
JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 31, NO. 1, 2016. 177

Blind Source Separation: Fundamentals and

Perspectives on Galois Fields and Sparse Signals
Daniel G. Silva, Leonardo T. Duarte and Romis Attux

Abstract—The problem of blind source separation (BSS) has
been intensively studied by the signal processing community. The
first solutions to deal with BSS were proposed in the 1980’s and
are founded on the concept of independent component analysis
(ICA). More recently, aiming at tackling some limitations of ICA-
based methods, much attention has been paid to alternative BSS
approaches. In this tutorial, in addition to providing a brief
review of the classical BSS framework, we present two research
trends in this area, namely source separation over Galois fields
and sparse component analysis. For both subjects, we provide
an overview of the main criteria, highlighting scenarios that can
benefit from these more recent BSS paradigms.

Index Terms—BSS, ICA, Galois Field, Sparsity.

I. INTRODUCTION

BLIND Source Separation (BSS) is one of the most

relevant subject in unsupervised signal processing, with a

myriad of aspects worthy of investigation and analysis, such as

(i) the separation criteria and the implied hypothesis about the

sources characteristics, (ii) the generative model that yields the

mixed signals and its association with the separation system

and (iii) the algorithms to determine the solution parameters.

The “canonical” concept to solve BSS is the application of

Independent Component Analysis (ICA) [1], [2] in the context

of real- or complex-valued signals. Such approach presumes

independence between the sources and, consequently, the sep-

aration strategy lies on recovering the sources from the set of

dependent mixtures by searching for a recovered independent

configuration. Nevertheless, there are two alternative points of

view that have been consistently treated in the last years, and

which deserve special attention: a) the case of linear scenarios

with inherently discrete, finite-domain signals, which formally

comprise the finite (or Galois) field theory and b) the use of

priors based on signal sparsity (instead of independence) in

the time domain or in a domain engendered by an adequate

transform.

This tutorial intends to introduce and describe these two

modern research trends in unsupervised signal processing:

BSS over Galois fields and BSS over sparse signals. We

put emphasis on the analysis of the main separation criteria

and the particularities of each domain, when confronted to
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the canonical framework. In order to do so, the work is

organized in the following sections: Section II reviews the

fundamental concepts underlying BSS and the use of ICA;

Section III discusses the BSS extension to the domain of

Galois fields, describing the main theoretical developments

and potential applications; Section IV studies the notion of

sparsity in information signals and its relevance to solve BSS

within different complexity instances; and Section V presents

the final remarks.

II. BASIC CONCEPTS

The BSS problem can be defined, in simple terms, as that

of recovering a set of information signals (sources) from

mixed versions of them (mixtures). In principle, there are

no limitations regarding the mixing process, which can be

nonlinear, with memory, time variant etc. However, for the

sake of mathematical tractability, and in view of a vast number

of applications, the linear and instantaneous mixing model can

be assumed as being canonical. In this model, it is considered

that N sources are detected by M sensors in the form of

linear combinations i.e. there is a superposition of signals with

different gains, but not of delayed versions. Mathematically,

if there is a source vector s(n) = [s1(n), s2(n), ..., sN (n)]T

and a mixture vector x(n) = [x1(n), x2(n), ..., xM (n)]T , for

a given instant n, the model can be expressed as:

x(n) = As(n), (1)

being A an M × N mixing matrix. Note that, in this expla-

nation, the model is built without reference to measurement

noise, although its presence is relevant in both theoretical and

practical terms [1].

When N > M , there arises an underdetermined case,

which is difficult to deal with because it maps the desired

information from an original signal space onto a space of

smaller dimension. On the other hand, when M > N ,

there is an overdetermined model, which poses, undoubtedly,

fewer complications. Finally, there is the most usual case in

the literature, when M = N , which will be the standard

throughout this section.

In this last case, if the matrix A (which becomes square)

is invertible, it is possible to formulate the problem of BSS

as that of finding another square matrix W (called separating

matrix) so that there is a vector of estimated sources

y(n) = Wx(n) (2)

giving rise to a solution as follows:

y(n) = DPs(n), (3)
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being D a diagonal matrix and P a permutation matrix. The

meaning of (3) is that, in the solution of the BSS problem as

formulated (and even in a more general sense), the sources can

be recovered in any order and are subject to scaling factors,

which means that these information-preserving ambiguities are

tolerated.

Once those remarks are made, it remains a question: how

can W be obtained in an unsupervised (or blind) fashion? To

answer it, it is necessary to make some sort of hypothesis about

the sources. Although it is beyond dispute that the canonical

hypothesis considers sources as mutually independent stochas-

tic signals, there are more than one possible path to follow

here, as will be seen later on. This hypothesis, which is valid

in many domains [1], is a very strong one under the aegis of

the defined model. In fact, as shown in [2], if the components

of the vector y(n) = Wx(n) are mutually independent, the

sources will have been recovered aside from the ambiguities

expressed in (3). In other words, recovering the independence

condition implies correct source estimation.

It is exactly because of this fact that there is a strong link be-

tween BSS and the methodology known as independent com-

ponent analysis (ICA) [2], which, in contrast with the more

popular technique of principal component analysis (PCA)

[1], has the objective of finding projections that generate

statistically independent factors (and not only uncorrelated, as

is the case with PCA) underlying the focused data. By means

of ICA, it is possible to build cost (or contrast) functions that

allow the search for matrices W capable of providing efficient

source recovery.

A. Criteria for Performing ICA-Based BSS

Several formulations can be used to perform ICA. Here,

we will discuss three of them, based on the concepts of

mutual information and non-Gaussianity (quantified in terms

of kurtosis and negentropy) [3].

1) Mutual Information: A very natural criterion to quantify

statistical dependence is the mutual information, which, for a

general random variable vector a, with K elements, is defined

as [1]:

I(a) =

K
∑

k=1

h(ak)− h(a), (4)

where h(·) is Shannon’s differential entropy, given, for a

vector, by [4]:

h(v) = −

∫

p(v) ln [p(v)] dv. (5)

Since entropy can be seen, in simple terms, as the degree

of uncertainty associated with a random variable, we may

interpret (4) as being, intuitively, the difference between the

total uncertainty originated by a separated observation of its

components and the total uncertainty originated by a joint

observation. When this difference is null, “no component

carries information about the other”, so to say, which in more

rigorous terms implies that they are independent. If there is

statistical dependence, I(a) > 0 [4]. Hence, if the mutual

information associated with y(n) is minimized with respect to

W, it shall be possible to restore the independence condition

and to recover the sources.

A major difficulty here lies in the question that entropy

calculation requires knowledge of the involved probability

densities or their estimation (something that can be quite com-

plex in some cases). The joint entropy is not an issue, because

it is possible, using the hypotheses regarding the model, to

write (the time indices will be omitted for simplicity) [3]:

h(y) = h(x)− ln [| det(W)|] . (6)

Note that h(x) is fixed and that W is known, being the

analyzed solution. One cannot avoid nonetheless the need for

estimating the marginal entropies that form the first term of

the right-hand side of (4).

This difficulty explains why the use of the mutual infor-

mation in the linear and instantaneous case is not common,

although it is very relevant, for instance, in the nonlinear

context, which will not be dealt with here [5], and in the

context of signals over finite fields, as the reader will see in

Section III.

2) Non-Gaussianity: Kurtosis and Negentropy: The central

limit theorem [3] can be enunciated as follows. Let a set of

K continuous random variables ai, i = 1, ...,K , i.i.d. (inde-

pendent and identically distributed); their mean converges, in

the limit K →∞, to a variable with a Gaussian density.

Well, as, in ICA, mutual independence between sources is

assumed, and, moreover, in the linear case the mixtures are

essentially sums, the central limit theorem implies that to mix

means “to Gaussianize”. In other words, it can be said that a

mixture is “more Gaussian” than the sources generating it.

A way to quantify Gaussianity is to employ the kurtosis, a

fourth-order statistic that, for Gaussian variables, is null. Its

definition is, for a real-valued scalar variable a:

K(a) = E[a4]− 3E2[a2]. (7)

The use of kurtosis is more naturally explained in the domain

of source extraction i.e. when the goal is to recover a single

source. This leads to:

yi(n) = wT
i x(n), (8)

being wi interpreted as one of the lines of the separating

matrix W. It can be shown, which is intuitive in view of

the central limit theorem, that to maximize the absolute value

of the kurtosis with respect to wi, under a proper constraint,

allows a source to be recovered1. Consequently, there arises a

criterion of the form:

max
wi

|K [yi(n)] |. (9)

To recover all sources, it is necessary to make use of a

deflation process i.e. to remove each extracted source from the

remaining mixture(s) or to resort to constraints that prevent the

extraction of the same signal [1].

Another form of using the idea of Gaussianization inherent

to the mixing process is to bring to the scene a classical

result from information theory. This result ensures that, among

1This framework is very similar to that of the Shalvi-Weinstein theorem [6]
for blind equalization.
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all random variables a with a fixed second-order statistical

structure, the Gaussian density is the one with maximum

differential entropy [4].

Having this in mind, let us imagine a random variable a with

generic mean and covariance (we will consider the scalar case

to simplify things). Let us now consider a Gaussian random

variable with the same moments up to second order. It is

possible to define the negentropy N(a) as follows:

N(a) = hgauss(a)− h(a), (10)

where h(a) is the differential entropy of the variable in

question and hgauss(a) is the entropy of a Gaussian random

variable with the same moment structure up to order two.

From what was discussed, it follows that N(a) ≥ 0. To

obtain a proper extraction vector wi, N(yi) must be maximized

with respect to it, so that the non-Gaussianity be maximized.

Again, the retrieval of all sources demands deflation or special

constraints.

The use of negentropy requires, in principle, entropy esti-

mation, which, as already mentioned, can be a complex task

in some cases. Therefore, it is usual to adopt certain nonlinear

functions as means to approximate it. With these functions,

it is more straightforward to derive gradient or fixed-point

algorithms [1].

B. Other approaches to linear-instantaneous mixing models

Even if ICA is at the origins of BSS, there is now a number

of alternative approaches to deal with separation problems

in linear models. For instance, another classical paradigm in

BSS considers that the sources can be modeled as stochastic

processes, which allows one to exploit temporal information

related to the sources. Such an approach is the basis of

the algorithm SOBI [7] and, more generally, of the class of

algorithms that exploit the auto-correlation structure of the

sources [2]. A nice aspect of such methods is that they can

be applied to separate non-white Gaussian sources under the

condition that these sources present different auto-correlation

functions.

A different approach that has been adopted in BSS comes

from the machine learning community: it is known as non-

negative matrix factorization (NMF) [8], [9]. The goal in NMF

is to search for an approximation for the observed non-negative

matrix X as follows

X ≈ AS, (11)

where A,S ≥ 0. In the context of BSS, A and S are

related to the mixing matrix and the sources, respectively,

which are thus assumed non-negative. Such an assumption

is realistic in several applications, such as those related to

chemical analysis [10] and audio processing in transformed

domains [11]. Although NMF lacks from separability results

(see, for instance, [12]), in the sense that it is an ill-posed

problem, the combination of NMF with additional prior such

as sparsity or smoothness may provide sound BSS algo-

rithms [13].

Another emblematic example of BSS paradigm is based on

a Bayesian formulation of the problem [2]. This approach is

suitable when there is a set of prior information that can

be modeled through probability distributions. For instance,

non-negative priors can be modeled in a Bayesian framework

by considering distributions of non-negative support [14],

whereas sparsity can be represented by, for example, a Lapla-

cian distribution [15].

Finally, an extension to the instantaneous model can be con-

sidered i.e. the blind separation of convolutive mixtures. The

main difference between the linear-instantaneous model and

the convolutive one is that the latter becomes a superposition

not only of the present values of the sources, but also of past

values. In other words, the convolutive model includes the

dimensions of space and time, with the multiplicity of sensors

and instants engendering the mixing process. Mathematically,

(1) is extended as:

x(n) =

T
∑

k=0

A(k)s(n− k), (12)

where T corresponds to the maximum delay present in any of

the mixtures. Notice that (12) yields (1) when T = 0.

It is possible to solve this problem in the time domain

(e.g. using predictive strategies [16]) or to use the property

that a convolution in the time domain is a product in the

frequency domain, which gives rise to a sort of instantaneous

mixture [2]. In the latter case, special precautions must be

taken with respect to the permutation and scale ambiguities,

which may cause severe spectral distortions.

III. SEPARATION OVER FINITE FIELDS

After discussing the general aspects of BSS, now we focus

on a more specific case, which necessarily deals with digital

data. Then, BSS can be studied, for example, when signals

and mixing processes are binary. This perspective was first

proposed in [17] and belongs to the generic framework of

source separation over finite or Galois fields.

This is the fundamental topic of this section, which is

organized as follows: first, the signal representation over

Galois fields is presented; then the most important criteria to

separate such signals from instantaneous mixtures is discussed

in Section III-B; Section III-C extends the analysis to the

convolutive mixing model and, finally, Section III-D illustrates

two potential applications of the techniques so far developed.

A. Signals over GF (q)

Fields are abstractions of familiar number systems and

their essential properties [18]. A field F is defined as a set

of elements associated with two operations, + and ·, such

that the following axioms are valid: closure, commutativity,

associativity, distributivity, existence of neutral element and

existence of inverse element [19].

Real and complex numbers are well-known examples of

fields, both with an infinite number of elements. However, this

is not a mandatory requisite: there are also finite (or Galois)

fields, e.g. the set {0, 1} with the logical operations exclusive-

or (XOR) and AND as addition and product, respectively.

A finite field with q elements is named F = GF (q); it is

possible to show that q = Pn, where P is a prime and is

typically called the characteristic of the field. If n = 1, F
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is a prime field and its operations are easily defined as the

product and sum modulu P over the elements {0, ..., P − 1}.
Otherwise, fields with n > 1 are called extension fields and

imply a more complex definition of operations [18].

Vector spaces over finite fields can also be constructed, with

a remark that such spaces are not ordered and there is no

notion of orthogonality [20]. Linear mappings A : FN →
FM are represented by M ×N matrices with elements in F ,

in accordance to the usual restrictions for having an inverse

mapping — the matrix must be square and with a non-null

determinant.

B. Separation over GF (q) in instantaneous models

Consider the BSS formulation for the instantaneous and

determined (M = N ) case, as (1) illustrates, but with the

difference that all entities and operations are defined over a

field F = GF (q). Hence, the problem consists of finding, in

the space of all invertible N -dimension matrices — GL(N, q)
—, the one that recovers s(n), in equivalence to the definition

given in (3).

The following theorem offers the possibility of achieving

the solution through ICA [21]:

Theorem 1 (Identification via ICA) Consider F = GF (q)
a finite field of order q. Assume that s is a vector of inde-

pendent random variables in F , with probability distribution

ps such that the marginal distributions are non-uniform and

non-degenerate2. If, for some invertible matrix G in F , the

components of the vector y = Gs are independent, then

G = DP for a permutation matrix P and a diagonal matrix

D.

For instance, consider GF (3) and two independent

sources with marginal probability vectors given by ps1 =
[1/2, 3/8, 1/8] and ps2 = [1/3, 1/6, 1/2]. Hence, the joint

distribution is

ps = [1/6, 1/12, 1/4, 1/8, 1/16, 3/16, 1/24, 1/48, 1/16]

for the respective values of s = [0, 0]T , [0, 1]T , ..., [2, 1]T ,
[2, 2]T . If the sources are multiplied by a matrix according

to Theorem 1,

G =

[

2 0
0 2

]

·

[

0 1
1 0

]

=

[

0 2
2 0

]

,

then y = Gs = [2s2, 2s1]
T is a random vector with marginal

probabilities py1
= [1/3, 1/2, 1/6], py2

= [1/2, 1/8, 3/8]
and joint distribution

py = [1/6, 1/24, 1/8, 1/4, 1/16, 3/16, 1/12, 1/48, 1/16],

which yields py(k) = py1
(k1)py2

(k2), i.e. the components of

y are independent.

Consequently, this result indicates that one can employ ICA

to perform blind separation of signals over GF (q), as long

as the original signals are independent and non-uniformly

distributed, leading to extracted signals that differ only by

2A distribution is called degenerate when it presents at least one event with
null probability.

scale and permutation ambiguities. Since there is no definition

of statistical moment for random variables over a finite field,

in order to define a criterion similar to negentropy or kurtosis,

it is necessary to employ the concepts that information theory

offers.

An important property states that the linear combination of

independent random signals results in an entropy greater than

or equal to the original signals [22]. Based on this, a first

separation strategy rises via source extraction [2], as already

mentioned in Section II-A. The AMERICA algorithm [20]

implements this technique for performing ICA over GF (q),
through an exhaustive search with the criterion

min
wi∈FN

H
[

wT
i x(n)

]

, (13)

to be executed N times, with the restriction that each obtained

extraction vector is linearly independent from the previous

ones. Note also that H(·) is Shannon’s entropy for discrete

random variables

H(v) = −
∑

v∈F

p(v) log p(v). (14)

Figure 1 describes AMERICA pseudocode. Despite the adop-

tion of an exhaustive search approach, AMERICA assures

convergence to the correct inverse solution (as long as the

criterion is perfectly calculated).

W← ∅;
while dim(W) 6= N do

wo = argminw∈FN\span(W) H
[

wTx(n)
]

;

W←W ∪ {wo};
end while

Output: W

Figure 1. Pseudocode of AMERICA algorithm.

There are algorithms that trade convergence for a lower

computational cost, through approximations of the criterion

defined in (13), such as the techniques named MEXICO and

CANADA [20]. The MEXICO algorithm, particularly, adopts

the strategy of sequentially minimizing the entropy between

pairs of mixtures, which does not assure global optimum

convergence, but reduces the expected computational cost in

comparison to AMERICA [23].

A different perspective lies on considering the same

criterion with lower-cost metaheuristics that are appealing

for combinatorial problems, e.g. Artificial Immune Systems

(AIS) [24]. In this case, the algorithm optimizes (13), but at

the end of the procedure, the N best candidate-solutions which

are linearly independent represent the extraction vectors that,

finally, compose the separating matrix. This modus operandi

is possible due to the intrinsic capacity of AIS to promote

diversity among the candidate-solutions, while the search

occurs [25], which allows the algorithm to obtain the multiple

solutions that are required to build the separating matrix.

Beyond the idea of exploring entropy as contrast function,

a second independence criterion involves direct minimization

of mutual information among the extracted signals. Mutual

information is defined according to (4), remarking that, instead
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of differential entropy, we consider the entropy for discrete

variables. The calculation of I(·) among the components of

the estimated sources vector (for the purpose of simplicity,

we leave aside the temporal index) hence provides

I(y) =

N
∑

i=1

H(yi)−H(y). (15)

Fortunately, the second term on right-hand-side of (15) can

be ignored, because when an invertible mapping y = Wx of

signals defined over discrete sets is considered, the following

relationship holds

pY1,...,YN
(y) = pX1,...,XN

(W−1y), (16)

which, consequently, implies H(y) = H(x). Then, we obtain

the final expression for the criterion:

min
W∈GL(N,q)

N
∑

i=1

H(yi),

subject to

{

y = Wx,

W is invertible
.

(17)

Since the search space size is proportional to qN
2

[26], there

is a considerable increasing as compared to the space size of

the first criterion, which is proportional to qN , thus hindering

the use of exhaustive search methods in this case. Then, it

is possible to consider again the application of population-

based metaheuristics such as AIS [27], [28], which offer signal

separation with quality levels similar to exhaustive heuristics,

but with a reduced computational cost. For instance, Figure 2

illustrates the successful application of the AIS-based method

described in [28] for separation of black-and-white images.

C. Separation over GF (q) in convolutive models

Let us consider a new situation, where there is combination

of signals, defined over GF (q), both in space and time,

which yields the convolutive mixture model, mathematically

described in (12).

ICA can be used once again to recover the original signals,

as the authors of [29] propose. Assume that the sources are

non-uniform and mutually independent (in space and time),

which (again) results that the mixing process generates signals

with greater entropy than the sources, in a similar fashion to

AMERICA algorithm principle.

Hence, it is possible to use the extraction/deflation tech-

nique, previously mentioned in Section III-B, to revert the

entropy increasing effect. A source extraction problem takes

place, which consists of determining the separation filters that

produce the output

y(n) =

Te
∑

k=0

wT (k)x(n− k)

=

N
∑

j=1

wj(n) ∗ xj(n)

=

N
∑

j=1

uj(n),

(18)
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Figure 2. Application example of ICA over GF algorithm with black-and-
white images.

where Te is the maximum delay present in one of the filters

wj(n) and w(n) = [w1(n) ... wN (n)]T . Figure 3 presents an

example of convolutive mixture for N = 2, in association with

the extraction procedure of a source signal.

Like the instantaneous case, the mixing matrix A(n) must

be invertible, i.e. the determinant of A(n) must be non-null

for all n. In the context of temporal filtering, this implies that

if the matrix is composed of finite impulse response (FIR)

filters, with input-output relationship

xi(n) =
N
∑

j=1

T
∑

k=0

aij(k)sj(n− k), i = 1, 2, ..., N, (19)

the inversion is only possible if the extraction filter contains
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Figure 3. Model representing the convolutive mixture problem over GF (q) when N = 2, and the extraction system of a source.

feedback loops [29], i.e.

y(n) =

N
∑

j=1

uj(n)

=
N
∑

j=1

[

Tb−1
∑

k=0

bj(k)xj(n− k)+

+

Tc
∑

l=1

cj(l)uj(n− l)

]

,

(20)

where Tb e Tc are the number of coefficients bj(k) and cj(l)
of the filter, respectively. Then, the values of these parameters

are estimated by minimizing the loss function of the extraction

process, which is

min
bj(·), cj(·)

H [y(n)], (21)

where y(n) is obtained according to (20). When the extraction

succeeds, one obtains y(n) = csi(n − d), i ∈ {1, ..., N},
which means that a delayed and scaled version of a source is

recovered.

After extracting a source, the next step is the deflation

process, in order to remove the recovered source from the

remaining mixtures. Figure 4 details this task: assume that

y(n) represents the extracted signal, it must be processed by

a non-causal, FIR deflation filter, which identifies the inter-

symbolic interference signature of the source — the mixing

filter aij(n) — with respect to each mixture; then the signal

can be properly subtracted from the mixtures.

Figure 4. Representation of the deflation step, considering y1(n) the signal
to be removed.

The deflation filter parameters are defined using (again)

the entropy measure, via a criterion that is analogous to the

employed for deflation of instantaneous mixtures [21]:

min
hi(n)

H [xi(n)− hi(n) ∗ y(n)]. (22)

When deflation ends, the extraction step must be repeated, in

order to obtain the second source, but remember that the new

mixtures are represented by the signals ri(n), i = 1, 2, ..., N .

Therefore, both processes are alternated until all mixtures

become null signals, which means that all sources were

recovered.

D. Applications

Although BSS over finite fields and the associated solution

strategies via ICA were initially considered only under the

theoretical perspective, there are already some potential appli-

cations being developed, specially when the mixtures follow

the instantaneous paradigm.

A first application lies on eavesdropping MIMO systems

which employ PAM modulation and Tomlinson-Harashima

pre-coding [20]. Consider a system with N transmitters and

receivers, which is designed to send N binary signals to each

receptor through a pure attenuation channel H ∈ [0, 1]N×N .

Since the transmitters known the channel characteristics, we

could consider the strategy of each one sending the vector

components given by x(n) = H−1s(n), such that the recep-

tion would result in y(n) = Hx(n) = s(n).

However, if the system employs PAM modulation, hence

transmitting data only in the interval [0, 1], this approach

would lead to transmission sequences with invalid values.

In this case, the Tomlinson-Harashima spatial coding can

be employed to circumvent this limitation [30]: the channel

matrix is quantized into P levels (P is prime), and the

inverse (over GF (P )) of this new matrix Ĥ is applied to the

transmission sequence :

x̂(n) =
1

P − 1

[

Ĥ−1

(

s(n)
1

2
(P − 1)

)]

P

(23)
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where Ĥ−1s(n) is a “conventional” product over the real field,

and [·]P denotes the modulu P operation. This formulation

results in a sequence with real values in [0, 1] that can be

transmitted via a PAM scheme and, in the receptor, the original

values are reconstructed via the following expression [20]:
[

(P − 1)2ŷ(n)
]

P
=

[

(P − 1)2Hx̂(n)
]

P

= s(n)
1

2
(P − 1).

(24)

In this context, this communication system can be eaves-

dropped, via ICA, as follows:

• A third party with another set of N antennas, intercepts

the signals that are being transmitted, ŷe(n).
• He knows the value of P , however, he does not know

the attenuation matrix between the transmitters and his

antennas set, Ĥe, which is assumed to be quantized in P
levels.

• When the same operations of the legitimate receivers are

applied, the result is [20]

[

(P − 1)2ŷe(n)
]

P
, Â ◦

(

s(n)
1

2
(P − 1)

)

, (25)

where ◦ denotes GF (P ) product and Â is a matrix

given by the composition of Ĥe with Ĥ−1, the latter

is employed in the pre-coding step.

• Equation (25) leads to the definition of the BSS problem

over finite fields, hence the application of an ICA algo-

rithm can invert Â and consequently provide estimates

for the transmitted sequences.

Naturally, this sort of ICA application makes use of hy-

potheses that restrict its viability, nevertheless, it gives us

interesting insights of other potential applications that are

related to coding theory. This perspective is reinforced by

the second example of application, which involves ICA for

improving Network Coding algorithms.

In simple terms, Network Coding claims that the inter-

mediate nodes of a communication network can, instead of

just forwarding data packages, process linear combinations of

them, with randomly-defined coefficients over a finite field.

With this idea, it is possible to show that the transmission

flow over the network is maximized and the robustness against

errors is increased, specially in the context of real-time appli-

cations [31].

However, in order to decode the packages at the destination

nodes, the combination coefficients must be sent as a package

header, which is an overhead for transmission rate, in the case

of small size packages. This is the aspect to be reconsidered,

then: if the coefficients are not inserted in the package,

decoding still can be done by casting the problem as BSS

over GF (q).
This is the proposal introduced in [31], which ignores the

coefficients header and substitutes it by a non-linear hashing

function of each package, in order to assure that data is non-

uniformly distributed — a fundamental condition to perform

decoding via ICA, as seen in Theorem 1. Since it is quite usual

that data traffic, in multimedia networks, presents a distribution

close to uniform, e.g. compressed audio and video, the hash

mapping is necessary to increase the discriminative power of

the algorithm cost function.

It is important to emphasize that the hashing function

implies an overhead to each original package smaller than

the conventional approach, while the failure probability on

executing the separating algorithm is maintained with low

values. Experimental analyses, in this context, have shown that

packages with size between 1 and 1.5 kilobytes present good

decoding rates by the new technique, saving about 50% of

header size [31].

IV. SEPARATION OF SPARSE SIGNALS

In the present section, we shall discuss another emerging

topic in BSS which has been extensively studied over the

last years: the case in which the sources can be modeled

as sparse signals. Besides being observed in several real

applications [32], the hypothesis of sparsity allows one to

develop novel methods that are able to deal with situations for

which classical approaches, such as ICA, fail. The separation

framework based on the sparsity hypothesis is usually referred

to as sparse component analysis (SCA).

The brief overview on SCA provided in this section is

organized as follows. Firstly, we discuss the notion of a

sparse signal. Then, in Section IV-B, we shall discuss how

the sparsity prior is exploited in the case of underdetermined

mixtures. As it will be seen in Section IV-C, sparsity is also

a useful information in the context of determined sources,

especially when the hypothesis of independence does not hold.

A. Sparse signals

Although there is no formal definition for a sparse signal,

the notion of sparsity in fields such as signal processing and

machine learning is now ubiquitous and is associated with a

signal that can be represented by a number of elements that is

rather smaller than the signal observed dimension. In Figure 5,

examples of sparse signals and images are provided. It is worth

noticing the presence of a large amount of temporal samples

(in the case of signals) or pixels (in the case of images) that

take values that are almost null. Examples of sparse signals and

images arise in different domains, including biomedical signal

processing [33], geophysics [34], and audio processing [35].

Before defining separation methods based on the notion of

sparsity, it is paramount to define measures of sparsity. The

most natural one is the ℓ0-pseudo-norm , which, for a discrete

signal of T samples, represented by the vector s, is defined as

follows3 [36]

||s||0 = lim
p→0
||s||p0 = lim

p→0

T
∑

n=1

|sn|
p. (26)

The ℓ0-pseudo-norm is simply the number of non-null samples

of s. Therefore, a sparse signal tends to present a small

ℓ0-pseudo-norm. Moreover, a signal can be sparse in other

domains, that is, when the ℓ0-pseudo-norm of a transformed

3The following notation will be adopted in this section: si and xj represent
the i-th source and j-th mixture, respectively. Each row of the matrices S and
X corresponds to a given source and mixture, respectively.
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Figure 5. Examples of sparse signals.

version of s is low — a common example is a sine wave, which

is sparse in the Fourier domain. There are other measures of

sparsity. Among the most relevant ones is the ℓ1-norm , defined

as follows

||s||1 =

T
∑

n=1

|sn|. (27)

Since the ℓ1-norm engenders convex optimization problems,

it is quite used in a vast number of signal processing tasks.

B. Separation of sparse signals in underdetermined models

The first works on sparse models for BSS addressed the case

of underdetermined mixtures [37], [38], [39] and are based on

two steps. In the first one, one searches for estimating the

mixing matrix A. This first process is illustrated in Figure 6,

which represents a BSS problem in which there are N = 3
sources and M = 2 mixtures. Given that the sources are

sparse, there is a high probability that only one source is

active at a given instant. For instance, let us consider the

instants in which source s1 is much higher than s2. In these

moments, the mixtures almost become functions of a single

source, that is, x1 = a11s1, x2 = a21s1, and, therefore, they

carry information about the first column of A. Analogously,

when the sources s2 and s3 are exclusively active, the mixtures

bring information about the second and third columns of A,

respectively.

The fact described in the last paragraph is illustrated in

Figure 6, which provides the mixtures scatter plot. One can

note that the information on the columns of A are related to

the clusters that arise when the sources are almost isolated,

that is, when there is a single active source dominating the

others. Therefore, a natural idea to estimate A is to determined

the directions for which there is a relevant concentration of

points — such a procedure can be carried out by clustering

algorithms [38].

Having estimated the mixing matrix A, a second step is

to solve a underdetermined linear system for estimating the

sources. A first idea in that respect would be to formulate

a least squares problem. However, given that the number

of unknowns is greater than the number of observatiom,

the resulting problem becomes ill-posed and admits infinite

solutions. As an alternative, one may consider, as prior in-

formation, the fact that the sources are sparse, which can be

implemented according to the following optimization problem:

min
S

N
∑

i=1

||si||0

subject to X = ÂS,

(28)

where Â corresponds to the estimated version of the mixing

matrix (this estimation is obtained in the first step). It is worth

noticing that problems such as (28) have been extensively

studied over the last years, mainly due to their applicability

in compressive sensing [40], which searches for sampling

signals and images by considering a rate that is lower than

the Shannon-Nyquist rate.

Besides the formulation expressed in (28), there are other

approaches that deal with inverse problems by making use

of prior information related to sparse signals. Two notorious

examples comprise a method known as the least absolute

shrinkage and selection operator (LASSO) and a formulation

known as basis pursuit de-noising (BPDN) [41].

Finally, it is worth mentioning that a similar approach

based on a two-step strategy can also be applied in the

context of sparse source separation. For instance, the algorithm

DUET [42] estimates the mixing matrix by considering the

disjoint orthogonality assumption, which means that only a

single source can be active at a given instant. In a similar

fashion, the algorithms TIFROM and TiFCorr search for

regions where the sources are isolated [43] either in time or

in other transformed domains.

C. Separation of sparse signals in determined models

The assumption of sparse sources is also useful as a prior in

the context of determined models. A first approach in this case

is similar to the one described for the case of underdetermined

models (estimation of mixing matrix followed by sparse inver-

sion). A second possibility is to set up a separation criterion
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Figure 6. Mixing matrix estimate A = [1 0.5 1; 0.5 1 1] by exploring the sources sparsity.

that takes into account the sparsity prior. In this case, which

will be discussed in the present section, source estimation is

carried out through a single stage.

Let us consider the problem of source extraction, in which

the goal is to retrieve a single source from the mixtures. As

discussed in Section II-A, source extraction can be conducted

by estimating a vector wi so that yi = wT
i X provides a good

estimate of a given source. In the case of sparse sources, due

to the action of the mixing process, the signals xj are less

sparse than the sources si. Therefore, analogously to ICA, a

natural approach to retrieve a source would be to adjust the

extraction vector so that yi be as sparse as possible.

In [44], extraction of sparse sources is conducted by con-

sidering a criterion based on the ℓ1-norm, so the adjustment

of wi is carried out as follows:

min
wi

||yi||1 = ||wT
i X||1

subject to ||wi||2 = 1
(29)

The restriction on the ℓ2-norm is necessary here to avoid trivial

solutions and implicitly assumes that the data is submitted to

a whitening pre-processing stage. In [44], the authors have

shown that (29) is indeed a contrast function when the sources

are disjoint orthogonal. Besides, even when this condition

is not observed, numerical experiments pointed out that the

minimization of the ℓ1-norm leads to source separation [44].

Alternatively, it is possible to retrieve sparse signals by

means of separation criterion underpinned by the ℓ0-pseudo-

norm [45]. In this case, the resulting optimization problem can

be expressed as follows:

min
wi

||y1||0 = ||wT
i X||0

subject to At least one element of wi is not null.
(30)

In [45], the authors proved that a sufficient condition to ensure

the contrast property of (30) is given by

||s1||0 < 1
2 ||s2||0

||s1||0 < 1
2 (||s3||0 − ||s2||0)

||s1||0 < 1
2 (||s4||0 − ||s3||0 − ||s2||0)

...

||s1||0 < 1
2

(

||sN ||0 −
∑N−1

i=2 ||si||0
)

,

(31)

In the particular case of N = 2 sources, such a condition can

be simplified as [45]

||s1||0 <
1

2
||s2||0. (32)

It is worth noticing that condition (31) allows a certain

degree of overlapping between the sources, under the condition

that they have different degrees of sparsity (in the sense of the

ℓ0 pseudo-norm). Another fundamental aspect here is that the

obtained conditions are not expressed in a probabilistic fashion

and do not require statistical independence. In other words, it

is possible to separate sparse signals even in the cases in which

ICA fails.

Concerning the practical implementation of methods based

on (30), an important issue is related to the fact that real

signals are not sparse in terms of the ℓ0-pseudo norm. Indeed,

actual signals that can be considered sparse often contain a

few relevant coefficients and many coefficients that are close

but not necessarily equal to zero. In order to overcome this

problem, one can make use of smooth approximation for the

ℓ0-pseudo-norm as, for instance, the following one [46]

Sℓ0(si) = T −
T
∑

n=1

exp

(

−
si(n)

2

2σ2

)

, (33)

where σ controls the smoothness of the approximation. If σ →
0, then this smooth approximation approaches the ℓ0-pseudo-

norm.

V. CONCLUSION

This work is an introductory text about blind source separa-

tion and the most recent perspectives in domains beyond real

or complex sets — which is the case of separation over finite

fields —, and beyond the statistical independence assumption

— which is the case of separation of sparse signals.

In the context of source separation over GF (q), ICA-based

strategies were discussed, putting emphasis on entropy-based

cost functions to promote separation of signals whether the

mixing model is instantaneous or convolutive. Both models

implies a combinatorial optimization problem, which can be
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solved via exhaustive-character search procedures or via bio-

inspired strategies, e.g. the immune-inspired algorithms. Fi-

nally, two examples derived from coding theory show that BSS

over Galois fields already offers preliminary contributions, in

the sense of real applications.

In the case of separation of sparse signals, the two-step

procedure usually employed for underdetermined models was

first discussed. This approach considers sparsity both for

estimating the mixing matrix and for solving the inverse

problem associated with the sources estimation. In addition,

the formulation of separation criteria based on sparsity for

determined models was discussed. An interesting aspect, in

this scenario, is that sparsity-based criteria can be applied even

when sources are statistically dependent.

Naturally, the subjects that were introduced in this work

are not fully explored here and, furthermore, have very inter-

esting future perspectives, in the context of new algorithms

and criteria, theoretical analyses and, ultimately, the potential

association of sparsity with signals defined over a finite field.
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