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Electromyographic Signal Compression Through

Image Encoders and Preprocessing Techniques
Wheidima C. de Melo, Eddie B. de Lima Filho, and Waldir S. da Silva Júnior

Abstract—Recently, two-dimensional techniques were success-
fully employed for encoding surface electromyographic (S-EMG)
records, through the use of off-the-shelf image encoders as an
effective alternative for that kind of signal. However, as S-
EMG signals are very different from natural images, there is
often a preprocessing step before compression, in an attempt
to improve the performance of the chosen encoder. This paper
address the mentioned approach and presents an investigation
regarding the performance of video and image encoders, when
used for compressing S-EMG signals. In addition, two new
preprocessing techniques are introduced, named as euclidean
distance sorting (EDS) and region-based euclidean distance
sorting (REDS), which have the potential to enhance the exploita-
tion of intersegment correlations, normally present on S-EMG
records. Experiments were carried out with real isometric records
acquired in laboratory, which were firstly preprocessed and then
compressed with the JPEG2000, H.264/advanced video coding,
and high efficiency video coding (HEVC) algorithms. A brief
analysis reveals that the proposed scheme is effective, given that
JPEG2000 and HEVC allied to EDS and REDS even outperform
state-of-the-art schemes available in the literature, in terms of
PRD × Compression Ratio and spectral-parameter estimation.

Index Terms—S-EMG, HEVC, surface electromyography, im-
age compression.

I. INTRODUCTION

CURRENTLY, surface electromyographic (S-EMG) sig-

nals are an interesting approach for studying and di-

agnosing muscle-related pathologies [2], [3], [4], such as

nerve compression or injury, amyotrophic lateral sclerosis, and

muscular dystrophy, monitoring patients, activating control

interfaces [5], and even predicting pre-term labor [6], due to

its non-invasive behavior. Indeed, they have been attracting

attention in the past few years, mainly due to the development

of new digital signal processing techniques, which provide

new paradigms and applications. For instance, S-EMG signals

can be used for classifying finger movements, through linear

discriminant analysis [7]. Besides, the generation of realistic

S-EMG signals is also an interesting area, whose goal is to
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provide a mean for evaluating parameter-estimation algorithms

and a better understanding regarding the relationship between

such parameters and biological or physiological characteristics

[8].

S-EMG signals record the electrical activity responsible for

controlling muscle contractions in human bodies, that is, they

directly represent electrical impulses sent by human nervous

systems to muscle fibers. It is worth noticing that S-EMG

signals are present even when a limb is lost [9], [10], which

can be used for triggering similar actions.

When acquiring S-EMG signals, which generally needs

specific hardware and circuitry [11] that must also produce

a signal with acceptable quality [12], one has to chose pa-

rameters such as sampling rate, bit depth, number of channels

(derivations), and record duration, which have direct impact on

necessary transmission and storage resources. In addition, such

a problem is even worse when high-density electromyography

[13] is employed, due to the large amount of data. In summary,

S-EMG signal compression is a bandwidth-demading tech-

nique that consequently raises the need for efficient compres-

sion methods, which besides producing a more compact data

representation, must also be able to preserve the associated

clinical/useful information [2], [3], [6], [14], [15].

Although S-EMG records are originally one-dimensional,

some algorithms have employed a different approach for their

compression: processing the related data as two-dimensional

signals [16], [17], by splitting them into segments that occupy

columns or rows of an image. This way, the input signal is

preprocessed and then passed to an image/video compressor,

which is in charge of exploiting intra and intersegment redun-

dancies.

This article addresses the mentioned problem and proposes

a methodology for compressing S-EMG signals as images,

with results for three different two-dimensional back ends:

JPEG2000 [18], [19], H.264/advanced video coding (AVC)

[20], and high efficiency video coding (HEVC) [21]. Besides,

two new preprocessing techniques are introduced, named as

euclidean distance sorting (EDS) and region-based euclidean

distance sorting (REDS), whose goal is to improve the ex-

ploitation of intersegment dependencies, that is, redundancy

among image columns or rows.

Finally, the current text is a fully revised and extended

version of the work presented by Melo, Filho, and Júnior [1],

which now includes a new preprocessing technique (REDS)

and associated simulations, a related work section, a brief

discussion about HEVC, and results regarding preservation of

spectral parameters and computational complexity (encoding

times).

The remainder of this paper is organized as follows. In
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Section II, the related work is presented. Section III, in turn,

introduces the new preprocessing techniques: EDS and REDS.

In Section IV, the proposed compression scheme is presented,

in such a way that the role of each component is briefly

explained. Experimental results are provided in Section V,

with actual S-EMG signals recorded in laboratory, and, finally,

Section VI draws the conclusions of the present work.

II. RELATED WORK

Traditionally, S-EMG signals are handled and compressed

as one-dimensional sources. Besides, regarding inner coding-

machines, as happens to other biological signals [14], S-EMG

signal compressors can be classified into three distinct groups:

direct, parametric, and transform-based.

Direct approaches generally estimate signal samples, whose

resulting residue is then quantized and possibly encoded.

Examples of such a group are the scheme developed by

Norris and Lovely [22], which is based on adaptive differential

pulse code modulation with adaptive quantization, and the

one introduced by Grönfors, Reinikainen, and Sihvonen [23],

which employs mean residual vector quantization with short

segments.

Parametric schemes, in turn, extract features from input

records, which are later used for signal reconstruction, as the

one reported by Carotti et al. [24]. In summary, their technique

is based on autoregressive models and is able to preserve S-

EMG spectral features.

In the transform-based group, input signals are transformed

to another domain, where they are quantized and entropy

coded. Indeed, if the combination between transformation and

coding is carefully chosen, high performance can be achieved

[14]. There are many approaches and most use the discrete

cosine transform (DCT) [15], [25] or wavelets [26], however,

the latter generally present better results. For instance, Norris,

Englehart, and Lovely [26] applied the embedded zero-tree

wavelet algorithm to S-EMG segments of 1024 samples,

Berger et al. [27] employed adaptive bit-allocation through an

artificial neural network, Jain and Vig [28] used tree vectors

for rearranging wavelet coefficients, which are then quantized,

and, finally, Trabuco et al. [29], [30] proposed an algorithm

that uses wavelet transform followed by dynamic bit alloca-

tion, based on mathematical decreasing spectral shape models

for reducing the bit depth of high-frequency coefficients, and

entropy coding.

Other approaches can be classified into two of the men-

tioned groups, as the one based on the multidimensional

multiscale parser (MMP) algorithm [31], which tries to ap-

proximate S-EMG segments, of different lengths, by elements

retrieved from an adaptive multiscale dictionary, through scale

transforms.

Recently, a new trend has been noticed, regarding S-EMG

compressors: algorithms that compress S-EMG signals as if

they were two-dimensional, that is, S-EMG records com-

pressed as images, with one [16], [17] or multiple electrodes

[13], as show in Fig. 1. Indeed, those schemes may also be

classified into one of the three mentioned groups, however,

the majority of the algorithms developed so far are transform-

based. Costa et al. [16] reorganizes S-EMG segments into

matrix columns, which are then preprocessed and compressed

by off-the-shelf image encoders: JPEG2000 [18], [19] and

H.264/AVC [20]. Melo, Filho, and Júnior [17] proposed a

similar scheme, besides two new preprocessing algorithms:

the relative complexity sorting and the percentage difference

sorting. In summary, such schemes showed that it is worth

while pursuing new preprocessing techniques for enhancing

the performance of commercial image encoders, given that

the deployment of such an approach may be favored, since

no new compressor is developed from scratch and the chosen

encoder may already be available, in the target platform (e.g.,

personal computers, mobile platforms, etc.).
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Fig. 1. An S-EMG signal reorganized as image.

The present approach follows the two-dimensional trend,

introduces two new preprocessing techniques, and employs a

new compressor: HEVC. Indeed, the latter is an interesting

choice for S-EMG signal compression, given that it provides

state-of-the-art results, regarding images, and presents flexible

segmentation and prediction procedures, which may be useful

for S-EMG signals, since they do not behave like natural

images and their intra and intersegment redundancies may not

be easily exploited. Indeed, natural (scene) images [32] are

representations of scenes in everyday life, such as buildings,

signs, and urban environments. They are characterized by

highly-correlated neighbouring pixels, in all directions, which

does not usually happen in images created with S-EMG

signals.

III. NEW PREPROCESSING TECHNIQUES

Preprocessing techniques allow an effective use of two-

dimensional encoders, since the latter are often developed for

natural images and, consequently, they may not be able to

handle particularities of S-EMG signals. In summary, they re-

organize signal segments, in such a way that two-dimensional

tools are more effectively employed.

In the following subsections, the proposed preprocessing

techniques will be presented, in detail.

A. The Euclidean Distance Sorting Algorithm

Image and video compressors are fine-tuned for natural

images; however, such images are very different from S-EMG

ones. Regarding the latter, input S-EMG records are segmented

and reassembled into two-dimensional arrays, which initially

look like noise, as can be seen in Fig. 2(a). Indeed, S-EMG

signals can be modeled as Gaussian or Laplacian processes,

depending on the force level [33]. Therefore, the primary goal
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of any preprocessing technique applied to S-EMG images is to

generate a more encoder-friendly representation, so that two-

dimensional encoders are able to efficiently exploit the existing

signal correlations.

In addition, it is worth noticing that the mentioned interme-

diate representation often incurs additional data. For instance,

in order to use a preprocessing technique that reorders seg-

ments of the input signal, a given compression scheme must

transmit side information, which contains the original position

of each segment, so that the inverse procedure can be carried

out, in the decoder end. Therefore, if a given technique does

not efficiently increase signal dependencies, that is, in such

a way that the additional data is compensated by the coding

gain, the overall resulting performance may be lower than the

original one.

The proposed preprocessing technique consists in an effi-

cient reordering procedure called EDS, whose purpose is to

reorganize signal segments based on their similarities. It is

carried out according to the euclidean distance

ED(x, y) =

√

√

√

√

N−1
∑

n=0

(x[n]− y[n])2, (1)

where ED(x, y) is the euclidean distance metric, computed

for segments x and y, x[n] is the last sorted segment, y[n] is

the segment under analysis, and N is the number of samples

in each segment. The EDS procedure begins by placing the

segment with smallest variance in the first column of the image

matrix; then, the other segments are inserted into the remaining

columns, according to their euclidean distances regarding the

last sorted segment, which is computed with (1).

An example of the proposed technique is shown in Fig.

2(b). One can notice that the new S-EMG image presents

a more organized texture, whose complexity increases from

left to right, and larger homogeneous areas can be found on

its left portion. As a consequence, two-dimensional encoders

will be favored, which will also result in a more compact

representation.

(a) (b)

Fig. 2. Example regarding the EDS technique: (a) original matrix and (b)
reordered matrix.

B. The Region-Based Euclidean Distance Sorting Algorithm

The EDS technique guarantees that similar segments be-

come adjacent, which creates homogeneous regions and con-

sequently favor decorrelation and prediction techniques per-

formed by image encoders. In addition, some algorithms also

divide input images into rectangular blocks, which are later

predicted and even further segmented. For instance, H.264

employs 16× 16 and 4× 4 intra prediction blocks [20], while

HEVC uses block sizes ranging from 4 × 4 to 32 × 32 [34].

However, during preprocessing, signal segments are reordered

without taking into account input-block sizes and, conse-

quently, even with EDS, signal blocks may present undesired

discontinuities, which is more noticeable when compressing

signals with high variance.

The discussion above was the inspiration for another prepro-

cessing technique, named as REDS, which is shown in Fig. 3.

The REDS procedure begins by finding the segment pair with

smallest euclidean distance, according to (1), and placing the

associated segments in the first two columns of the reordered

matrix; the segment with smallest variance is the first one. The

other segments are then inserted into the remaining columns,

according to their euclidean distances regarding the last sorted

segment, until 32 segments are relocated, which consists in

a segment region. Next, the new segment pair with smallest

euclidean distance, among the remaining elements, is found

and the previous procedure is repeated.

Initially, the region size of 32 segments was chosen, in an

attempt to provide a match for both H.264 and HEVC block

sizes, that is, in order to ensure homogeneous regions across

32 × 32 block boundaries, as explained above. Nonetheless,

many simulations were also performed, with regions of 64,

32, 16, and 8 segments, using H.264 and HEVC, and the

associated results showed a slight advantage for a group size of

32 segments. In addition, smaller regions led to worse results.

REGION 1 REGION 2 REGION 3

Original Image Reordered Image

REDS Procedure

... ...

......

...

...

...

...

Fig. 3. Illustration of the REDS technique.

IV. THE PROPOSED COMPRESSION ARCHITECTURE

The proposed compression scheme is composed of three

steps, as shown in Fig. 4: matrix formation, preprocessing,

and image compression. The matrix formation step splits

the input S-EMG signal, so that the number of samples, in

each segment, is equal to 128. This way, each segment is

placed into a column of the new S-EMG matrix, from left

to right. Next, the resulting matrix is reorganized, according

to EDS or REDS, which generates a list of column indices

that are arithmetically encoded [35] and then transmitted (e.g.,

in the file header), as side information. In the last step, the

resulting two-dimensional signal is encoded with one of three

available encoders: JPEG2000, H.264/AVC, or HEVC. At the
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decoder end, all presented steps are performed in reverse order

(i.e., decoding, reordering into original form, and segment

concatenation), as shown in Fig. 4, through the use of the

transmitted side information, which bears the original segment

positions.

Encoded Bit Stream

Matrix
Reordering

Image
Decompressor

Segment
Concatenation

Image
Compressor

Preprocessing

Matrix Formation

Padding Length

Columns Indices

Columns Indices Padding Length

0 1 0 1...

Fig. 4. Block diagram of the proposed architecture.

A. HEVC as Back End for S-EMG Compression

In this work, the HEVC encoder is introduced for compress-

ing electromyographic signals. HEVC is a new standard for

video coding, which provides great improvement when com-

pared with its predecessor, that is, H.264/AVC [36]. Although

HEVC has been designed for video compression applications,

it can also be applied to still images, through the use of its

intra coding tools. As a result, state-of-the-art performance

is obtained, which is even better than what is presented by

transform-based commercial image encoders [37].

As already mentioned, compression methods applied to

S-EMG signals are traditionally based on one-dimensional

techniques [27], [31], [38], [39]. However, some studies have

proposed schemes based on JPEG2000 and H.264/AVC [16],

[40], with competitive results. Therefore, an investigation of

the HEVC performance, when compressing electromyographic

signals, is justifiable and even necessary.

The HEVC image compression scheme consists of block-

based spatial prediction combined with transform-based cod-

ing [21]. HEVC initially splits input images into tiles (parallel

encoding/decoding tool) and/or slices, which are further seg-

mented into coding tree units (CTUs). CTUs are the basic

coding units, such as macroblocks in H.264/AVC, and can be

16 × 16, 32 × 32, or 64 × 64. Each CTU can be recursively

partitioned into smaller square regions named as coding units

(CUs), using a quadtree structure, and CUs can be divided into

prediction units (PUs) and a tree of transform units (TUs).

PUs are used in prediction processes and TUs in transform

and quantization procedures.

In order to exploit spatial redundancy, HEVC employs

block-based prediction through PUs, which is performed using

previously encoded samples from neighboring blocks. Such

scheme presents 33 angular intra prediction modes, which are

combined with block sizes ranging from 4 × 4 to 64 × 64.

Furthermore, there are two non-angular prediction modes,

named as DC and planar, which are used to exploit smooth

image regions. The resulting residue signal is then converted

to frequency domain with DCT; actually, the transform used

in HEVC is a finite precision approximation of DCT [41]. In

addition, HEVC also provides a 4× 4 discrete sine transform.

The output frequency coefficients are then quantized and

entropy-coded, with the goal of exploiting their statistical

correlation [21].

V. EXPERIMENTAL RESULTS

In order to evaluate the proposed scheme, tests with S-

EMG signals, acquired from the biceps brachii of 13 subjects,

were performed. The mentioned signals were collected during

isometric activities, where each subject remained seated, with

his upper arm parallel to his torso and sustaining 60% of

maximum voluntary contraction (MVC). The resulting records

present durations ranging from 1.3 to 3.0 minutes and were

digitized at 2000 Hz, with a bit depth of 12, which is common

practice in this research area [16], [27], [31].

Each test signal was converted into an image and encoded

by JPEG2000 (Kakadu version1), H.264/AVC (JM 18.6 refer-

ence software2), and HEVC (HM 16.2 reference software3).

JPEG2000 was used with 0.000025 quantization step, bit depth

of 16, and Cohen-Daubechies-Feauveau 9/7 wavelet kernel.

H.264/AVC was configured in intraframe mode, with FRExt

High 100 profile, rate-distortion optimization, context adaptive

binary arithmetic coding, and deblocking filter. HEVC was

employed in intraframe mode, with rate-distortion optimized

quantization and deblocking filter.

A. Results Regarding Reconstructed-Signal Quality

The quality of reconstructed signals was evaluated with

percent root-mean-square difference (PRD) × compression

factor (CF) curves. The PRD metric is defined as

PRD =

√

√

√

√

√

√

√

√

√

√

N−1
∑

i=0

(x[i]− x̂[i])2

N−1
∑

i=0

x2[i]

× 100, (2)

where x[i] is the original signal, x̂[i] is the reconstructed

signal, and N is the number of samples, in each signal. The

CF metric is defined as

CF =
Bo −Bc

Bo

× 100, (3)

where Bo is the total number of bits, in the original signal,

and Bc is the total number of bits, in the compressed version.

As the bit depth (number of bits per sample) is equal to 12,

Bo = 12×N .

1Available at http://www.kakadusoftware.com/downloads
2Available at http://iphome.hhi.de/suehring/tml/download/
3Available at https://hevc.hhi.fraunhofer.de/
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PRD × CF curves for the 13 test S-EMG signals, using the

proposed compression scheme with HEVC, JPEG2000, and

H.264 allied to EDS and REDS, are presented in Fig. 5, along

with an average reference for the entire set, while numerical

average results are shown in Table I. One may observe that

although there is no easily noticeable difference between the

two proposed preprocessing techniques, a few specific records

are favored by REDS, depending on the chosen encoder,

such as in the fourth curve, from top to bottom (highlighted

with a continuous line), in Fig.5(b) (see the same curve in

Fig.5(a)). Indeed, the combination between REDS and HEVC

provided slightly better results only with signals presenting

high variance, such as the mentioned one. As a consequence,

REDS may be an interesting option for more complex signals,

when using HEVC; however, it also presents a slight loss

of performance for less complex records, at high CFs (see

Fig. 5 and Table I). Besides, since most records in the test

set present small variance, the net result is an increasing

advantage towards EDS, regarding average curves. Finally, the

chosen test signals present curves with different slopes and

results spreading over a dynamic range of 9% of PRD, which

corroborates their suitability for this kind of experiment.

Regarding HEVC and for compression factors below 86%,

the proposed scheme maintains acceptable PRD values (< 7%)

[31], which is generally enough for not compromising the

diagnostic procedure, as shown in Figs. 5(a) and 5(b). Besides,

the resulting curves do not present large spread at high CFs,

when compared with the ones provided by the other back ends.

The results for H.264/AVC allied to EDS and REDS pro-

vided, for CFs below 81%, PRD figures below 7%. One may

also notice that the results in Fig. 5 and Table I are worse than

what was presented for HEVC, which may appear strange,

since they use similar approaches. The main reason behind

such a behavior is that the compression procedure of HEVC

is more flexible and includes many more prediction directions,

when compared with H.264/AVC, which has the potential to

further exploit the correlations available in S-EMG records.

Finally, the combination between JPEG2000 and EDS or

REDS achieved PRD figures lower than 7%, for CFs below

84%. Clearly, there is a slight advantage at low CFs, when

compared with HEVC, as shown in Table I, however, when CF

increases, HEVC provides better results. Indeed, JPEG2000 is

not very competitive at high CFs (low bit rates) [42] and its

wavelet transform is favored by the large homogeneous areas

created by the sorting procedure, which has a direct impact

on the resulting coding efficiency.

On one hand, for high CFs, HEVC achieved very good

results, where the associated difference increases for larger

CF values, in comparison with the other tested encoders. On

the other hand, JPEG2000 obtained the best performance for

low CFs. The proposed scheme with H.264/AVC achieved the

worst results, for the entire CF range.

Table I also provides average results for the base algorithms

alone, without the EDS or REDS techniques. As one may no-

tice, both techniques improved the exploitation of intersegment

dependencies, which consequently increased the performance

of each tested encoder. However, the performance gain for

HEVC was only marginal, which means that, regarding iso-

metric signals, only the matrix formation step may be enough,

as can be concluded from the average results, although there

are significant gains for specific records. In addition, there is a

performance decrease for the combination between REDS and

HEVC, for a CF of 90%, which means that the coding gain

due to reordering did not compensated the transmitted side

information. For CFs below 85%, the combination between

REDS and JPEG2000 achieved the best results, while HEVC

combined with REDS and EDS overcame all combinations for

CFs of 85% and 90%, respectively. It is worth noticing that the

combination between EDS/REDS and JPEG2000 overcame

HEVC, for a CF of 80%, which happened only due to the

developed preprocessing techniques.

TABLE I
AVERAGE PRD(%) RESULTS FOR THE PROPOSED SCHEME, WITH AND

WITHOUT THE EDS AND REDS TECHNIQUES.

Compression Factor 70% 75% 80% 85% 90%

JPEG2000 1.016 1.552 2.402 4.004 7.913
EDS+JPEG2000 0.955 1.409 2.201 3.698 7.445

REDS+JPEG2000 0.953 1.408 2.200 3.745 7.500
H.264/AVC 2.182 2.879 3.943 5.861 9.884

EDS+H.264/AVC 1.909 2.491 3.466 5.342 9.273
REDS+H.264/AVC 1.903 2.500 3.479 5.361 9.356

HEVC 1.365 1.639 2.254 3.438 6.266
EDS+HEVC 1.343 1.634 2.234 3.417 6.238

REDS+HEVC 1.347 1.601 2.220 3.408 6.271

Average results for state-of-the-art schemes, available in the

literature, as well as results obtained with HEVC, JPEG2000,

and H.264/AVC allied to EDS and REDS are shown in Table

II. The proposed approach outperformed the other evalu-

ated methods, for CFs of 75% and 80%, using REDS and

JPEG2000, and also for a CF of 90%, using EDS and HEVC,

besides being competitive regarding the state-of-the-art, for a

CF of 85%, with REDS and HEVC.

As already mentioned, the methods presented by Norris,

Englehart, and Lovely [38], Berger et al. [27], and Trabuco et

al. [29], [30] are based on wavelets, while the one introduced

by Filho, Silva, and Carvalho [31] employs a spatial domain

approach, which approximates signal segments with elements

from an adaptive dictionary. The scheme presented by Trabuco

et al. overcame the proposed method only for a CF of 85%,

which probably happened due to the high performance of its

bit allocation scheme, for this specific CF. It is worth noticing

that although the approach presented by Costa et al. [16] is

similar to the one proposed here, even the results provided

by the same compressors, without preprocessing, are superior,

which indicates that the matrix formation used here is superior

or the encoder configuration was not thoroughly performed.

In summary, HEVC allied to preprocessing techniques pre-

sented good results for CFs higher than 80%, while JPEG2000,

together with REDS, presented the best results for CFs lower

than 85%. Indeed, one may argue that both could be employed

for the entire CF range, which depends on the target applica-

tion.

B. Results Regarding Spectral Parameters

Spectral parameters are important features of electromyo-

graphic records, given that meaningful information can be
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Fig. 5. Experimental results for the proposed scheme: (a) EDS + HEVC, (b) REDS + HEVC, (c) EDS + H.264/AVC, (d) REDS + H.264/AVC, (e) EDS

+ JPEG2000, and (f) REDS + JPEG2000.

obtained from them and used for signal analysis. For instance,

the behavior regarding conduction velocity can be inferred

from spectral parameters [43], during high force-level con-

traction, and muscle fatigue can be investigated through mean

and median frequencies [44], [45]. In addition, higher-order

moments can be used for estimating the waveforms of motor

unit action potentials [46].

Based on what was presented above, tests were performed

to verify if the proposed methodology is able to preserve the

main spectral features regarding S-EMG signals, that is, mean

frequency, median frequency, variance, and skewness, as done

in other articles available in related the literature [31], [48].
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TABLE III
RECONSTRUCTION ERRORS (mean percentage± deviation) FOR SPECTRAL PARAMETERS (CF OF 87.3%).

Method MVC (%) fmean fmed variance skewness

EDS+JPEG2000 60 0.0927 ± 0.0886 0.0255 ± 0.0622 0.3325 ± 0.3138 0.4673 ± 0.4495
REDS+JPEG2000 60 0.1196 ± 0.1167 0.0133 ± 0.0481 0.3359 ± 0.4617 0.4429 ± 0.4103
EDS+H.264/AVC 60 0.3722 ± 0.3052 0.0240 ± 0.0590 3.8994 ± 3.4461 2.4567 ± 2.3194

REDS+H.264/AVC 60 0.3676 ± 0.3041 0.0264 ± 0.0644 3.9250 ± 3.4577 2.4873 ± 2.3589
EDS+HEVC 60 0.3436 ± 0.3595 0.0395 ± 0.1021 0.5393 ± 0.6053 0.6256 ± 0.4902

REDS+HEVC 60 0.3241 ± 0.3504 0.0395 ± 0.1021 0.5119 ± 0.6198 0.5977 ± 0.4742
Filho et al. [31] 60 1.62 ± 1.11 0.98 ± 1.24 9.11 ± 5.91 56.29 ± 21.37

Carotti et al. [48] 50 2.88 ± 0.49 1.83 ± 0.88 - 5.77 ± 0.95

TABLE II
AVERAGE PRD(%) RESULTS FOR THE PROPOSED SCHEME AND ALSO

OTHER METHODS AVAILABLE IN THE LITERATURE.

Compression Factor 75% 80% 85% 90%

Norris et al. [38] 3.8 5 7.8 13
Berger et al. [27] 2.5 3.3 6.5 13

Costa et al. (JPEG2000) [16] 3.50 4.48 6.92 13.44
Costa et al. (H.264/AVC) [16] 5.37 6.90 9.93 16.62

Filho et al. [31] 1.61 2.51 4.13 7.36
Trabuco et al. [29] 2.22 2.52 3.31 6.88

EDS+HEVC 1.634 2.234 3.417 6.238
REDS+HEVC 1.601 2.220 3.408 6.271

EDS+H.264/AVC 2.491 3.466 5.342 9.273
REDS+H.264/AVC 2.500 3.479 5.361 9.356

EDS+JPEG2000 1.409 2.201 3.698 7.445
REDS+JPEG2000 1.408 2.200 3.745 7.500

The mean frequency is defined as

fmean =

∑N

i=1
fiP [fi](fi − fi−1)

∑N

i=1
P [fi](fi − fi−1)

, (4)

where N is the number of frequencies used for estimating

the power spectrum density (PSD) of the respective S-EMG

signal. The median frequency is given by

fmed
∑

i=1

P [fi](fi − fi−1) =
1

2

N
∑

i=1

P [fi](fi − fi−1), (5)

that is, the frequency that encompasses half signal power.

Finally, variance and skewness are computed as

var =

N
∑

i=1

(fi − fmean)
2 P [fi](fi − fi−1), (6)

and

ske =

∑N

i=1
(fi − fmean)

3
P [fi](fi − fi−1)

(

∑N

i=1
(fi − fmean)

2
P [fi](fi − fi−1)

)
3

2

. (7)

In order to provide spectral variables, PSD estimation

through the periodogram approach [47] was applied to 1s

signal epochs, considering complete S-EMG records. Table

III shows the relative change in spectral variables, for a CF

of 87.3%, in form of mean percentage± deviation. As one

may notice, the proposed scheme is able to provide percentage

variation (including standard deviation) below 0.8%, 8%,

and 5%, for mean/median frequency, variance and skewness,

respectively. It is worth noticing that percentage variations for

all spectral variables were bellow 1%, when the combination

between JPEG2000 and EDS/REDS was employed.

In addition, as can be seen in Table III, the results provided

by the proposed scheme outperformed the other tested algo-

rithms. Indeed, only two articles reporting spectral parameters

were found. The method presented by Filho, Silva, and Car-

valho [31] operates in spatial domain, which is interesting for

maintaining shape, however, such an approach causes some

difficulties regarding spectral variables. Carotti et al. [48], in

turn, proposed an approach based on algebraic code excited

linear prediction, which captures the shape of the signal power

spectrum. It is worth noticing that the results provided by

Carotti et al. were obtained for an MVC of 50% (there is

no result for an MVC of 60%), however, taking into account

what was presented in the same article, there should be no

significant difference. Finally, the proposed approach employs

transform-based encoders as back ends, which ultimately

operate in frequency domain, by compacting energy in a few

transform coefficients. As a consequence, even for a high CF

(87.3%), spectral parameters are accurately preserved.

C. Results Regarding Encoding Time

In order to provide some information regarding complex-

ity, encoding times, for the entire database, were obtained.

HM and JM software modules, which implement HEVC and

H.264/AVC, respectively, already provide measurement op-

tions, whereas system functions were employed for JPEG2000.

All experiments were conducted on an otherwise idle Intel

Core i7-4510U, with 2.0 GHz of clock and 8 GB of RAM,

running Windows 8 64-bits. The obtained results, for the 13
test signals, are presented in Fig. 6.

In order to simplify the analysis, all curves, for each

encoder, were also averaged and the result was plotted in

Fig. 6. One may argue that the encoding time is, in average,

approximately linear, regarding the target CF range, although

some variation is noticed for JPEG2000. This is a very

interesting result, since hardware restrictions, for low CFs,

seem not to be an issue. In addition, JPEG2000 is more than

80 and 350 times faster than H.264 and HEVC, respectively,

and the percentage increase in encoding time, regarding signal

length, is less pronounced in JPEG2000.

In summary, the HEVC encoder presents the highest encod-

ing times, while JPEG2000 is the fastest. Indeed, both HEVC

and H.264/AVC employ a hybrid approach, by performing

block prediction and transformation/quantization of residue

signals. However, HEVC uses a more sophisticated and com-
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Fig. 6. Elapsed encoding time curves for (a) HEVC, (b) H.264/AVC, and (c) JPEG2000.

plex prediction procedure, when compared with H.264/AVC,

which ultimately results in higher encoding times.

VI. CONCLUSION

The proposed methodology can be considered as an effec-

tive alternative for S-EMG signal compression, with state-of-

the-art performances for compression factors of 75% and 80%,

when JPEG2000 is employed, and 90%, when HEVC is cho-

sen as back end. Indeed, the proposed scheme is effective in

preserving the S-EMG signal shape, according to the resulting

PRD curves. Besides, the proposed preprocessing techniques

(EDS and REDS) are able to improve the exploitation of

intersegment correlations, except when HEVC is used with

REDS, at high compression factors, as can be seen in Table I.

During the performed experiments, which intended to vali-

date the proposed methodology, both EDS and REDS tech-

niques combined with JPEG2000 and HEVC gave rise to

schemes that overcame state-of-the-art approaches, available

in the literature. JPEG2000 is better at low CFs and HEVC

at high CFs; however, given what is shown in Tables I and

II, both could be used for entire CF range, depending on the

target application.

In a more general approach, the use of EDS is advised, given

the overall performance presented here; however, if a specific

group presenting high variance must be processed, REDS may

be a feasible option, at least when using HEVC, and has the

potential to result in a slightly better performance.

Regarding spectral parameters, all tested combinations of

preprocessing techniques and back ends were able to preserve

the mean and media frequencies, with results comparable and,

in many cases, even better than what was obtained by Carotti

et al. [24] and Filho et al. [31]. However, regarding variance

and skewness, results with H.264 and EDS/REDS are much

worse than the other combinations. If the main concern is the

preservation of spectral parameters, JPEG2000 and HEVC are

good choices.

It is worth noticing that the proposed scheme is an inter-

esting solution when both signal shape or spectral parameters

are of paramount importance, without any algorithm tuning or

adaptation. Indeed, the majority of available schemes aim to

maintain signal shape [16], [26], [27], [29], [31], [40] and the

ones with high performance regarding spectral parameters do

not present expressive results regarding waveform errors [24],

[48].

Another important decision parameter is the associated

encoding time, which is related to computational complexity.

The performed encoding-time tests revealed that JPEG2000

is 350 times faster than HEVC, while no test S-EMG record

took more than 125ms to be processed by JPEG2000, for the

test configuration. If the target platform presents hardware

restrictions, JPEG2000 may be a good choice, with good

results for the entire CF range. However, when applications

such as databases, which are managed by dedicated servers,

or specific medical platforms are considered, HEVC may be

preferred, given the possible availability coding packages and

the high performance at high CFs.

It is worth noticing that the proposed scheme can be

used with other image and video encoders and preprocessing

techniques, that is, the present methodology may be employed

together with tools suitable to specific applications.

Currently, one may argue that schemes for processing

S-EMG signals as images seem to be mature enough for

commercial applications. Besides the results presented in this

work, it is possible to notice that such approaches have

the potential to provide fast development and dissemination,

given that algorithms such as JPEG2000 and also HEVC may

already be available in the target platform.

As future work, new preprocessing techniques will be

developed, which can enhance both inter and intrasegment

correlations, in order to further improve the performance

of available image compression tools, or prioritize specific

signal properties, such as spectral parameters. In addition,

other biological signals will be processed through the same

methodology, with preprocessing techniques suitable to their

structures.
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