution

The prior distribution quantifies the knowledge about the
possible values of the parameters before data have been
acquired. Even though frequentist criteria can be applied to
guide the choice of p(θ), the knowledge from the subjective
experience of the designer is usually the main factor in
determining the choice of the prior distribution. Techniques
for helping the designer in this task include the histogram
method, the distribution function method and the method
of relative likelihood [3]. Although they are useful, these
techniques can yield to overly complicated distributions that
are difficult to handle analytically, thus hindering the later
inference procedure.

1) Conjugate Priors: To assure the tractability of the
posterior distribution, a popular strategy is to adopt priors
with the same algebraic structure of the likelihood, which
guarantees that the product between them, from which the
posterior depends, have a form that is easy to manipulate.
For instance, if the likelihood is Gaussian, the choice of a
Gaussian prior would produce a Gaussian posterior, which is
easy to analyze and sample from.

Let us return to the linear model of Sec. III-2. Since the
noise is Gaussian, the likelihood is Gaussian too. By assuming
a Gaussian prior for θ and covariance matrix Cθ, the posterior
would then be the product of Gaussians:

p(θ|x) ∝ pv(x−Gθ)p(θ) = N (x|Gθ, σ2
vI)N (θ|mθ,Cθ),

(16)
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which results in a Gaussian with modified parameters:

p(θ|x) = N
(
θ
∣∣µp,Cp

)
, (17)

where

µp = (GTG+ σ2
vC
−1
θ )−1(GTx+ σ2

vC
−1
θ mθ), (18)

and

Cp =

(
GTG

σ2
v

+C−1θ

)−1
. (19)

If the noise variance σ2
v in this model is unknown, we could

describe it statistically. By looking at the expression of the
likelihood, we see that σ2

v appears in a form that resembles
the inverse gamma distribution, which has a positive support
region and is defined by parameters α and β:

p(x|α, β) = IG(x|α, β) = βα

τ(α)
x−α−1 exp

(−β
x

)
. (20)

Thus, the conjugate prior for σ2
v is an inverted gamma

p(σ2
v |αv, βv). With this prior, the posterior is also an inverted-

gamma with modified parameters.

p(σ2
v |x,θ) = IG

(
σ2
v

∣∣∣∣αv + N

2
, βv +

(x−Gθ)T (x−Gθ)

2

)
,

(21)
where N is the number of elements in x.

2) Non-informative Prior: As the name suggests, a non-
informative prior is a distribution that ideally does not con-
tain any information about the possible values of the pa-
rameters. The apparently more obvious choice for a non-
informative prior would be a uniform distribution associating
equal probability to all values in the parameter sample space.
Convenient for discrete parameters, this choice is problematic
for continuous parameters, since the uniform distribution is
not invariant to one-to-one transformation. In other words,
if θ is uniform, the distribution of φ = f(θ) is no longer
uniform. However, the absence of knowledge about θ should
imply equal ignorance about any variable obtained by some
transformation of θ, and thus the distribution of φ should be
uniform as well.

In order to circumvent this inconsistency of the uniform
prior, Jeffreys [5] introduced a class of distributions that are
very vague and invariant to one-to-one transformations. The
Jeffreys’s prior associated to the variable θ is given by:

p(θ) ∝ |I(θ)|1/2, (22)

where I(θ) is the Fisher’s information matrix [1] of θ, defined
as:

I(θ) = EX|θ

[
−∂

2ln (p(x|θ))
∂θ2

]
, (23)

where EX|θ denotes the expected value of the variable X|θ.
Note that the Jeffrey’s prior depends only on the likelihood. In
the case of models that are invariant with respect to the scale,
such as the standard-deviation of the Gaussian in the linear
model, we obtain the following Jeffrey’s prior:

p(σv) ∝
1

σv
. (24)

There are other possible choices for non-informative priors.
Jaynes [19] proposes the criterion of maximum entropy to
specify of the prior distribution. Bernardo [20] also argues that
the prior distribution should be chosen based on information-
theoretic criteria. In most cases, the resulting distribution is
improper — i.e., its integral is infinity — like in Eq. (24). This
is not always inconvenient, since in many cases the resulting
posterior is proper.

V. MARKOV CHAIN MONTE CARLO (MCMC)

Even though it is possible to solve practical Bayesian
inference problems with the concepts seen so far, in ap-
plications in which the distributions are multivariate and
multimodal those tools are inadequate. Often the realistic
modeling of physical systems requires the usage of multi-
level hierarchical models, yielding to analytically intractable
distributions. Situations like these require more sophisticated
numerical techniques, the Expectation-Maximization (EM)
algorithm [21], the Gibbs sampling [9] and the Metropolis-
Hastings (MH) algorithm [22] [23] being some of the most
prominent examples. The latter two are based on Markov
Chain Monte Carlo (MCMC) [8], a class of methods that
consists of designing a Markov chain to generate samples from
a given target distribution, which are later used to perform
inferences via Monte Carlo techniques.

A. Monte Carlo Methods

Monte Carlo techniques were introduced in the context
of the Manhattan project by a group of researchers that
included Enrico Fermi, Stanislaw Ulam, John Von Neumann
and Nicholas Metropolis [24], [25]. The puzzling name is an
allusion to the Monte Carlo casino in Monaco where Stanislaw
Ulam’s uncle used to gamble, and it is related to the method
being dependent on random numbers (like dice in a casino).

Generally, Monte Carlo methods consist of generating i.i.d.
(independent and identically distributed) samples from a given
distribution, so that they can be used to obtain an approxima-
tion of a distribution characteristic. Having a set of samples
X = {x(1), . . . , x(N)} from a certain distribution p(x), we
can approximate an integral such as

I(f) =

∫
f(x)p(x)dx (25)

by the following summation

IN (f) =
1

N

N∑
i=1

f(x(i)). (26)

It is possible to show that the estimator above is unbiased
and, by the law of large numbers, that it converges to the
integral of equation (25) almost surely (that is, with probability
1) when N approaches infinity.

B. Markov Chain

The sampling techniques based on Markov Chains allow for
indirect sampling when the target distribution cannot be readily
sampled from. We start the exposition considering discrete
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Markov Chains and then we present the extension of some
result to continuous state-space.

A Markov Chain is a discrete-time random process in which
future states of the chain do not depend on past states as long
as the present state is known — a condition known as Markov
property [26]. More formally, let X(n) be the random variable
representing the chain state in time n and let S be the state-
space for variables X(n). Hence:

P (X(n) ∈ A(n)|X(n−1) ∈ A(n−1), . . . , X(0) ∈ A(0)) =

P (X(n) ∈ A(n)|X(n−1) ∈ A(n−1)), (27)

for any A(0), . . . , A(n) ∈ S. The above equation was written
in terms of probabilities rather than densities in order to
cover both discrete and continuous state-spaces. If S is a
countable set, the Markov chain is said to be discrete. Let
us consider initially a state space S = {s1, . . . , sN}. The
transition probabilities from one state to the other, in time
n, define the transition matrix Tn, whose element of line i
and column j is given by:

Tn(i|j) = P (X(n) = si|X(n−1) = sj). (28)

Since each column in this matrix contains the probability
associated with each one of the elements in the sampling
space, the elements of each column sum to 1. Matrices
with this property are called stochastic matrices, which have
properties that help the analysis of MCMC algorithms. One
such property is the existence of at least one eigenvalue equal
to 1. Furthermore, if all elements of Tn are positive — when
it is always possible to move from a given state to any other
state —, it is possible to show that the remaining eigenvalues
are distinct and lower than 1.

The probability distribution of the chain’s state on time n,
denoted Pn(i), i = {1, . . . , N}, can be obtained from the
distribution on time (n− 1) through:

Pn(i) =

N∑
j=1

Tn(i|j)Pn−1(j), (29)

which can be written in vectorial form:

Pn = TnPn−1, (30)

in which Pn = [Pn(1) . . . Pn(N)]T .
If Tn does not depend on n, the chain is said to be

homogeneous and the transition matrix is denoted simply by
T. In this case, applying Eq. (30) n times yields:

Pn = TnP0, (31)

where P0 is the distribution of the initial state of the chain.
In designing MCMC algorithms, the chain should have the

two above properties [8] [27].
• Irreducibility: starting from any state, there should exist

a non-zero probability that the chain will move to any
other state in a finite number of steps. This is equivalent
to having Tn(i|j) > 0 for some n.

• Aperiodicity: the chain is not trapped in cycles.

1) Invariant Distribution: A distribution is said to be invari-
ant (or stationary) if it remains fixed under the application of
the transition matrix. In designing MCMC algorithms, we are
interested in building a Markov Chain that produces a given
invariant distribution. By denoting the invariant distribution as
π(i), we should have:

π(i) =

N∑
j=1

T (i|j)π(j). (32)

This equation can be written in a vectorial form as π = Tπ,
from which we see that π is an eigenvector associated with
the eigenvalue λ = 1. In order to determine π uniquely, we
make the sum of its elements equal to 1.

In an MCMC algorithm, it is usual to force the detailed
balance condition to assure a given distribution to be invariant.
This condition states that the probability of the chain moving
from a state si in time (n− 1) to state sj in time (n) is equal
to the probability that the inverse transition will occur, that is:

π(j)T (i|j) = π(i)T (j|i). (33)

In order to see that π(i) is the invariant distribution, it
suffices to sum the two sides of the above equality for all
possible values of j, and to realize that the result is Eq. (32).
Despite being more restrictive than Eq. (32), this condition is
simpler to impose for MCMC algorithms.

2) Ergodicity: Besides guaranteeing that π(i) is the desired
invariant distribution, we should assure that Pn(i) converges
to π(i) when n tends to infinity, regardless of the initial dis-
tribution. In this case, we say that π(i) is the limit distribution
of the chain.

This property is known as ergodicity. In order for a Markov
chain to be ergodic, the chain needs to be aperiodic and
irreducible. In the discrete case, it suffices that the eigenvalues
of T be all distinct, which allows for probability distribution
of the initial state to be written using the eigenvectors of T
as a basis:

P0 = π + c2v2 + . . .+ cNvN , (34)

where we used the fact that π is the eigenvector associated
with the eigenvalue λ = 1 for any stochastic matrix T. In
the above equation vi, i ∈ {2, . . . , N}, are the remaining
eigenvectors, and ci, i ∈ {2, . . . , N}, are coefficients that
specify the vector P0 in the basis formed by the eigenvectors.

The expression for the state distribution in instant n can be
thus obtained as [28]:

Pn = TnP0 = π + c2λ
n
2v2 + . . .+ cNλ

n
NvN , (35)

where {λ2, . . . , λN} together with λ1 = 1 form the set of
eigenvalues of matrix T . Since all the eigenvectors but the
first are lower than 1, it follows that Pn will approach π as n
tends to infinity, which means that the chain will converge to
the desired invariant distribution.
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3) Markov Chain for Continuous State Space: For con-
tinuous state spaces, the properties described in the above
sections are expressed through probability density functions.
The Markov property is defined as:

p(x(n)|x(n−1), . . . , x(0)) = p(x(n)|x(n−1)). (36)

The transition kernel Kn(x|y) in time n is defined as:

Kn(x|y) = pX(n)(x|X(n−1) = y), (37)

where pX(n)(x) denotes the probability density of the random
variable X(n).

Thus, the distribution of the chain in time n is given by:

pn(x) =

∫
y∈S

Kn(x|y)pn−1(y)dy. (38)

If the chain is homogeneous, Kn does not depend on n and
the detailed balance condition becomes:∫

A

∫
B

K(x|y)π(y)dydx =

∫
B

∫
A

K(y|x)π(x)dxdy, (39)

for any set of A and B belonging to S.
As in the discrete case, the detailed balance suffices to make

π(i) the invariant distribution of the chain defined by K(i|j).
To guarantee that the invariant distribution is also the limit
distribution, the chain should be aperiodic and irreducible.

VI. GIBBS SAMPLER

The Gibbs Sampler [9] is an MCMC algorithm recom-
mended for cases in which the joint distribution is harder to
sample from than the conditional distributions. The method
was proposed in 1984 in the context of image restora-
tion [9], and brought to the statistical community in 1990 by
Gelfand [29].

In a nutshell, the method consists of partitioning a multidi-
mensional variable into several (possibly multivariate) compo-
nents and drawing samples from conditional distributions of
each component when the others remain fixed. The process is
repeated using the last sampled values of each component as
conditionals for the distribution of the other components. More
formally, let π(θ) be the joint distribution from which one
desires to obtain samples. Then, variable θ is partitioned in k
components, such that θ = {θ1, . . . ,θk}. The Gibbs sampler
algorithm requires the specification of initial values for each
component θk before the iterative conditional sampling is
performed. The whole process is described in Algorithm 1,
where the symbol ∼ indicates that the variable on the left
side is a sample from the distribution on the right side.

Algorithm 1 Gibbs sampler algorithm.

1: Initialization: Generate θ(0)1 ,θ
(0)
2 . . . ,θ

(0)
k ;

2: for i = 1 to Nit do
3: θ

(i)
1 ∼ π(θ1|θ

(i−1)
2 , . . . ,θ

(i−1)
k )

4: θ
(i)
2 ∼ π(θ2|θ

(i)
1 , . . . ,θ

(i−1)
k )

5:
...

6: θ
(i)
k ∼ π(θk|θ

(i)
1 , . . . ,θ

(i)
k−1)

7: end for

To verify that π(θ) is an invariant distribution in each
operation inside the loop of the Gibbs sampler, we calculate
the distribution of θ after the first iteration. Assuming that the
Markov Chain distribution in the end of iteration (i − 1) is
π(θ), that is, p(θ(i−1)) = π(θ(i−1)), we obtain:

p(θ
(i)
1 ,θ

(i−1)
2 , . . . ,θ

(i−1)
k ) =

p(θ
(i)
1 |θ

(i−1)
2 , . . . ,θ

(i−1)
k )p(θ

(i−1)
2 , . . . ,θ

(i−1)
k ) =

π(θ
(i)
1 |θ

(i−1)
2 , . . . ,θ

(i−1)
k )π(θ

(i−1)
2 , . . . ,θ

(i−1)
k ) =

π(θ
(i)
1 ,θ

(i−1)
2 , . . . ,θ

(i−1)
k ). (40)

Thus, the transition produced by the Gibbs sampler pre-
serves the distribution of θ. The same logic applied to the
following operations implies that, at each sampling, the re-
sultant distribution remains equal to π(θ). Under some mild
conditions [8], it can be shown that the chain is ergodic —
i.e., it converges to the invariant distribution π(θ) regardless
of how it is initialized.

A. Practical Issues

While the choice of how to partition the parameters set θ
does not affect the long-term properties of the Gibbs sampler,
in practice it can severely influence the time needed for
convergence. To prevent the so-called slow-mixing of the
chain, the general advice is to avoid partitioning θ in such
a way that θi and θj are highly correlated [8].

Another important issue is how to select the samples to
perform Monte Carlo inference. Samples taken sequentially
after convergence (see Sec. VIII) may exhibit a high degree of
dependence, which can introduce bias in the Monte Carlo in-
ference. In order to prevent this problem, several strategies can
be implemented. One possibility is to perform many parallel
realizations of the Gibbs sampler starting from different points,
and then select the m-th sample of each chain to perform
inference, where m is any iteration after convergence. Another
possibility which is less computationally demanding is to use
a single chain but take only every k-th sample of the chain
after convergence, where k is large enough to guarantee low
correlation between the samples used for inference.

Finally, the number of iterations of the algorithm (Nit)
should be specified according to the desired accuracy in the
Monte Carlo estimation. There is a trade-off between accuracy
and resource usage since a highly accurate estimate would
require a large Nit, implying higher processing time and
increased storage space.

VII. METROPOLIS-HASTINGS ALGORITHM

The conditional distribution needed for the Gibbs sampling
is not always easy to obtain. In those cases, the Metropolis-
Hastings (MH) algorithm, proposed by Nicholas Metropolis
and collaborators in 1953 [22] and generalized by Hastings in
1970 [23], is a convenient choice. The idea of the algorithm
is to initially draw samples from an auxiliary distribution that
is simpler than the target distribution, and later to decide
to accept (or reject) this sample according to a probabilistic
criteria.
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More specifically, according to the MH algorithm, a sample
θ∗ is first obtained from a proposal distribution, denoted by
q(θ∗|θ(i)), in which θ(i) is the current state of the Markov
chain. This sample is accepted with probability α given by:

α(θ(i),θ∗) = min

(
1,

π(θ∗)q(θ(i)|θ∗)
π(θ(i))q(θ∗|θ(i))

)
. (41)

If the generated sample is accepted, the new state of the
chain is θi+1 = θ∗; otherwise, the chain remains on its current
state — i.e., θ(i+1) = θ(i). The transition kernel is given by:

K(θ(i+1)|θ(i)) =
q(θ(i+1)|θ(i))α(θ(i),θ(i+1)) + δθ(i)(θ(i+1))r(θ(i)), (42)

where

r(θ(i)) =

∫
θ∗∈S

q(θ∗|θ(i))
(
1− α(θ(i),θ∗)

)
dθ∗ (43)

is the probability that the chain will stay in its current state.
The term δθ(i)(θ(i+1)) denotes the Dirac delta function with
energy concentrated at the point θ(i). This term implies that
the distribution of θ(i+1) has significant probability mass at
θ(i).

It is possible to show that the transition kernel satisfies the
detailed balance condition, and thus that π(θ) is the invariant
distribution of the chain. In order to guarantee that π(θ) is also
the limit distribution, we have to check the irredutibility and
aperiodicity of the chain. Since the algorithm always allows
for rejection, it follows that the chain is aperiodic. To ensure
irreduciblity, it is necessary that the support region of q(·)
includes the support region of π(·) [27].

Despite the MH algorithm having appeared a few decades
earlier than the Gibbs sampling, the former can be seen as
a more general version of the latter. Indeed, the MH reduces
to the Gibbs sampling when the proposal distribution is made
equal to the posterior distribution itself, a case in which the
acceptance probability of Eq. (41) would be equal to 1. While,
in principle, both algorithms can be applied to the same
problem, in practice one algorithm is often more convenient
than the other. When directly sampling of full-conditional
distribution is easy, the Gibbs sampling is generally preferred;
otherwise, the MH with a convenient proposal is usually
the best choice. The advantage of using the Gibbs sampling
whenever possible is that the sample is always accepted, which
tends to create less correlated sequence of samples and to yield
faster convergence. Sec. XI will discuss scenarios in which
both algorithms can be mixed in a single receiver.

A. Practical Issues

In addition to those issues discussed in Sec. VI-A, the
efficiency of the MH algorithm depends particularly on the
choice of the proposal q(·). A common choice for q(·) is a
Gaussian centered at the current state — i.e., q(θ∗|θ(i)) =
N (θ∗|θ(i), σ2

qI). The choice of the variance σ2
q is crucial. If

q(·) is too narrow, only the region near the mode of π(θ) is
visited. If it is too broad, the percentage of rejected samples is
too high. In both cases, the time needed for convergence would

be higher than necessary and the generated samples would be
highly correlated. A general rule of thumb for choosing σ2

q

is provided in [2]. For univariate distributions the proposal
variance should be chosen in such a way that approximately
44 % of samples are accepted; in higher dimensions, a lower
acceptance rate of 23 % should be aimed. The user can fine
tune the proposal parameters until the desired acceptance rate
is obtained.

VIII. ASSESSING CONVERGENCE

The algorithms presented so far guarantee that the states of
the Markov chain will be distributed according to the target
distribution when the number of iterations tends to infinity.
Since in practice only a finite number of iterations can be per-
formed, it is important to assess when the chain is sufficiently
close to the limit distribution in order for its samples to be used
for Monte Carlo estimation. For a discrete state space, it can
be shown that the chain converges geometrically, and the rate
of convergence depends on the second largest eigenvalue, in
accordance with the exposition in Sec. V-B2. For continuous
state spaces, the convergence is geometric as well, but the rate
of convergence is not expressed in simple terms. In both cases
estimating in practice the rate of convergence in an analytic
fashion is difficult, and so empirical and informal methods for
convergence assessment, which consist of analyzing the data
generated by the chain, are preferred.

One possible method is based on running n independent
parallel chains. The histogram obtained from n samples at the
m-th iteration of each chain is compared with the histogram
obtained k iterations later; if the histograms are sufficiently
similar, it is decided that convergence occurred. The value of
k should be large enough to avoid the histograms appearing
similar due to correlation between states of the chain. The
method of comparing the histograms is flexible, with those
based on the Kullback-Leibler divergence a possible choice.

Another popular method is based on one single chain and on
the calculation of the ergodic average of the obtained samples.
It is expected that after convergence the average would be
close to a constant value. Therefore, by observing the behavior
of the average, it is possible to informally assess convergence
of the chain.

A third technique consists of inspecting the samples from
a selected scalar variable considering different starting points.
After convergence, the samples of the chain should coalesce in
a certain region, regardless of the initialization. This method
is implemented and discussed in Sec. X.

IX. APPLICATIONS OF BAYESIAN TOOLS IN WIRELESS
COMMUNICATIONS

The remainder of the paper considers how the concepts
seen so far can help us to solve the perennial problem of
symbol detection in digital wireless communication systems.
In such a system, the message to be transmitted is digitized,
coded, modulated and transmitted through a wireless medium.
The receiver captures a noisy and distorted version of the
transmitted signal and processes the signal in order to esti-
mate the transmitted message. Fig. 4 shows a block diagram
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representation of a baseband equivalent model of a digital
wireless communication system, in which the combined effect
of the modulation/demodulation and the physical multipath
channel have been encapsulated in the linear system H(z).
We will focus on Bayesian blind receivers, in which the
detection is carried out without previous pilot-based training.
It is important to point out that the discussed algorithms can
be straightforwardly adapted to training-based receivers.

Message
source

H(z) +

vn

yn
xn

Fig. 4. Baseband equivalent model of a digital communication system with
frequency selective channel. A message source generates digital symbols xn,
which are transmitted through the channel defined by the system H(z) and
noise vn, yielding the received signal yn.

The stochastic nature of the basic elements of this model,
namely, the source xn, the system H(z) and the noise vn,
makes this problem well suited for a Bayesian approach. Since
the exact model of a particular communication system depends
on many aspects, such as the multiple access scheme, the
modulation technique, the transmission environment and so
on, a general-purpose receiver is hard to be designed. Instead,
each possible combination of the features of the system can
lead to a particular Bayesian receiver.

To highlight the most important aspects of Bayesian in-
ference, we detail in next section the design of a Bayesian
receiver for digital communication system employing BPSK
(Binary Phase Shift-Keying) and subject to a frequency se-
lective and Gaussian channel. The goal of this section is to
familiarize the reader with the many steps that need to be
taken when designing a Bayesian receiver and the results that
such an approach is likely to achieve. The model and the
MCMC solution described here are a slightly less general
version of [30], in which the Gibbs sampling algorithm is
adopted to estimate discrete (not necessarily binary) data that
have been distorted by a linear system and affected by additive
Gaussian noise. In Sec. XI we provide a survey of recent
advances in Bayesian approaches in symbol detection for some
modern communication systems, emphasizing the difficulties
that typically arise in those systems in comparison to the
simpler scenario of Sec. X.

X. BAYESIAN BPSK SYMBOL DETECTION FOR
FREQUENCY SELECTIVE CHANNELS

In BPSK, phase modulation is used to transmit binary
symbols x1, x2, . . ., xN , where xk ∈ {+1,−1}. Assuming
a linear and time-invariant channel, the received signal yn is
distorted and can be written as a linear combination of the
transmitted signal samples, added to the channel noise:

yn =

L−1∑
l=0

hlxn−l + vn, n = 0, . . . , N − 1, (44)

where hl for l ∈ {1, . . . , L} are the impulse response of the
channel — here modeled as real since the input xn is real
— and vn forms an i.i.d. sequence of samples of Gaussian

variables with zero mean and variance σ2
v . This model can be

conveniently written in matrix form as:

y = Hx+ v, (45)

where vectors y, x and v are formed by stacking the samples
of yn, xn and vn, respectively, and H is the channel matrix
composed of elements of hl. This equation is expanded and
exemplified below for the case N = 6 and L = 3:

y0
y1
y2
y3
y4
y5

=


h0 0 0 0 0 0
h1 h0 0 0 0 0
h2 h1 h0 0 0 0
0 h2 h1 h0 0 0
0 0 h2 h1 h0 0
0 0 0 h2 h1 h0




x0
x1
x2
x3
x4
x5

+

v0
v1
v2
v3
v4
v5

 .
(46)

An alternative way of expressing Eq. (44) that will be useful
later is:

y = Xh+ v, (47)

where h = [h0 . . . hL]
T and X is a matrix defined from

elements of xn. Similarly to the previous case, the expanded
form of this equation is given by:

y0
y1
y2
y3
y4
y5

 =


x0 0 0
x1 x0 0
x2 x1 x0
x3 x2 x1
x4 x3 x2
x5 x4 x3


 h0
h1
h2

+


v0
v1
v2
v3
v4
v5

 . (48)

The main simplification in this model is the assumption of a
time-invariant channel. In practice it is well known that multi-
path channels may change over time because of the movement
of the transmitter or receiver as well as the movement of the
objects in the environment. If these movements are slow and
the symbol rate is not too high (a case in which the coherence
time TC is much larger than the symbol period TS [16]) then
the channel can be considered fixed over a certain period
of time in which symbol detection takes place. When this
is not the case, the time-invariant assumption would be a
poor one, and sequential methods such as Particle Filtering
should be preferred (see Sec. XI-G). In addition to this time-
invariance assumption, the model disregards nonlinear effects
that in practice might exist because of power amplifiers (see
Sec. XI-E), and it takes into account as disturbances only the
ambient noise (typically white and Gaussian), thus ignoring
impulsive disturbances (see Sec. XI-D).

From the Bayesian perspective, the problem consists of esti-
mating the transmitted sequence x based on the received signal
y considering as nuisance the set of parameters θ = {h, σ2

v}.
The solution to the problem begins with calculating the a
posteriori distribution of the unknown quantities, consisting
of the message symbols x and nuisance parameters θ. Using
Bayes’ theorem we have:

p(x,θ|y) = p(y|x,θ)p(x|θ)p(θ)
p(y)

, (49)
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where
p(y) =

∫
Θ

p(y|x,θ)p(x|θ)p(θ)dθ (50)

and p(x) and p(θ) are the prior distributions of transmitted
symbols and nuisance parameters, respectively. If symbols
+1 and -1 are equally likely, the prior for x is the same
for all combinations of transmitted symbols. The priors for
h = {h1, . . . , hL} and σ2

v should be chosen in practice based
on the channel environment (rural or urban, indoor or outdoor,
etc), along with the transmission bandwidth and the expected
signal-to-noise ratio. Here we adopt conjugate priors given by:

p(h) = N (h|0L, σ2
hIL), (51)

p(σ2
v) = IG(σ2

v |αv, βv), (52)

where σ2
h is the variance of each channel tap, and αv and βv

define the shape of the inverse-gamma distribution.
Besides the priors, the likelihood function is needed to

specify the posterior distribution. Exploring the similarity
between the wireless channel model of Eq. (45) and the
linear model discussed in Section III-2, the likelihood can be
calculated as:

p(y|x,θ) = pv (y −Hx) , (53)

p(y|x,θ) = 1

(2πσ2
v)
N/2

exp

{
− 1

2σ2
v

(y −Hx)T (y −Hx)

}
.

(54)
A posterior is obtained by replacing the prior and the

likelihood in Eq. (49). This is only the first step of the process.
The second step is the integration of the nuisance parameters
so as to obtain the conditional distribution of the transmitted
data with respect to received data:

p(x|y) =
∫

Θ

p(x,θ|y)dθ. (55)

Even in this simplified situation with time-invariant channel
and white Gaussian noise, the above integral cannot be solved
analytically, and traditional methods of numerical integration
are inadequate due to the high dimension of θ. Another
difficulty is the estimation of the most likely data sequence:
the naive solution, an exhaustive search for all 2N possible
sequences, is clearly impractical for typical values of N .

A. Bayesian MCMC Receiver

MCMC methods allow us to overcome these two difficulties.
By sampling the variables from their conditional distributions,
the Gibbs sampler is capable of numerically performing the
above integral. Moreover, if the transmitted message x is
sampled in a sequential fashion, as explained below, the
Gibbs sampling algorithm will have a dramatically lower
computational cost in comparison with the exhaustive search
solution.

The MCMC procedure is summarized in Algorithm 2, where
symbol ∼ denotes that the left side variable is a sample
from the distribution on the right side. After initialization, the
algorithm sequentially samples each unknown variable x, h
and σ2

v . Each step is detailed next.

Algorithm 2 MCMC algorithm for signal detection in a
frequency selective communication channel.

1: Initialization: generate x(0), h(0) and σ2
v
(0);

2: for i = 1 to I do
3: for j = 1 to b do
4: x

(i+1)
j ∼ p(xj |y, [x(i+1)

1:j−1 x
(i)
j+1:b],h

(i), σ2
v
(i)
)

5: end for
6: h(i+1) ∼ p(h|y,x(i+1), σ2

v
(i)
)

7: σ2
v
(i+1) ∼ p(σ2

v |y,x(i+1),h(i+1))
8: end for

Initialization: MCMC algorithms are flexible in terms of
how they are initialized. If the goal is to explore the posterior
distribution as fully as possible, then a random initialization
using a broad distribution is recommended. Many different
random initializations might be tried if one wants to investigate
the convergence, using some of the techniques presented in
Sec. VIII. On the other hand, if one is concerned with the time
needed for convergence, then initializing the algorithm from
a favorable point is highly desirable. In practice, initial crude
estimates for x, h and σ2

v might be produced by using simpler
algorithms, such as the constant modulus algorithm [16], or by
simply using the estimates from previous blocks in the case of
block processing. In our illustrative implementation, we chose
x(0) = sign(y), h(0) = [1 0 . . . 0]T and we initialized σ2

v as
a random sample from its prior distribution.

Sampling of x: Directly sampling of the entire vector
x is impractical because it would require calculating 2N

probabilities, which is prohibitively large for typical values of
N . A way to alleviate this burden is to explore the flexibility of
the Gibbs sampling and to perform this operation in sub-blocks
of small length. The idea is to partition the binary sequence x
of N elements in b blocks of fixed size B in such a way that
x = {x1,x2, . . . ,xj , . . . ,xb}. Next we sequentially perform
the sampling of each sub-block xj . When sampling sub-
block xj , the remaining ones are considered to be known and
equal to previously sampled values. Since each block contains
B elements, now the sampling requires the calculation of
conditional probabilities for 2B possible sub-sequences within
each block. If N = 1024 and B = 4, then b = 256, and
the number of required computations for sampling each sub-
block is 24 = 16, which should be performed 256 times (one
for each sub-block). This complexity is much lower than the
21024 computations that would be required if the entire block
had to be sampled at once. A particularly convenient choice
is B = 1, which would lead to a scalar variable xj being
sampled at each iteration. In this case, sampling xj at the i-th
Gibbs iteration would require calculating the ratio below:

p(xj = +1|y, [x(i+1)
1:j−1 x

(i)
j+1:N ],h(i), σ2

v
(i)
)

p(xj = −1|y, [x(i+1)
1:j−1 x

(i)
j+1:N ],h(i), σ2

v
(i))

=

p(y|[x(i+1)
1:j−1 xj = +1 x

(i)
j+1:N ],h(i), σ2

v
(i)
)

p(y|[x(i+1)
1:j−1 xj = −1 x

(i)
j+1:N ],h(i), σ2

v
(i))

, (56)

in which the expression on the right-hand side is the well
known likelihood ratio used in detection theory. In this case,
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the hypotheses consist of the transmitted bit (0 or 1) at time
j. The difference between the Gibbs sampling and traditional
hypothesis testing is that a random sample from the hypothesis
will be drawn rather than a deterministic choice of the most
likely hypothesis. The calculation of the above expression can
be done by using Eq. (53) with x replaced by [x

(i+1)
1:j−1 xj =

+1x
(i)
j+1:N ] in the numerator and by [x

(i−1)
1:j−1 xj = −1x

(i)
j+1:N ]

in the denominator.
Sampling of h: In order to calculate the conditional distri-

bution of h we use the equivalent channel model of Eq. (47)
in which the dependence of the output y on the channel
coefficients h is made explicit. The model is still an instance
of the linear model of Sec. III-2, in which h and X play
the roles of θ and G, respectively. Thus, the full-conditional
distribution of h can be written as:

p(h|y,x, σ2
v) ∝ pv(y −Xh)p(h) = N (h|mh,Ch), (57)

where
mh =

(
XTX+ σ2

vCh

)−1
XTy (58)

and

Ch =

(
XTX

σ2
v

+C−1h

)−1
. (59)

Sampling of σ2
v In the discussion about the parameter

elimination (Section IV-B) we saw that an inverted-gamma
prior for the variance σ2

v yields a posterior of the same shape,
but with modified parameters. Since when sampling σ2

v the
remaining parameters h and x are known we can use Eq. (21)
to calculate the conditional distribution of σ2

v . It is necessary
to replace G with X, θ with h and x with y, in order to
obtain the full-conditional distribution for σ2

v :

p(σ2
v |y,x,h) =

IG
(
σ2
v

∣∣∣∣αv + N

2
, βv +

(y −Hx)T (y −Hx)

2

)
, (60)

B. Simulations

To illustrate the MCMC receiver, we chose a channel of
length L = 11 with impulse response shown in Fig. 5 and
noise variance σ2

v = 0.1, corresponding to an SNR of 10
dB. We initialize the parameter σ2

v by sampling from its
prior distribution using αv = 2 and βv = 1; the vector of
channel coefficients h is initialized as h(0) = [1 0 . . . 0]T ,
corresponding to a flat fading channel, and x is initialized
with the sign of each element of vector y. Several realizations
of the algorithm are performed, each time with different ini-
tialization; in each realization, the algorithm runs for I = 1000
iterations. To assess the number of iterations typically required
for convergence, we adopt the third procedure described in
Sec. VIII, in which samples drawn from a scalar variable are
plotted for each realization of the chain. In this application, the
most natural choice is variable σ2

v . The evolution of σ2
v over

time for each initialization (Fig. 6) allows us to conclude that
the chain converges after a few dozens iterations. From this
figure, it is safe to consider the first 100 iterations as burn-in
and to use the remaining 900 iterations to perform Monte Carlo
inference on the quantities we wish to estimate. By analyzing

the histograms presented in Fig. 7, one can conclude that
the Gibbs sampling receiver accurately estimated the correct
parameter value (red square in the figure). From the sampled
values for x we can easily calculate the maximum a posteriori
estimate for each transmitted symbol: the MAP estimate for xj
is simply the most frequently sampled value (+1 or -1) among
all samples of x(i)j for i > 100. In this example, the symbol
error rate was about 0.1 %. For the sake of comparison, a
simple detector that only evaluates the sign of y to estimate
x would produce an error rate of about 15 %.
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XI. APPLICATIONS OF BAYESIAN TECHNIQUES IN MORE
COMPLEX SCENARIOS

The simple communication model of the previous section
considers BPSK modulation and assumes static frequency
selective channel as well as Gaussian noise. In many practical
situations, the modulation scheme is more sophisticated and
these simplifying channel conditions are inaccurate, which
yield rather complex Bayesian solutions. This section presents
a survey of recent advances in Bayesian receivers applied to
systems of practical importance. For the sake of organization,
we divided the section according to specific aspects of the
overall system that might differ from the one considered so
far.

A. Code Division Multiple Acces (CDMA)

If a wireless medium is shared by more than one user,
Multiple Access Interference (MAI) among users’ messages in
the receiver might occur. In systems employing TDMA (Time
Division Multiple Access) and FDMA (Frequency Division
Multiple Access) [16] the level of interference among users is
typically low, and thus the receiver can estimate the message of
each user in a separate fashion. In contrast, DS-CDMA (Direct
Sequence — Code Division Multiple Access) scheme [13]
poses difficulties for the receiver because of imperfect orthog-
onality between users’ spreading codes. Multiuser Detection
(MUD) in CDMA systems is an important and difficult task
that has been extensively researched [31].

For a CDMA system with K users in a flat fading scenario,
the received signal can be written as [32]:

yn =

K−1∑
k=0

h(k)x(k)n sk + vn, n = 0, 1, . . . , N − 1, (61)

where now h(k) is the single tap of the flat channel for user
k, x(k)n is the n-th symbol of user k, sk is the k-th user
spreading sequence (known by the receiver), and vn represents
Gaussian white noise. By denoting Y = [y0 y1 . . . yN−1], the
detection consists of obtaining the posterior probability of each
transmitted signal for each user, that is

P (x(k)n |Y), n = 0, . . . , N − 1, k = 1, . . . ,K. (62)

This problem can be solved using MCMC by treating h(k) and
the noise variance σ2

v as nuisance parameters, in a procedure
similar to the one in the previous section. This is the approach
carried out in [33] and [32], where conditional distributions
for each parameter were calculated by exploring the noise
Gaussianity and the linearity of the model in Eq. (61). A Gibbs
sampling-based solution was designed in order to generate
samples from the full posterior distribution from which the
most likely symbol sequence for each user can be obtained.
Similarly to what was done in Alg. 2, the authors explore
the flexibility of the Gibbs sampling in order to sample the
message data on a symbol-by-symbol basis, thus reducing the
computational complexity of the receiver. A similar approach
is adopted in [34] to perform multituser detection for a channel
subject to Intersymbol Interference (ISI). Still in the MCMC
context, the case of impulsive noise in CDMA is addressed

in [35], in which a mixture of Gaussians with two components
is used to model the noise.

B. Orthogonal Frequency Division Multiplex (OFDM)

Systems employing OFDM modulation allow the transmis-
sion of symbols through several overlapping yet orthogonal
carriers, which in practice are defined from the vector basis of
the Fourier transform. By introducing a cyclic prefix, which
repeats a certain number of symbols at the beginning of every
block of transmitted symbols, OFDM systems indirectly trans-
form frequency selective channels into a number of parallel flat
AWGN channels. Hence, OFDM symbols can be recovered by
deploying an algorithm similar to the one presented in Sec. X
for a special case of L = 1, corresponding to a flat fading
channel with one unknown tap.

In practice, however, OFDM systems suffer from imper-
fections that preclude perfect flattening of the channel. One
common problem is the presence of frequency-offset of the
carriers caused by the mismatch between the oscilator in
the transmitter and that in the receiver, which creates Inter-
Subcarriers Interference (ICI). As argued in [36], the common
approach of estimating the frequency-offset and then compen-
sating for it in the receiver is sub-optimal. The authors of [36]
then propose a Bayesian procedure to estimate the symbol
sequence while integrating out in an MCMC context the
frequency-offset and channel impulse response coefficients.
While the standard model for OFDM is linear, the presence
of frequency-offset makes the solution more complicated. By
adopting a uniform prior between specified limits for the
frequency-offset, they show that the posterior distribution for
this parameter cannot be easily sampled. Their solution was
to use a Metropolis-Hastings step within the Gibbs sampling
framework, in which a simple uniform distribution is chosen
as the proposal distribution. This is an example of a common
practice called MH within Gibbs [8], in which MH steps are
included in a Gibbs sampling framework when direct sampling
of particular variables is difficult. They also considered a
variation of the MCMC algorithm in which the Gibbs sampling
is adopted with local linearization of the model with respect
to the frequency-offset, resulting in a Gaussian approximate
posterior distribution which can be easily sampled from.
Simulations indicate that the solution employing Metropolis-
Hastings is superior and close to the one obtained with ideal
Channel State Information (CSI).

A related and more sophisticated MCMC solution is adopted
in [37], in which phase noise, in addition to multipath fading
and frequency-offset, is handled by the model in an MIMO-
OFDM scenario. Simulations indicate that the Bayesian so-
lution achieves results that are almost as good as those of
a receiver with perfect knowledge of all relevant variables.
Another common issue affecting OFDM is the nonlinearity of
the High Power Amplifier (HPA), which tends to be severe due
to the high Peak-to=Average Power Ratio (PAPR) observed
due to the near Gaussian OFDM signal. An early example of
Bayesian MCMC receiver can be found in [38], in which the
problem of detection of clipped OFDM symbols is addressed.
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C. Multiple Input/Multiple Output (MIMO) Systems

MIMO systems [39] employ several transmitting and re-
ceiving antennas in order to explore the diversity inherent
in wireless channels and to substantially increase spectral
efficiency. Such systems have attracted significant attention
lately and are expected to be employed in fifth generation
(5G) cellular networks [40]. In comparison to the scenario in
Sec. X, MIMO systems require modeling the many possible
paths between each pair of transmitter and receiver antennas.
Even though the number of variables grows substantially, the
model is still linear and the Bayesian analysis that is similar
to the one in Sec. X applies.

A recent approach that uses a variant of MCMC appears
in [41], where a low-complexity multiuser receiver for large-
scale MIMO systems is proposed. A modification of the
standard Gibbs sampling algorithm is adopted in order to
alleviate the so-called stalling problem that occurs when SNR
is high, a situation in which the algorithm can be trapped in
a low quality local maximum. The idea is to adopt a mixed
sampling scheme where the algorithm chooses probabilisticaly
between sampling from the posterior distribution of the symbol
sequence or from a uniform distribution. The authors consider
further the use of multiple restart strategies that have proved
effective for high-order QAM, in addition to MCMC esti-
mation of the channel parameters. Simulations show that the
receiver combining those techniques performs near-optimally
in terms of BER with a complexity that scales well with the
number of transmitter and receiver antennas.

In [42], an MCMC-based approach for multiuser detection
in coded MIMO and CDMA systems is presented. By disre-
garding the effect of the multipath channel, and considering
a BPSK source, the paper focuses on a turbo-based receiver
which ultimately depends on calculating the likelihood ratio
for each possible transmitted bit. The solution employs the
Gibbs sampling algorithm to indirectly implement an analyt-
ically complicated summation. The authors show that their
approach can be seen as a Rao-Blackwellized [8] version
of an existing sub-optimal approach, and argue that their
proposal achieves a lower variance estimate. They also tackle
the stalling problem by modifying the posterior distribution
of the data sequence to make it less concentrated on certain
values. Simulations indicate that the proposed Bayesian so-
lution outperforms traditional approaches such as the sphere
decoding [43] and MMSE (Minimum Mean Square Error) [44]
detectors in terms of Bit Error Rate.

D. Impulsive Noise

Despite the ubiquity of white Gaussian noise modeling of
real-world electrical disturbances, in many important cases
the noise can show more erratic behavior that does not
follow a normal distribution. For instance, impulsive noise
is prevalent in systems employing Extremely Low Frequency
(ELF) or Very Low Frequency (VLF). Because non-Gaussian
distributions are analytically less tractable than their Gaussian
counterparts, a Bayesian receiver capable of dealing with
impulsive noise is more complex than the one described in
Algorithm 2.

In [45], impulsive noise is considered in a system employing
multiple antennas and that is subject to flat fading. A blind
receiver is designed using an MCMC approach similarly to
the one previously described. To model the heavy-tailed dis-
tribution of impulsive noise, the author adopts a sub-Gaussian
density with a free parameter α that controls the shape of the
curve. The presented MCMC algorithm has a structure similar
to that of Algorithm 2, except that now some parameters can-
not be easily sampled from their full-conditional distribution.
The Metropolis-Hastings algorithm with a Gaussian proposal
is adopted to indirectly obtain samples of those parameters in
an MH within Gibbs scheme.

Simulations reported by the authors indicate that the
Bayesian blind receiver performs very close to the optimum
receiver (in which all the parameters are assumed to be known)
in terms of Bit Error Rate. In addition, the receiver can work
when noise is Gaussian, a situation corresponding to α = 2.
The authors argue that the receiver can be implemented in
practice considering the low data rate in ELF/VLF systems
(for which the algorithm was designed) and the fact that
parallelization using Graphical Processing Units (GPUs) can
be used.

E. Nonlinear Effects

In addition to the frequency selectivity of the channel, in
practice the presence of nonlinear effects in power amplifiers
poses additional challenges for receivers. Nonlinear channels
can arise in situations with severe fading, which requires
high transmission power and thus amplifiers operating outside
their linear range. Practical examples include satellite com-
munications, in which severe fading is caused by the long
distance between transmitter and receiver, and millimiter wave
communication, in which substantial path loss is the result of
the system adopting very high frequency carriers [16].

Nonlinear effects have usually been handled by introducing
in the transmitter a predistortion, consisting of a nonlinear
system that ideally compensates for the nonlinearity in the
amplifier. The compensating nonlinear system requires imple-
menting a feedback control loop operating in the basedband,
which can be computationally intensive and can produce
imperfect cancellation. Another possibility is to implement the
nonlinear equalization in the receiver. This approach requires
sophisticated nonlinear signal processing tools, since the non-
linear distortion is unknown in the receiver and the received
signal is also affected by linear multipath distortion.

A recent approach [46] adopting the latter strategy performs
Bayesian equalization of nonlinear channels in millimeter
wave communications, which is a technology likely to be
used in 5G mobile telephone systems. The overall channel
is modeled as a cascade of a fixed memoryless nonlinearity
associated with the power amplifier, a time-varying linear
system describing the effect of multipath, and an additive
white Gaussian term to model ambient noise. The nonlinear
element is approximated by a truncated Taylor series while a
Finite Impulse Response filter represents the linear part. The
nonlinear element in the model makes the posterior distribution
analytically intractable — that is, the distribution for most
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relevant variables does not have a well-known form. At this
point, a batch approach consisting of Gibbs sampling with
some MH steps could be adopted, resulting in a structure sim-
ilar to Algorithm 2. The authors, however, chose to describe
the model in a state-space form, and to tackle the problem of
symbol detection in a Sequential Monte Carlo framework [15].
The practical solution is based on particle filtering (PF) and
adopts local linearization of the nonlinear curve to simplify
the computation. Simulation results show that the proposed
PF-based solution outperforms traditional transmitter pre-
distortion-based solutions and blind linear equalizers based on
Maximum A Posteriori (MAP) estimation. Furthermore, the
authors argue that the introduction of a nonlinear element in
the model does not increase significantly the energy consump-
tion of the receiver in comparison to a PF solution that deals
only with multipath distortion.

F. Underwater Acoustic Communications

Most wireless receivers are designed for transmission
through the air, typically for urban or sub-urban environ-
ments in which the channel has large bandwidth and changes
relatively slowly and the propagation speed is very high.
In contast, the transmission medium in underwater acoustic
communications (UAC) [47] is characterized by low speed,
highly scarce bandwidths, high delay spread causing severe
ISI and rapidly changing multipath channels. On the bright
side, the impulse response of such channels can be considered
sparse, and thus its estimate can be improved by employing
sophisticated compressive sensing techniques [48].

In [49], a semi-blind Gibbs sampling receiver is designed for
joint symbol detection and channel estimation for Single-Input
Single-Output (SISO) uncoded UAC systems. The considered
system has the same elements discussed in Sec. X, except that
now the channel is highly time-varying. The receiver processes
the data on a block basis, and the channel is assumed to
be fixed in each block. To handle the interblock interference
caused by the channel memory, accommodations on a single-
block solution are performed in which data from previous
blocks are used for parameter estimation in current block. The
proposed Gibbs sampling solution achieves significantly lower
BER values in comparison to an alternative two-stage solution
in which the symbol and channel are separately estimated, at
a cost of a substantially higher computational burden.

A few works in the literature explore the sparsity of the
channel to obtain improved parameters estimates. An example
of such an approach can be found in [50], in which the
compressive sensing estimate of the channel is performed and
the result is used as a parameter for a Bayesian detector. A
similar procedure is proposed in [51]; the main difference is
that the channel model is incorporated in the Bayesian context
by using a sparsity-inducing prior for the channel coefficients.

G. Fast Fading Channels

Some of the most common applications of wireless com-
munications aim at providing service to mobile users, leading
to offset of the carrier frequency and a channel that changes
over time. One way to deal with this type of channel is by

employing the modern techniques of sequential Monte Carlo
(SMC) [15], [52], a generic class of techniques that includes
the increasingly popular particle filters. As a generalization
of Kalman filters, these techniques allow for constant update
of the channel estimate as well as the transmitted symbols as
new data are received. Additionally they are capable of dealing
effectively with nonlinear channels and non-Gaussian noise.
These techniques are a powerful tool for severely distorted
time-varying, nonlinear and frequency selective channels. Ex-
amples of applications of particle filtering to varied problems
in communications include [53], [54]. This paper has focused
on batch processing using MCMC; we intend to address
sequential processing in a Bayesian context in future works.

XII. DISCUSSION ON THE PERFORMANCE OF
BAYESIAN/MCMC RECEIVERS

This section addresses performance issues of MCMC re-
ceivers. We start surveying a paper in which the convergence
of three MCMC algorithms is investigated, and we follow
with an informal discussion regarding the comparison between
Bayesian/MCMC receivers and a few alternative approaches
for designing blind receivers.

A. Convergence Analysis

As stated in Sec. VIII, establishing accurate convergence
results for MCMC algorithms is difficult. Even when analytic
formulas are available, they depend on parameters that are
unknown and difficult to estimate. In [55], a comprehensive
analysis of convergence of various MCMC algorithms for a
few wireless communication systems is provided. The paper
resorts to a mix of theoretical and empirical tools to provide
approximate yet useful guidelines on how to assess and
improve convergence of MCMC algorithms. The authors state
that the convergence of MCMC algorithms is geometric, pro-
vided the chain is aperiodic and irreducible. While determining
the exact convergence rate is difficult, in practice it can be
roughly estimated by exploring the fact that the convergence
rate is closely linked to the correlation between samples of
the chain. They also show that the overall convergence of the
chain can be indirectly assessed by analyzing the correlation
of a subset of the variables of the chain. In an MCMC receiver,
the sequence of sampled digital symbols forms a discrete
Markov chain, for which the convergence rate depends on the
second largest eigenvalue of the transition matrix (as seen in
Sec. VIII). By numerically calculating this transition matrix
for a few MCMC receivers the authors managed to obtain
estimates for their convergence rates for a few relevant cases.

For an AWGN channel (corresponding to Eq. (44) with L =
1) the authors show that it is possible to analytically integrate
out the nuisance parameters and thus perform sampling only
of the transmitted data sequence. The resulting distribution
for the transmitted data is bimodal due to the ambiguity in the
model: the same output yn = h1xn+vn can be obtained with
variables −h1 and −xn. The transition matrix is 2N × 2N ,
where N is the number of transmitted symbols. By assuming
the noise variance to be known (which tends to be the case in
practice), and N = 5 symbols, the second largest eigenvalue



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 31, NO. 1, 2016. 328

λ2 of the resulting 32 × 32 matrix can be computed. Their
analysis shows that perhaps paradoxically a high SNR leads
to slower convergence. The explanation is that the modes of
the posterior distribution are farther apart when SNR is high,
which makes it harder for the chain to transition from one
mode to the other. The authors report that, by using differential
coding, this ambiguity is removed and the convergence tends
to improve when SNR increases.

For an ISI channel (like the one in Eq. 44), the authors
discuss a few variations of MCMC receivers that are closely
related to Algorithm 2. They consider three possibilities: (1)
alternate sampling of data sequence x and joint sampling of the
remaining nuisance parameters h and σ2

v ; (2) sampling of data
sequence x in groups of size q, with the remaining steps simi-
lar to (1); and (3) sampling of data sequence from its posterior
(with nuisance parameters integrated out) one component at a
time either through Gibbs sampling or Metropolis-Hastings.
Their analysis shows that the Gibbs sampling of one compo-
nent at a time is superior to all others. The grouping algorithm
converges faster than the two components algorithm; yet it
requires more computation per iteration. For all algorithms,
the convergence gets slower as the SNR increases. The reason
now is the shifting ambiguity caused by the channel, which
makes the posterior multimodal and more concentrated when
SNR is high. The authors suggest introducing constraints in
the model to avoid ambiguity and thus improve convergence.

Finally, the paper addresses Bayesian receivers for CDMA
channels without ISI. The adopted channel model for CDMA
can be seen as a generalization of the AWGN channel in which
a vector of binary symbols, rather than a single symbol, is
transmitted at every time index. The convergence of a standard
Gibbs sampling based multiuser detection algorithm is studied
with respect to SNR and the correlation between spreading
codes (ρ). The numerical analysis showed that higher SNR and
higher ρ are detrimental to the convergence of the algorithm.

In summary, the authors conclude that convergence is typi-
cally negatively affected by higher SNR, high chain correlation
and ambiguities in the model. In addition, integrating out
continuous parameters whenever possible helps to improve
convergence, since fewer variables remain in the chain and
they become less correlated.

B. Comparison to Alternative Approaches

The MCMC-based receiver presented in the previous section
can be categorized as a blind receiver, since it does not require
pilot-based training. The advantage of such receivers is that
they provide higher throughput since resources that would
have been allocated to transmit pilot data can be used to
transmit information data. Blind receivers in general rely on
known properties of the transmitted signal and the channel in
order to perform symbol detection based solely on the received
signal. Many approaches for blind receivers exist with varying
levels of complexity and performance.

The Constant Modulus Algorithm (CMA), for example,
explores the fact that, in a few systems such as FSK, MSK
and QPSK, the envelope of the transmitted signal is constant,
corresponding to constant modulus constelation [13]. Since the

multipath channel and the noise tend to modify this modulus,
a receiver can be designed to process the signal in order
to force the modulus to be constant again. It is expected
that the output of such receiver will produce symbols that
are closer to the transmitted ones on average. The CMA
can be straightforwardly implemented using gradient-based
adaptive approaches, similarly to traditional LMS adaptive
filters. However, the various versions of the CMA suffer from
two main drawbacks in comparison to traditional adaptive
equalizers: longer time needed for convergence and risk of
converging to a local minimum.

Another well-researched approach for blind equalization is
to use second- or higher-order statistics (HOS) of the transmit-
ted signal. Even though in general the phase information is not
captured by second order statistics such as the autocorrelation
function (ACF), this is not the case when the the ACF is
periodic. A practical way to impose this periodicity, making
the signal cyclostationary and allowing the use of the ACF
for equalization, is to oversample the signal output. The use
of High Order statistics does not require the cyclostationary
assumption, and thus can be used without oversampling the
received signal; however the accuracy of the HOS-based
equalizer is inferior [13].

In comparison to these techniques, the fully-Bayesian ap-
proach is expected to produce superior results in terms of
symbol error rate, because it takes into account all available
knowledge about the relevant variables. In particular, Bayesian
methods can easily incorporate noise in the model, as ex-
plained in last section, thus avoiding the phenomenon of noise
enhancement which is a drawback in many blind equalization
techniques, including those mentioned in previous paragraphs.
While the posterior distribution needed in a Bayesian solution
can be quite complex, the usage of MCMC prevents the
equalizer from converging to a local minimum. In contrast, as
stated before, traditional gradient-based techniques are prone
to sub-optimal convergence. Bayesian methods are typically
associated with higher computational complexity, which is
the result of using realistic modeling with more parameters.
However, when applied to digital communication problems,
Bayesian tools jointly with MCMC using the blocking strategy
presented earlier can produce receivers of acceptable complex-
ity.

XIII. CONCLUSIONS

In this tutorial we presented the fundamentals of Bayesian
inference and the techniques for stochastic simulation, with
particular emphasis on their application in symbol detection
for several modern digital wireless communication systems.
We explored in detail the case of time-invariant frequency
selective channel with additive Gaussian noise in a system em-
ploying BPSK. This simple scenario allows us to understand
the main elements of Bayesian analysis, namely: the choice of
prior distributions, the calculation of the posterior distribution
via Bayes’ theorem and the practical receiver design via
MCMC techniques. In contrast to traditional receivers that
avoid full statistical modeling, the resulting algorithm naturally
yields optimal estimation of users’ data as it integrates out all
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nuisance parameters. Furthermore, the method can produce
joint blind symbol detection and channel estimatation, and
it can be adapted to yield channel estimation when a pilot
sequence is available. The stochastic nature of MCMC makes
the algorithms more robust to local minima, and it can
indirectly produce credence intervals for all variables in the
model in order to assess the accuracy of the estimates. On
the downside, the complexity of the resulting hierarchical
Bayesian model may imply a high computational burden,
yielding to high energy consumption in the receiver. This
burden, however, can be alleviated by implementing some
pre-processing to produce initial favorable estimates for key
variables in the model, or by using past estimates in the
context of block processing. Having been successfully tested
in many wireless technologies that are expected to be adopted
in the near future, such as massive MIMO and millimeter
wave communications, Bayesian tools tend to become more
popular as communication systems become more complex and
the continuously increasing computational power enables their
practical implementation.
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