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Abstract—In this work, we perform an analysis, in

the context of channel equalization, of two criteria that

can be considered central to the field of information

theoretic learning (ITL): the minimum error entropy

criterion (MEEC) and the maximum correntropy criterion

(MCC). An original derivation of the exact cost function

of these criteria in the scenario of interest is provided

and used to analyze their robustness and efficiency from a

number of relevant standpoints. Another important feature

of the paper is an study of the estimated versions of

these cost functions, which raises several aspects regarding

parameters of the canonical Parzen window estimator. The

study is carried out for distinct channel and noise models,

both in the combined response and parameter spaces,

and also employs as benchmarks crucial metrics like the

probability of bit error. The conclusions indicate under

what conditions ITL criteria are particularly reliable

and a number of factors that can lead to suboptimal

performance.

Index Terms—Filtering, Channel equalization,

Information-theoretic learning, Error entropy,

Correntropy

I. INTRODUCTION

E
EQUALIZATION was one of the first appli-

cations of adaptive filtering [1], and still is

a domain of great interest due to its importance

in communication systems, audio and image signal

processing, seismology, among others. The classical

problem of channel equalization for digital com-

munications consists of using an adaptive filter at

the receiver to cope with two factors that affect the
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transmission of data through band-limited channels:

intersymbol interference (ISI) and additive noise.

The three main aspects involved in solving this

problem are the choices of the filter structure, of

the adaptation criterion, which translates the desired

objective into a mathematical function that depends

on the filter parameters, and of the strategy to adapt

such parameters.

With respect to the filter structure, an important

evolution can be seen, starting from very simple

linear transversal filters and moving towards to the

use of modern intelligent structures such as neural

networks [2], [3], [4], [5] and fuzzy filters [6], [7],

[8], having as motivation the desire of reaching the

optimum performance of the Bayesian equalizer [9].

On the other hand, parameter adaptation accord-

ing to a specific criterion corresponds to an opti-

mization problem. The first proposed approaches

consisted in assuming that the transmitted sequence

is known at the receiver. This scenario, known as

supervised equalization, allows for the use of an

error signal, obtained comparing the filter output

with the desired sequence, to adapt the filter co-

efficients. The zero-forcing condition and Wiener

theory [10], based on the classical mean squared

error (MSE) criterion, were the pioneer efforts in

solving such a problem. When the desired sequence

is not available, blind or unsupervised equalization

methods are necessary. In this case, only statistical

characteristics of the transmitted signal are known

at the receiver and the adaptation criteria usually

depend on higher-order statistics of the involved

signals.

In the last 15 years, a new class of optimization

criteria has emerged: instead of using a limited

number of statistical moments of the involved sig-

nals, the idea was to explore more information

about them, especially by working directly with

their probability density functions (PDFs). Thus,

concepts like entropy and mutual information were
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borrowed from Information Theory, leading to the

so-called field of Information Theoretic Learning

(ITL) [11]. In order to achieve practical and efficient

methods in such framework, Rényi’s definition of

entropy, associated with the Parzen window esti-

mation and kernel methods, has been the preferred

approach.

Such methods have been recently applied to a

variety of problems related to supervised and unsu-

pervised signal processing, such as linear and nonli-

near filter adaptation, prediction, feature extraction,

equalization and source separation, presenting good

results when compared to classical methods under

certain scenarios [11]. In the context of supervised

equalization, which will be the focus of this work,

two criteria have deserved special attention: the

Minimum Error Entropy Criterion (MEEC), which

tends to eliminate as much uncertainty as possi-

ble from the error signal using Rényi’s quadratic

entropy; and the Maximum Correntropy Criterion

(MCC), which seeks to increase the similarity be-

tween the desired signal and the adaptive system

output through the use of correntropy, a measure

directly related to entropy that generalizes the con-

cept of correlation.

Even though good results have been obtained, the

preliminary analysis presented in [12] showed that

certain precautions are necessary. Such work used

the ITL framework together with Extreme Learning

Machines (ELM) and, when compared to Wiener

solutions (MSE) in certain scenarios, concluded

that both provided similar receivers. This intriguing

result led the authors to ponder that a more thorough

and profound analysis of ITL criteria was necessary

in order to elucidate in which cases their use would

present advantages with respect to the well-known

MSE criterion.

Thus, in this paper, we perform an analytical

study of the MEEC and MCC by deriving the exact

theoretical formulas of the Rényi’s quadratic error

entropy and of the correntropy. Such derivations are

carried out considering two different noise models:

the additive white Gaussian noise (AWGN), which

represents the classical model in the context of

digital communications [13], and the additive white

impulsive noise (AWIN), since it has been explored

in important works of the ITL literature [14], [11],

characterizing a scenario in which the ITL criteria

have shown to offer performance improvements in

certain cases. Additionally, the equalizer adopted

in this work consists of a linear finite impulse

response (FIR) filter, as it constitutes the classical

equalization structure, for which a solid theory has

been developed [10], and also due to its mathemat-

ical tractability, which is essential for enabling the

derivation of the signal PDFs.

The proposed theoretical development provides

answers to important questions that hitherto, to the

best knowledge of the authors, have not yet been

fully addressed in the literature, like: are these

criteria suitable to solve the problem of supervised

channel equalization, that is, do their minima really

present good solutions in terms of reducing ISI or

minimizing the probability of errors at the adaptive

equalizer output? In addition to that, do these cri-

teria really present advantages with respect to the

classical MSE criterion and Wiener solutions? If

yes, in what context?

These questions will be treated in this paper

by means of an extensive analysis of the criteria

theoretical surfaces, which are obtained using the

derived exact formulas. Moreover, this development

allows the comparison of the exact criteria response

with those obtained with the use of Parzen window

estimation of the underlying PDFs, a procedure that

is always necessary so that efficient algorithms be

achieved.

This work is organized as follows: Section II

presents the formal definition of the ITL criteria

considered in this work, viz., the minimum error en-

tropy and the maximum correntropy criteria, along

with the corresponding nonparametric estimators

based on kernel functions. Then, Section III begins

with the description of the mathematical model of

the supervised channel equalization problem, laying

the foundations for the derivation of the theoretical

expressions of the error entropy and the correntropy

for both of the aforementioned noise models. The

characteristics of the theoretical ITL criteria are an-

alyzed in detail in Section IV, considering different

equalization scenarios with respect to the channel

and to the adopted noise, and compared with those

associated with the corresponding kernel-based es-

timators. Additionally, the optimal solutions offered

by the ITL criteria are identified and contrasted with

the Wiener solution in terms of the error probability

each equalizer can achieve, being the performance

evaluation based on exact expressions of the error

probabilities, which are also derived in this work

and shown in A. Finally, concluding remarks and
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future perspectives are summarized in Section V.

II. INFORMATION THEORETIC LEARNING

Second-Order Statistics (SOS), such as correla-

tion, variance and the well-known mean squared er-

ror are widely employed as optimization criteria as-

sociated with several learning algorithms. Notwith-

standing, since the initial key theoretical works

on unsupervised signal processing, from the 80’s

until nowadays, new criteria considering higher-

order statistical information have been developed in

order to obtain more appropriate characteristics to

cope with increasingly complex problems.

In this context, ITL [15] comprises the develop-

ment of adaptation criteria based on concepts that

are borrowed from Information Theory. The term

ITL was consolidated by Principe and collaborators

(although its origin may be associated with [16]),

which proposed the adoption of Renyi’s quadratic

entropy as the key information measure [17]:

H2(X) = − log

(
∫ ∞

−∞
f 2
X(x)dx

)

, (1)

where fX(·) is the PDF of the random variable X .

Although Shannon’s classical definition can also be

employed within the ITL framework, the quadratic

entropy presents the appealing property that it is

possible, in association with the Parzen window

method for PDF estimation, to define a contin-

uous, differentiable estimator which enables the

subsequent development of gradient-based learning

algorithms [11].

Assuming that (i) the set {x1, x2, ..., xT} with T
independent and identically distributed (i.i.d.) ob-

servations of X is available and that (ii) a Gaussian

kernel Gσ2
ker
(x) = 1√

2πσ2
ker

exp
(

− x2

2σ2
ker

)

is adopted

as the window function for PDF estimation, the

standard quadratic entropy estimator is given as

follows [11]:

Ĥ2(X) = − log

(

1

T 2

T
∑

j=1

T
∑

k=1

G2σ2
ker
(xj − xk)

)

,

(2)

where σ2
ker is an important (and sensitive) parameter

of the estimator, denoted as the kernel width or size.

Since the log(·) function is monotonic, its usual to

consider optimization of (2) only with respect to

its argument, which is termed Information Potential

[18].

A second important ITL measure is correntropy

[19]. It is a similarity metric which “generalizes”

correlation, containing second and higher-order mo-

ments which are expressed by the kernel used in

its definition. If a Gaussian kernel is chosen, the

correntropy between two random variables X and

Y is defined by

c(X;Y ) = E{Gσ2
ker
(X − Y )}

=

∫ ∞

−∞

∫ ∞

−∞
Gσ2

ker
(x− y)fX,Y (x, y)dxdy

=

∫ ∞

−∞
Gσ2

ker
(e)fE(E = e)de, (3)

where E(·) denotes the statistical expectation opera-

tor and E = X−Y is called the error signal. Clearly,

in practical adaptive algorithms, the error PDF is not

known in advance and just a set {e1, e2, ..., eT} of

data is available, leading to the sample estimator of

correntropy:

ĉ(E) =
1

T

T
∑

i=1

Gσ2
ker
(ei). (4)

After presenting the important definitions of

quadratic entropy and correntropy, including the

respective canonical estimators, we are ready to

introduce the two supervised criteria to be analyzed

in this work. Firstly, the minimum error entropy

criterion (MEEC):

min
w

H2(E) s.t.

{

e(n) = d(n)− f(r(n),w),

E{e} = 0,
(5)

where d(n) is the desired signal and f(r(n),w) is

the adaptive system with its respective parameter

vector w. The MEEC has the goal of eliminating as

much uncertainty as possible from the error signal,

ideally transforming the error PDF into a delta

function. When applying the criterion to a learning

algorithm, the analytical expression of entropy is

typically replaced by the estimator described in (2).

The second criterion is the maximum correntropy

criterion (MCC), defined by

max
w

c(E) s.t. e(n) = d(n)− f(r(n),w). (6)

The principle of MCC is that the maximization

of correntropy increases the similarity between the

desired signal and the adaptive system output, i.e.,

the error values become smaller, which correspond
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to higher values of the Gaussian kernel, finally

leading to an error PDF more concentrated at the

origin.

These criteria have found consistent application

in the context of several supervised tasks, such

as filtering, system identification and classification

[11]. Additionally, the ITL methods have attracted

significant interest in nonlinear and non-Gaussian

framework [17]. Notwithstanding, as we intend to

show, there are some aspects that require further

clarification, even in the linear case. In that sense,

we begin to study them in the specific problem of

linear equalization, as described in the following.

III. THEORETICAL DERIVATION OF ITL

CRITERIA

In this section, we formally derive the exact ex-

pressions associated with the MEEC and the MCC.

After defining the signal models explored in the

channel equalization problem, we present a general

procedure to obtain the PDF of the error signal as

a function of the coefficients of the equalizer and

of the parameters that describe the scenario, which

shall serve as the basis for determining the Rényi’s

quadratic entropy of the error signal, as well as the

correntropy function considering two types of noise

models, viz., the AWGN and an AWIN.

A. Mathematical Model of the Channel Equaliza-

tion Problem

The diagram depicted in Figure 1 indicates the

main elements involved in the supervised channel

equalization model adopted in this work.

Channel
H(z)

Equalizer
w

+ Σ

Criterion

s(n)

s’(n)

η(n)

r(n) y(n)

d(n)

e(n)

-

+
+

g(n)

Source
signal

Fig. 1. Block diagram of the supervised channel equalization

problem.

The source signal s′(n) corresponds to an i.i.d.

discrete-time random process whose samples re-

sult from the addition of a Gaussian noise with

zero mean and variance σ2
g , represented by g(n),

to symbols s(n) taken from the binary alphabet

{+1,−1} (BPSK or 2-PAM modulation). Hence,

s′(n) ∼ 1
2
N(−1, σ2

g)+
1
2
N(+1, σ2

g), where N(µ, σ2)
denotes a Gaussian distribution with mean µ and

variance σ2. This relatively unusual source model

is particularly interesting for two main reasons: (i)

the BPSK modulation can be seen as a particular

case that is obtained by forcing σ2
g to zero, and (ii)

it will be useful in the analysis of the behavior of the

surface associated with the error entropy criterion,

as shall be verified in Section IV.

The transfer function H(z) models the intersym-

bol interference (ISI) effect of the band-limited

channel used in the transmission and is given by

H(z) =
∑D−1

i=0 hiz
−i, where hi, i = 0, . . . , D − 1,

are the coefficients of the impulse response of the

(causal) channel with length D.

The transmitted signal is also corrupted by noise,

which is represented by an i.i.d random process η(n)
whose PDF is denoted by fη(η), with zero mean and

variance σ2
η , which leads to a signal-to-noise ratio

(SNR), in decibels, given by:

SNR = 10 log
E{s′2(n)}

σ2
η

. (7)

The device known as equalizer is responsible for

estimating the transmitted symbols, an estimation

delay being acceptable, based on a collection of

samples of the received signal r(n), which can

be written as r(n) = s′(n) ∗ h(n) + η(n), where

∗ denotes the convolution operation. The structure

of the equalizer is of paramount importance, since

it establishes an inexorable limit to the attainable

equalization performance [20], and affects the com-

plexity of the adaptation process and of the practical

implementation.

The classical setup consists of a FIR filter in the

role of the equalizer. In this case, the output of

the equalizer can be expressed as y(n) = wT r(n),
where r(n) = [r(n) r(n − 1) . . . r(n − K + 1)]T

is the vector containing the K most recent samples

of the received signal and w = [w0 . . . wK−1]
T

specifies the coefficients of the equalizer.

Using the convolution matrix of the channel, H ∈
R

K×K+D−1, given by

H =





h0 h1 · · · hD−1 0 · · ·
0 h0 · · · hD−2 hD−1 · · ·
...

. . .
...



 , (8)

and the vectors s(n) = [s(n) . . . s(n−K−D+2)]T
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and g(n) = [g(n) . . . g(n − K − D + 2)], it is

possible to express r(n) as:

r(n) = Hs(n) +Hg(n) + η(n). (9)

Thus, by using (9), the equalizer output is given by:

y(n) = wTHs(n) +wTHg(n) +wT
η(n). (10)

Finally, since the objective is to recover the trans-

mitted information contained in s′(n− d), where d
represents the equalization delay, the error signal is

given by e(n) = y(n)− s′(n− d).

B. PDF of the Error Signal

The keystone for the derivation of the theoretical

expressions of the error entropy and correntropy is

the probability density function of the error signal

e(n). The strategy we shall adopt for analytically

obtaining this PDF consists in, firstly, determining

the conditional PDFs of the equalizer output y(n)
given that s(n−d) is +1 or −1, and, then, using the

law of total probability [21] to find the desired PDF.

In this process, it is convenient to interpret the terms

related to g(n) as additional noise elements that can

be properly combined with the channel noise η(n).
Therefore, we define

η′(n) = wTHg(n) +wT
η(n) (11)

as the term resulting from the filtering process of

both the source and channel noises, so that the

equalizer output is reduced to

y(n) = wTHs(n) + η′(n). (12)

Assuming that the transmitted sequence s(n) of

BPSK symbols is known and that the coefficients of

the equalizer are fixed, the conditional PDF of y(n)
is given by:

fY (Y = y|s(n)) = fη′(y −wTHs(n)), (13)

where fη′(η
′) denotes the PDF of the η′(n), defined

in (11).

Actually, it is necessary to express the condi-

tional PDF of y(n) given s(n − d). There are

NS = 2K+D−1 possible sequences s(n) that can

be transmitted: half of these sequences contain the

symbol s(n−d) = +1, while the other half contain

s(n− d) = −1. Hence, considering that s(n− d) =
+1, the probability of observing a particular se-

quence s(n) is P (s(n)|s(n−d) = +1) =
(

1
2K+D−2

)

,

so that, based on the law of total probability, it is

possible to write

fY (y|s(n− d) = +1) =
∑

i∈SD+

fη′(y −wTHsi(n))

2K+D−2
,

(14)

where SD+
denotes the set of sequences s(n) whose

symbol s(n− d) is equal to +1.

Using the same procedure, it is possible to con-

clude that

fY (y|s(n− d) = −1) =
∑

i∈SD−

fη′(y −wTHsi(n))

2K+D−2
,

(15)

where SD−
denotes the set of sequences s(n) whose

symbol s(n− d) is equal to −1.

Having these two conditional PDFs at hand, the
PDF of y(n) can be determined with the aid of the
law of total probability:

fY (Y = y) =
1

2

∑

i∈SD+

fη′(y −wTHsi(n))

2K+D−2

+
1

2

∑

i∈SD−

fη′(y −wTHsi(n))

2K+D−2

=

NS−1
∑

i=0

fη′(y −wTHsi(n))

2K+D−1
. (16)

In order to obtain the PDF of the error signal
e(n) = y(n)−s′(n−d) = y(n)−[s(n−d)+g(n−d)],
it is necessary to analyze the statistical properties of
y′(n) = y(n)−g(n−d). Using (10), we can express
y′(n) as follows:

y(n)− g(n− d) = wTHs(n) +wTHg(n)

+wT
η(n)− g(n− d)

= wTHs(n) +wT
η(n)

+
(

wTH− γ
T
)

g(n), (17)

where γ ∈ R
K+D−1×1, and γi =

{

1, if i = d

0, otherwise
.

Assuming that s(n−d) is known, the conditional

PDF of y′(n) is determined by the PDF of the vari-

able Ψ = wT
η(n) +

(

wTH− γ
T
)

g(n). Thus, the

conditional PDFs of y′(n) given that s(n−d) = +1
and s(n− d) = −1 can be expressed as:

fY ′(y′|s(n−d) = +1) =
∑

i∈SD+

fΨ
(

y′ −wTHsi(n)
)

2K+D−2

(18)
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and

fY ′(y′|s(n−d) = −1) =
∑

i∈SD−

fΨ
(

y′ −wTHsi(n)
)

2K+D−2
,

(19)

respectively.

Since e(n) = y′(n)− s(n− d), when s(n− d) =
+1, e(n) = y′(n) − 1. Hence, the PDF of e(n)
conditioned to the knowledge that s(n−d) = +1 is

the conditional PDF of y′(n) evaluated at the point

e(n) + 1:

fE(e|s(n− d) = +1) = fY ′(e+ 1|s(n− d) = +1).
(20)

Analogously,

fE(e|s(n− d) = −1) = fY ′(e− 1|s(n− d) = −1).
(21)

Finally, the PDF of the error signal can be written
as:

fE(E = e) =
1

2
fY ′(e+ 1|s(n− d) = +1)

+
1

2
fY ′(e− 1|s(n− d) = −1). (22)

By replacing (18) and (19) in (22) and defining

βi =

{

+1, if i ∈ SD+

−1, if i ∈ SD− , (23)

the PDF of the error signal is given by:

fE(e) =
1

2K+D−1

NS−1
∑

i=0

fΨ
(

e+ βi −wTHsi(n)
)

. (24)

C. Error Entropy

In this section, we shall determine the theoretical

expressions for the error entropy considering the

AWGN and the AWIN noise models.

1) Gaussian Noise: As demonstrated in Section

III-B, in order to obtain the exact PDF of the error

signal, it is necessary to identify the PDF of the

variable Ψ = wT
η(n) +

(

wTH− γ
T
)

g(n). In the

AWGN case, we consider that η(n) ∼ N(0, σ2
η).

It can be shown that the linear combination of

independent Gaussian random variables gives rise

to another Gaussian random variable [21]. By using

this property, we can conclude that the two terms

that compose Ψ are Gaussian random variables with

distributions N(0, σ2
ηf
) and N(0, σ2

gf
), respectively,

where σ2
ηf

= wTσ2
ηw and σ2

gf
= σ2

g(w
TH −

γ
T )(wTH − γ

T )T . Additionally, since Ψ is also a

linear combination of Gaussian random variables,

Ψ ∼ N(0, σ2
ηf

+ σ2
gf
).

Therefore, the PDF of the error signal for the
AWGN case can be written as:

fE(e) =

NS−1
∑

i=0

Gσ2
Ψ

(

e+ βi −wTHsi(n)
)

2K+D−1
, (25)

where Gσ2(x) = 1√
2πσ2

exp
(

− x2

2σ2

)

and σ2
Ψ = σ2

ηf
+

σ2
gf

.

Having obtained the error PDF, it is possible
to express the Rényi’s quadratic entropy associated
with the error signal, defined in (1), as follows:

H2(E) = − log





∫ ∞

−∞

[

NS−1
∑

i=0

Gσ2
Ψ
(e+ βi −w

T
Hsi(n))

2K+D−1

]2

de



 .

(26)

The term inside the integral can be written as the
product of two equivalent sums indexed by i and
j. Then, the multiplicative constants can be placed
outside the integral, as well as both sums, yielding
the following expression:

H2(E) = − log

((

1

2K+D−1

)2 NS−1
∑

i=0

NS−1
∑

j=0
∫ ∞

−∞

Gσ2
Ψ
(e+ βi −w

T
Hsi(n))

×Gσ2
Ψ
(e+ βj −w

T
Hsj(n))de

)

. (27)

The expression of H2(e) in (27) can be simplified

by exploring a property of Gaussian functions [11]:
∫ ∞

−∞
Gσ2

i
(x− xi)Gσ2

j
(x− xj) = Gσ2

i +σ2
j
(xi − xj).

(28)

Hence, the error entropy can be expressed as:

H2(E) = − log

((

1

2K+D−1

)2 NS−1
∑

i=0

NS−1
∑

j=0

G2σ2
Ψ
(βi −w

T
Hsi(n)− βj +w

T
Hsj(n))

)

.(29)

By defining νi = βi −wTHsi(n), we obtain the
final expression for the Rényi’s quadratic entropy of
the error signal in the AWGN case:

H2(E) = − log

(

(

1

2K+D−1

)2 NS−1
∑

i=0

NS−1
∑

j=0

Gσ2
2Ψ

(νi − νj)

)

.

(30)
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2) Impulsive Noise: The second type of noise we

shall consider can be described by the following

PDF [11]:

fη(η) = pGα2σ2
1
(η) + (1− p)Gα2σ2

2
(η), (31)

where p represents the probability of taking a

sample according to a Gaussian distribution with

zero mean and a small variance σ2
1 , (1 − p) is

the probability of the noise sample being generated

according to a Gaussian distribution with zero mean

and a large variance σ2
2 , and α =

√

σ2
η

pσ2
1+(1−p)σ2

2
is a

scaling factor used to ensure that the overall noise

variance is σ2
η , leading to a SNR as given by (7). The

shape of the noise PDF becomes an approximation

of an impulse by adopting p >> (1 − p) and

σ2
1 << σ2

2 .

The derivation of the theoretical expressions for

the MEEC and the MCC requires the exact PDF of

the error signal. As discussed in Section III-B, the

error PDF is determined by the statistical properties

of Ψ = wT
η(n) +

(

wTH− γ
T
)

g(n), with the

difference that, now, the first term of Ψ consists of

a linear combination of AWIN samples.

It can be shown that the PDF of the sum of

independent random variables is obtained by means

of the convolution between the PDFs of the original

variables [21]. This property can be employed to

determine the PDF of the error signal. However, due

to the characteristics of the noise model, it is not

viable to derive a generic expression for fE(e), as

occurred with the AWGN case, since the number of

elements that result from the required convolutions

significantly grows as the number of coefficients

of the equalizer is increased. Therefore, we shall

restrict the derivation of the expressions to the case

in which the equalizer has only two coefficients

(K = 2).

Let w = [w0 w1]
T be the vector containing the

coefficients of the equalizer. Thus, the PDF of the
first term of Ψ, viz., ηf (n) = wT

η(n), is obtained
via the convolution between the PDFs of w0η(n)
and w1η(n − 1). Due to the linear character of
the convolution, the Gaussian functions present in
(31) are convolved with themselves, so that the
PDF of ηf (n) contains four terms resulting from
the convolutions. Moreover, since the convolution
between Gaussian functions also yields a Gaussian
function whose mean and variance are the sums of
the individual means and variances, respectively, the
PDF of the filtered noise ηf (n) = wT

η(n) is given

by:

fηf
(ηf ) = p2Gw2

0α
2σ2

1+w2
1α

2σ2
1
(ηf )

+ p(1− p)Gw2
0α

2σ2
1+w2

1α
2σ2

2
(ηf )

+ (1− p)pGw2
0α

2σ2
2+w2

1α
2σ2

1
(ηf )

+ (1− p)2Gw2
0α

2σ2
2+w2

1α
2σ2

2
(ηf ). (32)

The second term of Ψ, viz.,
(

wTH− γ
T
)

g(n),
is associated with the distribution N(0, σ2

gf
), where

σ2
gf

= σ2
g(w

TH−γ
T )(wTH−γ

T )T , as indicated in

Section III-C1. Hence, the PDF of Ψ can be written
as follows:

fΨ(ψ) = fηf
(ηf ) ∗Gσ2

gf
(gf )

= p2Gw2
0α

2σ2
1+w2

1α
2σ2

1+σ2
gf

(ψ)

+ p(1− p)Gw2
0α

2σ2
1+w2

1α
2σ2

2+σ2
gf

(ψ)

+ (1− p)pGw2
0α

2σ2
2+w2

1α
2σ2

1+σ2
gf

(ψ)

+ (1− p)2Gw2
0α

2σ2
2+w2

1α
2σ2

2+σ2
gf

(ψ), (33)

where ∗ denotes the convolution operator.

Then, using (24), the PDF of the error signal in
the presence of impulsive noise can be expressed as
follows:

fE(E = e) =
1

2K+D−1

NS−1
∑

i=0
(

p2Gw2
0α

2σ2
1+w2

1α
2σ2

1+σ2
gf

(e+ νi)

+ p(1− p)Gw2
0α

2σ2
1+w2

1α
2σ2

2+σ2
gf

(e+ νi)

+ (1− p)pGw2
0α

2σ2
2+w2

1α
2σ2

1+σ2
gf

(e+ νi)

+ (1− p)2Gw2
0α

2σ2
2+w2

1α
2σ2

2+σ2
gf

(e+ νi)
)

.

(34)

The exact expression for the Rényi’s quadratic
entropy associated with the error signal can be
obtained by following the same steps performed
in Section III-C1, with the difference that, in the
AWIN case, the integral of the square of fE(e) gives
rise to 16 terms, each of them being the result of
the integral of the product between two Gaussian
functions, which can be determined with the aid of
the property shown in (28). Hence, the error entropy
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is given by:

H2(e) = − log

[(

1

2K+D−1

)2 NS−1
∑

i=0

NS−1
∑

j=0
(

p
4
G2(σ2

1α
2w2

0+σ2
1α

2w2
1+σ2

gf
)(νi − νj)

+ p
3(1− p)G2σ2

1α
2w2

0+σ2
1α

2w2
1+σ2

2α
2w2

1+2σ2
gf

(νi − νj)

+ p
3(1− p)Gσ2

1α
2w2

0+2σ2
1α

2w2
1+σ2

2α
2w2

0+2σ2
gf

(νi − νj)

+ (1− p)2p2Gσ2
1α

2w2
0+σ2

1α
2w2

1+σ2
2α

2w2
0+σ2

2α
2w2

1+2σ2
gf

(νi − νj)

+ p
3(1− p)G2σ2

1α
2w2

0+σ2
1α

2w2
1+σ2

2α
2w2

1+2σ2
gf

(νi − νj)

+ (1− p)2p2G2(σ2
1α

2w2
0+σ2

2α
2w2

1+σ2
gf

)(νi − νj)

+ (1− p)2p2Gσ2
1α

2w2
0+σ2

1α
2w2

1+σ2
2α

2w2
0+σ2

2α
2w2

1+2σ2
gf

(νi − νj)

+ p(1− p)3Gσ2
1α

2w2
0+σ2

2α
2w2

0+2σ2
2α

2w2
1+2σ2

gf

(νi − νj)

+ p
3(1− p)Gσ2

1α
2w2

0+σ2
2α

2w2
0+2σ2

1α
2w2

1+2σ2
gf

(νi − νj)

+ p
2(1− p)2Gσ2

2α
2w2

0+σ2
1α

2w2
0+σ2

1α
2w2

1+σ2
2α

2w2
1+2σ2

gf

(νi − νj)

+ p
2(1− p)2G2(σ2

2α
2w2

0+σ2
1α

2w2
1+σ2

gf
)(νi − νj)

+ p(1− p)3G2σ2
2α

2w2
0+σ2

1α
2w2

1+σ2
2α

2w2
1+2σ2

gf

(νi − νj)

+ p
2(1− p)2Gσ2

1α
2w2

0+σ2
1α

2w2
1+σ2

2α
2w2

0+σ2
2α

2w2
1+2σ2

gf

(νi − νj)

+ p(1− p)3Gσ2
1α

2w2
0+σ2

2α
2w2

0+2σ2
2α

2w2
1+2σ2

gf

(νi − νj)

+ p(1− p)3G2σ2
2α

2w2
0+σ2

1α
2w2

1+σ2
2α

2w2
1+2σ2

gf

(νi − νj)

+ (1− p)4G2(σ2
2α

2w2
0+σ2

2α
2w2

1+σ2
gf

)(νi − νj)
)

]

.

(35)

D. Correntropy

In the following, we present the mathematical

derivation of the correntropy expressions consider-

ing both noise models.
1) Gaussian Noise: Based on (25), which pro-

vides the PDF of the error signal, the correntropy
between the equalizer output signal and the desired
signal d(n) = s′(n− d), defined in (3), is given by
the following expression:

c(y(n); d(n)) =
1

2K+D−1

NS−1
∑

i=0

∫

Gσ2
ker

(e)

×
[

Gσ2
Ψ

(

e+ βi −w
T
Hsi(n)

)]

de. (36)

By using the property presented in (28), we can
obtain the final expression of the correntropy:

c(y(n); d(n)) =
1

2K+D−1

NS−1
∑

i=0

Gσ2
Ψ+σ2

ker

(

βi −wTHsi(n)
)

.

(37)

2) Impulsive Noise: By repeating the same pro-
cedure of the previous section, using the error PDF
defined in (34) as well the property in (28), the
theoretical expression for correntropy in the AWIN
case can be written as follows:

c(y(n); d(n)) =
1

2K+D−1

NS−1
∑

i=0
(

(1− p)2Gw2
0α

2σ2
2+w2

1α
2σ2

2+σ2
gf

+σ2
ker
(νi)

+ p(1− p)Gw2
0α

2σ2
1+w2

1α
2σ2

2+σ2
gf

+σ2
ker
(νi)

+ (1− p)pGw2
0α

2σ2
2+w2

1α
2σ2

1+σ2
gf

+σ2
ker
(νi)

+ p
2
Gw2

0α
2σ2

1+w2
1α

2σ2
1+σ2

gf
+σ2

ker
(νi)

)

, (38)

3) Discussion: Once we have derived the exact

expressions of the error entropy and correntropy for

both the AWGN and the AWIN cases, it is inter-

esting to contrast them with those associated with

the corresponding kernel-based estimators shown

in Section II, since we may obtain relevant ele-

ments concerning the expected behaviors of both

the analytical and the estimated versions of the

ITL criteria, which shall, then, be verified through

the simulations carried out in different scenarios in

Section IV.

An immediate difference to be remarked is related

to the type of information that each version of the

ITL criteria has access to: while the theoretical

expressions of the error entropy and correntropy

explore information about the set of possible trans-

mitted sequences si(n), i = 0, . . . , 2K+D−1− 1, and

require knowledge of properties related to the noise

and to the source, the estimators are based on a set

of T observations of the error signal and use a single

parameter, viz., the kernel size (σ2
ker), whose value

must be adequately selected [11].

By comparing the analytical error entropy related

to the AWGN case, whose expression is given

by (30), with the corresponding estimator using

Gaussian kernel, defined in (2), it is possible to

observe another important difference: in the former,

the variances of the Gaussian functions are modified

according to the coefficients of the equalizer (w),

since they affect σ2
ηf

and σ2
gf

, whereas, in the latter,

all the Gaussian functions adopt the same variance

value that is proportional to the chosen kernel

size (σ2
ker), regardless of the filter coefficients. A

similar observation can be made with respect to the

correntropy, although it is important to emphasize

that the theoretical correntropy, defined in (37), also
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includes a parameter σ2
ker.

On the other hand, in the AWIN case, the similar-

ities between the theoretical and estimated versions

of the error entropy and correntropy become less

pronounced, since the theoretical entropy and cor-

rentropy explicitly take into account the PDF of the

error signal, which, in turn, is directly influenced by

the noise model, whereas the corresponding estima-

tors are expressed as functions of the kernels, which,

in this work, have been chosen to be Gaussian

functions.

It is important to emphasize that we are focusing

on the case of linear FIR filters as equalizers, whose

mathematical simplicity allows the derivations of

the exact cost functions of the MEEC and the

MCC. Hence, the analysis and observations to be

followed cannot be directly extended to nonlinear

structures. Even though the ITL framework is rec-

ognized for their advantages in the nonlinear and/or

non-Gaussian case, we highlight the relevance of

this study as an useful tool – which shall consider

not only the Gaussian but also the impulsive noise

–, for a more detailed understanding of the ITL

criteria.

Having these remarks in mind, we proceed to

the detailed analysis of the theoretical ITL criteria

considering different channel equalization scenarios.

IV. ANALYSIS

In this section, we shall study the characteristics

of the theoretical error entropy and correntropy, as

well as evaluate the performance of the optimum

equalizers associated with these criteria and with the

classical mean squared error. Additionally, we shall

also discuss the effects of the main parameters of the

problem, e.g., the signal-to-noise ratio, and of the

criteria, such as the correntropy kernel size (σ2
ker),

on the surfaces associated with the theoretical ITL

criteria, and, finally, contrast the observed behaviors

with those associated with the error entropy and

correntropy estimators.

A. The Combined Channel + Equalizer Impulse

Response Analysis

In the problem of channel equalization, from an

analytical standpoint, the qualitative evaluation of a

criterion performance can be preliminarily done by

considering a combined channel+equalizer impulse

response, which is a simpler but efficient method-

ology to identify the basic features and adequacy

of a criterion to the problem in hand. Such analysis

is known to be very useful as it is able to reveal

the fundamental conditions necessary to achieve the

desired solutions [22], [23], [24].

The main idea behind the combined chan-

nel+equalizer impulse response – or simply, com-

bined impulse response – is to allow a simplification

in the model of the channel and equalizer systems

(by considering them as a single linear system) so

as to facilitate the analysis of the criterion. Un-

doubtedly, the simplification of the communication

model is an abstraction that implies in a reduction

of the accuracy of the performed representation,

as it ignores the existence of an attainable set of

solutions, and, for this reason, this type of analysis

is very clarifying but not complete. In this sense, we

first present the analysis of the combined impulse

response and, next, a more detailed study of the ITL

criteria.

Mathematically, the combined channel+equalizer

impulse response is represented by the convolution

between the channel and the equalizer impulse

responses:

c(n) = h(n) ∗ w(n), (39)

or, in terms of the Z-transform, C(z) = H(z)W (z).
In simple terms, (39) provides a single and simpler

linear system to be analyzed. On the other hand,

this simplification does not encompass the presence

of noise η(n), which must be disregarded from the

original formulation.

Having this definition in view, additional con-

siderations are necessary in the derivation of the

error PDF shown in Section III-B. However, in

order to avoid new conditions that make the analyt-

ical calculation of the ITL criteria impractical, we

propose only slight modifications on the previous

formulation, as shown in the following. First, the

combined impulse response can be easily inserted in

the analytical formulation by considering c = HTw

and, secondly, to remove the effect of the noise

η(n), one possible approach is that of defining its

variance as σ2
η = 0. Indeed, this last assumption will

cause the suppression of the noise effect, however,

there are some limitations of the formulation. In the

case in which the source is discrete, it is necessary

that σ2
g = 0, and, considering the error entropy

cost defined in (40), if σ2
g = σ2

η = 0, we know
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that H2(E) = −∞. Hence, to circumvent this

indeterminacy, we propose two alternatives: (i) to

approximate σ2
η → 0, by attributing to it a very small

value – i.e., σ2
η = ǫ = 1 × 10−10 – and adopting

σ2
g = 0; or (ii) to adopt σ2

η = 0 and approximate

σ2
g → 0, by assuming σ2

g = ǫ. We highlight that

these two possibilities will be considered in the

following analysis for the error entropy criterion.

For continuous sources, as σ2
g 6= 0, we can sim-

ply assume σ2
η = 0. Regarding correntropy, (37),

the cancellation of the noise effect can always be

achieved with σ2
η = 0, because, even if the source is

discrete, it suffices that σ2
ker be different from zero.

Finally, with these relatively simple modifications
in the formulation of the PDF error considering
the combined impulse response, we obtain valid
definitions of the error entropy and the correntropy
costs, respectively:

H2(E) = − log

(

(

1

2K+D−1

)2 NS−1
∑

i=0

NS−1
∑

j=0

G2σ2
Ψ
(ν̂i − ν̂j)

)

,

(40)

and

c(y(n); d(n)) =
1

2K+D−1

NS−1
∑

i=0

Gσ2
gf

+σ2
ker

(

βi − cT si(n)
)

,

(41)

where ν̂i = βi − cT si(n).

In order to obtain perfect channel equalization, it

is necessary that the equalizer be the inverse of the

channel, which implies in C(z) = z−d, being d an

arbitrary delay, a condition also referred to as zero-

forcing (ZF) [10]. The adequacy of the criterion to

the equalization problem demands that its optima

meet the ZF condition. In this sense, we will per-

form our analysis of the entropy and correntropy

criteria by obtaining their surfaces as a function of

the combined impulse response, which, for the sake

of visualization, will be assumed to be represented

by a vector of two coefficients c = [c0 c1]
T .

1) Analytical Error Entropy: Our study of the

analytical entropy criterion for the combined chan-

nel+equalizer impulse response will encompass two

representative cases regarding the source signal:

the first one assumes a discrete BPSK transmitted

source, while the second one assumes a continuous

source. Furthermore, for both cases, we consider

a reference signal with delay d = 0; therefore, it

is expected, under the assumption of a complete

adequacy to the problem of equalization, a single

solution equal to C(z) = 1 or, in vector notation,

c = [1 0]T .

Starting with the classical BPSK source, we fol-

low the first approach for the entropy cost in (40)

by assuming σ2
g = 0 and σ2

η = ǫ. Under these

circumstances, we varied each of the coefficients

of the combined response vector c from −2 to +2,

allowing us to obtain the surface of the analytical

entropy cost and its contours in function of c, as

illustrated in Figure 2. To facilitate the visualization,

we represented the desired solution c = [1 0]T as

an asterisk (*) in the figure. From the figures, it

(a) Entropy Surface - σ2
g = 0

c
0

c
1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) Entropy Contour - σ2
g = 0

Fig. 2. Error entropy surface and contour for the discrete source as

a function of the combined impulse response coefficients.

is possible to note that, for this case, the Rényi’s

entropy is a multimodal function, in which we

highlight three relevant aspects to be discussed: (i)

the expected solution c = [1 0]T is the second

best minimum of the criterion, which indicates that

entropy, besides the error minimization, also may

lead to different (inadequate) solutions; (ii) there

are four line segments (clearer in Figure 2(b))

that present lower values of measured entropy (but

higher than the local minimum) that are not minima;

and (iii) the global minimum is the trivial solution,

i.e., c = [0 0]T , which is not a desirable solution to
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the problem of equalization.

We begin the discussion by jointly analyzing the

aspects (i) and (ii). An evidence of the observed

behavior of entropy for this case is linked to the

resulting number of discrete states associated with

the error signal e(n). For instance, in the case (i),

the combined channel+equalizer system c = [1 0]T

works as a merely bypass, hence, the output signal

y(n) is equal to s(n) and the error signal is e(n) =
y(n)− s(n) = 0, which means that there is a single

state for the error. It is important to mention that, as

we assumed that σ2
η → 0, the error signal presents a

very small variance. In the case (ii), we have lower

values of entropy that, together, form two diagonals,

one horizontal and one vertical line segment. The

vertical segment is related to a combined system of

the type c = [1 c1]
T , which results in e(n) = ±c1,

i.e., two possible error states; the horizontal line

can be represented by the set of combined impulse

response of the type c = [c0 0]
T , which also results

in two error states: e(n) = ±(c0−1); for the two

diagonals, in turn, we have that c = [c0 c0−1]T

and c = [c0 −c0+1]T , which both will imply in

three possible values for e(n), to say, 0, −2c0+2 and

2c0−1. Again, it is important to emphasize that the

error presents a small variance and is not precisely

discrete. Additionally, Figure 2(a) also shows that

the lower the number of discrete states for the error,

the smaller will be the associated value of entropy.

Nevertheless, slight variations of the entropy values

can be observed along the discussed line segments,

since their effects are combined with the concentric

ellipses observed in Figure 2(b).

Finally, the case of the trivial solution (iii) is

an important aspect that is very likely to happen

in communications problems. Since the transmitted

signal is usually modulated according to a set of

discrete symbols, the source presents, consequently,

a discrete distribution. However, the error entropy

criterion is aimed to deal with continuous dis-

tributions and, when applied to the equalization

problem, the interaction with discrete probabilities

is unavoidable, possibly resulting in discontinuities

in the cost function. More specifically, this is exactly

the reason for the appearance of the minimum at

the trivial solution, because when the coefficients

of the combined impulse response c are null, the

error signal will be discrete with exact symbols −1
and +1, so that the error entropy becomes equal

to the entropy of the source. From the point of

view of the presented formulation, this corresponds

to setting both variances σ2
g and σ2

η to zero, and,

from (40), H2(E) → −∞ at the trivial solution, an

indetermination.

For the second approach of the error entropy

when dealing with a discrete source, i.e., with

σ2
g = ǫ and σ2

η = 0, we obtained the error entropy

surface and its contours, as exhibited in Figure

3. Now, for the trivial solution c = [0 0]T , the

resulting error signal e(n) is constituted of two

narrow Gaussians, centered in −1 and +1 (since

σ2
g 6= 0), and we no longer observe the previous

discontinuity. Hence, the error entropy criterion

(a) Entropy Surface - σ2
g = ǫ

c
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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−1

−0.5

0

0.5

1

1.5

2

(b) Entropy Contour - σ2
g = ǫ

Fig. 3. Error entropy surface and contour for an approximated

discrete source.

presents a single minimum at the desired solution

c = [1 0]T and shows itself to be adequate to the

problem of equalization. However, it is important

to mention that the approach σ2
g → 0 implies in a

modification in the source signal, which is no longer

strictly discrete. Rigorously, the condition σ2
g → 0

is considered as a limit case of the continuous

distribution, so that this assumption can be simply

interpreted as an abstraction to help the understand-
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ing of the trivial solution effect over the entropy

criterion when dealing with purely discrete sources,

which, as shown, presents some inadequacies.

In the properly continuous scenario, we consider

the continuous source s′(n) with σ2
g = 0.05 –

here, σ2
η is equal to zero – in (40), and repeat

the procedure to obtain the surface of the error

entropy cost. The results are presented in Figure

4. In comparison with the previous case in which

(a) Entropy Surface - Continuous Source

c
0

c
1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) Entropy Contour - Continuous Source

Fig. 4. Error entropy surface and contour for the continuous source.

σ2
g = ǫ, the result is similar, with a single minimum

located at the desired combined channel+equalizer

impulse response, and, instead of the line segments,

there are smoothed curls.

Therefore, we can notice that the presence of

noise terms, like σ2
η or σ2

g , can provoke modi-

fications in the error entropy surface considering

the combined impulse response. Indeed, when we

assumed σ2
g = ǫ, the noise is associated with the

source (which becomes continuously distributed)

and the undesirable trivial solution disappears. Inter-

estingly, this idea is closely related to the determin-

istic kernel annealing [25], where the kernel size can

be adjusted to reduce the number of minima in the

cost function. This topic will be further discussed

ahead.

So far, the combined impulse response analy-

sis for the error entropy criterion revealed some

important features that, until the present moment,

were not acknowledged via the usual estimator-

based approaches. Motivated by these results, we

will extend this analysis to the correntropy criterion.

2) Analytical Correntropy: The correntropy cri-

terion is known to present some similarities with the

error entropy criterion, but, in certain cases, these

two entities can behave considerably differently

[11]. In that sense, the analysis with respect to

the combined channel+equalizer impulse response

can provide us a clearer view of the correntropy

criterion, revealing some points in common with the

error entropy.

As in the previous case, we will consider the two

types of source: the discrete and the continuous sig-

nal. Again, the reference signal will not be delayed

– i.e., d = 0. According to (41), the parameters to

be adjusted here are the variance of the Gaussian

effect over the source signal, σ2
g , and the variance

of the Gaussian kernel, σ2
ker.

In the first case, we consider the discrete source

by adopting σ2
g = 0 and, for the variance of the

Gaussian kernel, we assume σ2
ker = 0.001. It is

important to note that, as a first difference from

entropy, the presence of the σ2
ker guarantees that cor-

rentropy shall not diverge – as can be deduced from

(41) – and no further assumptions are necessary.

In order to obtain the correntropy surface, we vary

the coefficients of the combined impulse response

vector from −2 to +2. The results are displayed in

Figure 5. Interestingly, correntropy presents a global

maximum (since this is a maximization problem)

at the desired combined impulsive response, i.e.,

c = [1 0]T , which means that the criterion is

adequate to the problem of equalization, even for

discrete sources. Correntropy also presents the “line

segments” observed in the entropy cost, but only the

diagonal ones. However, differently from entropy,

the value of correntropy is constant along the di-

agonal lines defined by the vectors c = [c0 c0−1]T

and c = [c0 −c0+1]T – except in the neighborhood

of c = [1 0]T –, which can cause a first-order search

algorithm to get stuck at non-desired solutions.

In the case of the continuous source, we adopt

σ2
g = 0.05 and σ2

ker = 0.01. The resulting surface of

correntropy and the contours are shown in Figure
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(a) Correntropy Surface - Discrete Source
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(b) Correntropy Contour - Discrete Source

Fig. 5. Correntropy surface and contour for the discrete source.

6. It is possible to see that correntropy keeps the

maximum at c = [1 0]T and, additionally, the values

of correntropy along the “line segments” are no

longer constant, but incremental in the direction of

the desired solution c = [1 0]T .

It is important to mention that the variation of

σ2
ker mainly causes changes in the smoothness of

the correntropy surface, but the general shape of

the cost remains the same.

In general, we can affirm that correntropy, just

like entropy, is more adequate for scenarios where

the sources are associated to continuous distribu-

tions. Nevertheless, when dealing with purely dis-

crete sources, correntropy seems to be a more robust

criterion than entropy, since it does not suffer from

the problem of the trivial solution.

B. First Specific Scenario: Minimum-Phase Chan-

nel and AWGN

The scenario we shall consider here is character-

ized by a minimum-phase channel whose transfer

function is H(z) = 1+0.6z−1. The noise present in

(a) Correntropy Surface - Continuous Source
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(b) Correntropy Contour - Continuous Source

Fig. 6. Correntropy surface and contour for the continuous source.

the transmission is AWGN and the desired equaliza-

tion delay is d = 0. In order to visualize the surfaces

associated with the ITL criteria, the equalizer is a

FIR filter with two coefficients, i.e., w = [w0 w1]
T .

1) Error Entropy: Initially, we display in Figure

7 the surfaces of the theoretical error entropy as a

function of the equalizer coefficients considering an

SNR of 13 dB and two particular conditions regard-

ing the source model: (1) σ2
g = 0, which means that

s′(n) is a discrete source associated with the BPSK

modulation, and (2) σ2
g = 0.15. Additionally, we

also show the position of the corresponding Wiener

solutions with an asterisk (*).

Some interesting remarks can be drawn from

Figure 7. Firstly, it is possible to observe that the

optimum solution is different depending on the

source nature. When the source signal consists of

symbols belonging to the BPSK modulation, the

trivial solution, w = [0 0]T offers the minimum

value for the error entropy. In light of the analysis of

the combined channel + equalizer impulse response

performed in Section IV-A, this undesirable phe-

nomenon was expected. However, when the source
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(a) Discrete source

(b) Continuous Source

Fig. 7. Surfaces of error entropy considering the first scenario with

SNR = 13 dB for both discrete and continuous sources.

becomes continuous through the addition of the

Gaussian component g(n), the optimum located at

the origin tends to disappear. In fact, as σ2
g increases

from zero, the values of the error entropy at the ori-

gin progressively increase, until the local optimum

at the vicinity of the Wiener solution becomes the

solution of minimum entropy, as occurs in Figure

7(b).

Secondly, we can notice in Figure 7 that the

surface of the theoretical error entropy is usually

multimodal. This fact becomes more evident if we

observe the contour of the error entropy exhibited

in Figure 8 for the discrete source. Excluding the

optimum located at the origin, there are, at least,

three local optima.

Interestingly, one of these optima is relatively

close to the Wiener solution, which indicates that the

filter coefficients that minimize the mean squared

error also offer, to a certain extent, an attractive

solution in terms of the error entropy. However,

depending on the SNR value and/or the noise

model, this remark may not be valid. In order to

elucidate this question, we present in Figure 9 the
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Fig. 8. Contour of error entropy considering the first scenario with

SNR = 13 dB for the discrete source.

value of the gradient of the error entropy calculated

at the Wiener solution as a function of the signal-

to-noise ratio.
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Fig. 9. Gradient of the theoretical error entropy evaluated at the

Wiener solution as a function of the SNR.

As we can observe, the magnitude of the gradient

of the error entropy for the Wiener filter remains

with relatively small values until the SNR of 15
dB, which suggests that the Wiener solution is, to

a certain degree, near a local optimum of the error

entropy. On the other hand, as the SNR increases,

the tendency is that the magnitude of the gradient

becomes higher, which means that the Wiener solu-

tion seems to be moving apart from locally optimal

solutions in the sense of error entropy.

This evidence motivates an analysis of the impact

that the SNR has on the surface of the error

entropy. Thus, Figure 10 presents the surfaces of

the theoretical error entropy considering the discrete

source case for two different values of SNR: 5 and

20 dB, which are associated with the low and high

SNR regimes.

It is possible to see in Figure 10 that the general
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(a) SNR = 5 dB

(b) SNR = 20 dB

Fig. 10. Surfaces of error entropy for the SNR values of 5 dB and

20 dB considering the first scenario.

aspect of the surface of the error entropy is sig-

nificantly modified by the SNR: when the SNR
is 5 dB, the surface of the error entropy becomes

smoother and there are only two visible local op-

tima, viz., those located at the origin and near the

Wiener solution; on the other hand, for the SNR
of 20 dB, several other local optima emerge and the

Wiener solution is not as close to a local optimum

as in the previous cases, which is in accordance

with the behavior indicated by the analysis of the

gradient.

The observations pointed out so far evince that

the MEEC presents a more complex behavior when

compared with the MSE due to the potential oc-

currence of multiple optima in the corresponding

entropy surface. Moreover, depending on the param-

eters of the scenario, such as the SNR, the optimum

solution may or may not be close to the Wiener

solution. The question as to whether the minimum

error entropy solution yields a more efficient equal-

izer than that associated with the Wiener solution

shall be addressed in Section IV-B3.

Since we have observed the main characteristics

of the theoretical error entropy, we can now contrast

them with those related to the entropy estimator,

defined in (2). Considering the discrete source,

which represents the practical case from the com-

munications standpoint, and a set of 2500 samples

of the error signal e(n), we display in Figure 11 the

surface of the estimated error entropy for the SNR
of 13 dB and for three values of σ2

ker: 1, 0.15 and

0.01.
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(c) σ2
ker = 0.01

Fig. 11. Surfaces of the error entropy estimator as a function of the

kernel size considering the first scenario.

It is possible to observe in Figure 11 that the

kernel size has a significant impact on the behavior
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of the estimator. In fact, the surface shown in Figure

11(a) presents a smooth decay towards the point

with minimum estimated entropy, which is close to

the Wiener solution. Moreover, in accordance with

the analysis of [11], the surface has approximately

a quadratic character around the optimum solution.

On the other hand, when the kernel size becomes

smaller, the surface of the estimated error entropy

may present multiple optima and relatively more

abrupt variations. Additionally, the optimum solu-

tion is now located at the origin, as shown in Figure

11(c).
Interestingly, the behavior of the surface of the

error entropy estimator as a function of the adopted

kernel size is quite similar to that associated with the

theoretical error entropy surface when we modify

the variance of the continuous source component

(σ2
g). This similarity suggests that it may be possible

to establish a connection between the kernel size

employed by the entropy estimator and the charac-

teristics of the source considered in the theoretical

error entropy, particularly the variance of the con-

tinuous component (σ2
g). In order to elucidate this

connection, we display in Figure 12 the surface of

the theoretical error entropy considering σ2
g = 0.01.

Fig. 12. Surface of the theoretical error entropy considering the

first scenario with SNR = 13 dB and a continuous source with

σ2
g = 0.01.

By comparing Figures 7(b) with 11(b), and 12

with 11(c), it is possible to notice the evident

resemblance between the surfaces of the entropy

estimator and the theoretical error entropy. Indeed,

when larger values of σ2
ker are adopted in the entropy

estimation, the corresponding surface mirrors the

characteristics of the surface associated with the

theoretical error entropy for a continuous source

with a larger value of σ2
g . On the other hand, as σ2

ker

decreases, the observed modifications in the surface

of the estimated error entropy are quite similar to

those verified for the theoretical error entropy as

σ2
g becomes smaller, including the emergence of

wT = [0 0] as the minimum entropy solution.

Therefore, based on these evidences, we can

affirm that even though the kernel-based entropy

estimator has access to error samples that are ob-

tained in the transmission of a discrete source,

its surface can be seen as an approximation of

that associated with the theoretical error entropy

for a continuous source. In this sense, the entropy

estimator only approximates the theoretical error

entropy for the same discrete source model in the

limit when σ2
ker → 0, which would ideally demand

an infinite number of samples in order to achieve an

adequate – unbiased and with minimum variance

– estimation [11]. Nonetheless, the surface of the

theoretical error entropy for the discrete source can

still be used as a reference to the entropy estimator

when σ2
ker is significantly reduced as it reveals the

expected asymptotic behavior.

It is important to stress that the impact of the

kernel size on the characteristics of the surface

associated with the estimated error entropy has

already been discussed in [11] in light of the concept

of convolution smoothing [26], but, here, we have

provided an alternative interpretation by establishing

a connection with the analytical error entropy based

on a continuous source model.

Finally, it is pertinent to mention that the surface

of the error entropy estimator for a given value of

σ2
ker is modified as the SNR varies in a manner that

resembles the behavior of the theoretical entropy

considering the correct source model: if σ2
ker is

sufficiently small, the behavior of the estimator can

be related to that of the theoretical entropy for

the discrete source1, while, if σ2
ker is large, the

association is with the theoretical entropy for the

continuous source with a large value of σ2
g . This

tendency can be confirmed by Figure 13, which

displays the surfaces of the error entropy estimator

for the SNR of 20 dB considering the kernel sizes

of 1 and 0.01, respectively.

Clearly, the surface of the estimated entropy is

not significantly modified when σ2
ker = 1, a fact

1Ideally, this correspondence could only be established when

σ2
ker → 0, but, as aforementioned, the theoretical entropy for the

discrete source still serves as an useful reference to analyze the

behavior of the entropy estimator for small values of σ2
ker.



JOURNAL OF COMMUNICATIONS AND INFORMATION SYSTEMS, VOL. 31, NO. 1, 2016. 17

−2

−1

0

1

2

−2

−1

0

1

2
1

1.5

2

2.5

3

w
0

w
1

Ĥ
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Fig. 13. Surfaces of the error entropy estimator as a function of the

kernel size considering an SNR of 20 dB.

that could also be observed by analyzing the surface

of the theoretical error entropy for the continuous

source case. On the other hand, when σ2
ker is small,

we notice a behavior similar to that verified in Fig-

ure 10 in the context of the theoretical error entropy

for a discrete source: the number of local optima is

increased and the Wiener solution becomes more

distant from the closest local optimum.

2) Correntropy: Now, we turn our attention to

the MCC. The first question we shall analyze in-

volves the impact of the kernel size (σ2
ker), which is

part of the definition of the correntropy measure, on

the corresponding surface. Therefore, we present in

Figure 14 the surfaces of the theoretical correntropy

considering a SNR of 13 dB and three different

kernel sizes: 0.5, 0.1 and 0.01, respectively. We

shall restrict the analysis of the correntropy to the

discrete source (BPSK modulation) case, since the

continuous source model is not as useful to explain

the effect of the kernel size used by the estimator

as it has proved to be in the context of the error

entropy.

As we can observe, for σ2
ker = 0.5, the corren-

(a) σ2
ker = 0.5

(b) σ2
ker = 0.1

(c) σ2
ker = 0.01

Fig. 14. Surfaces of the theoretical correntropy as a function of the

kernel size considering an SNR of 13 dB. The asterisk (*) indicates

the position of the Wiener solution.

tropy surface is relatively smooth and the optimum

solution is quite similar to the Wiener solution,

which is in accordance with the fact that correntropy

converges to the MSE in the limit when σ2
ker → ∞

[11].

On the other hand, when σ2
ker = 0.01, the surface

presents another peak, which, indeed, offers the

maximum value of correntropy. The emergence of

this alternative optimum solution may be related to
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the fact that the MCC boils down to maximizing

the value of the error PDF at the origin, i.e.,

fE(e = 0), when σ2
ker → 0 [11]. Thus, depending

on the value of σ2
ker, the concept of correntropy may

establish a different objective to the filter design

and, ultimately, may lead to distinct solutions for

the equalizer.

In this context, it is natural to wonder whether

the alternative solutions that correntropy may offer

actually represent better options for the equalizer

when compared with the Wiener solution. This

important question shall be addressed in Section

IV-B3 taking into account the theoretical probability

of error associated with the optimal solutions of the

adaptation criteria discussed in this work.

The second aspect to be analyzed is related to the

impact of the SNR on the surface of the theoretical

correntropy. In order to ellucidate this question, Fig-

ure 15 displays the correntropy surfaces, along with

the corresponding contours, for the SNR values of

5 and 20 dB, considering that σ2
ker = 0.01. We

verified that, for large values of σ2
ker, only slight

modifications occur in the correntropy surface, so

that the main characteristics observed in Figures

14(a) and 14(b) are preserved. So, for the sake of

brevity, we decided to omit their presentation.

It is possible to notice in Figure 15 that the

surface of the theoretical correntropy can be signif-

icantly modified due to the SNR: for low values of

the SNR, the peak located near the Wiener solution

is the preferred solution by the MCC, whereas,

for high values of SNR, the other peak, which

also appeared in Figure 14(c), is the optimum.

This behavior is, to a certain extent, similar to that

associated with the theoretical error entropy, since

there is the possibility of dealing with relatively

complex and multimodal surfaces depending on the

SNR.

Finally, as performed in the context of the error

entropy, it is pertinent to establish a comparison

between the theoretical correntropy and the corre-

sponding estimator, defined in (4). Thus, we exhibit

in Figure 16 the surfaces of the estimated corren-

tropy for three values of σ2
ker – 0.25, 0.05 and 0.01

–, considering the SNR of 13 dB. The values of the

correntropy have been estimated using 2500 samples

of the error signal.

The behavior of the correntropy estimator as the

kernel size is decreased follows the same pattern

observed for the theoretical correntropy: for large
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Fig. 15. Surfaces and contours of the theoretical correntropy as

a function of the SNR considering σ2
ker = 0.01. The asterisk (*)

indicates the position of the Wiener solution.
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Fig. 16. Surfaces associated with the correntropy estimator as a

function of the kernel size considering the first scenario.

values of σ2
ker, the surface is smoother and the

global optimum is relatively close to the Wiener

solution; on the other hand, for small values of

σ2
ker, the surface presents additional local optima

and a different peak provides the maximum value

of correntropy.

3) Probability of Error: After analyzing the fea-

tures of the surfaces associated with the theoretical

error entropy and correntropy, as well with the

corresponding estimators, we are now interested

in assessing the performance of the optimal solu-

tions offered by the MEEC and the MCC in the

equalization problem. The fundamental performance

measure in the context of digital communications is

the probability of error (also called error rate). In the

Appendix, we formally derive the exact expressions

of the probability of error for any FIR equalizer

considering the AWGN and the AWIN scenarios.

Hence, the performance comparison in terms of

the probability of error involves two steps: (1)

the identification of the optimum filter coefficients

provided by the MEEC, MCC and MSE; and (2)

the calculation of the analytical probability of error

by substituting the obtained vectors w in Equation

(51). It is important to remark that, in the first step,

we perform a search for the point that minimizes

the theoretical error entropy, i.e., for which the

gradient of the error entropy is zero, and that is not

located at the vicinity of the trivial solution, since

it does not correspond to an actual solution for the

equalization problem; in the second step, the values

of the probability of error for a given vector w are

analytically obtained from the error distribution in

Equation (51) – please refer to the appendix and

theoretical expressions of error probability.

Table I presents the values of the analytical prob-

ability of error associated with the Wiener filter and

with the optimal solutions of the MEEC and the

MCC considering two values of SNR and, in the

case of correntropy, different choices for the kernel

size.

TABLE I

PROBABILITY OF ERROR (Pe) ASSOCIATED WITH THE OPTIMAL

SOLUTIONS OF MSE, MEEC AND MCC, CONSIDERING

DIFFERENT VALUES OF SNR AND σ2
ker .

SNR

Criterion 13 dB 20 dB

Wiener 5.76× 10−3 7.87× 10−7

MEEC 5.80× 10−3 3.30× 10−4

MCC
σ2
ker = 0.1 5.83× 10−3 9.44× 10−7

σ2
ker = 0.01 6.51× 10−2 3.30× 10−4

The results shown in Table I indicate that the so-

lutions offered by the MEEC and the MCC were not

capable of achieving probabilities of error smaller

than those associated with the Wiener solution. With

respect to the MEEC, we notice that for the SNR
of 13 dB, the probability of error was quite close to

that obtained by the Wiener filter. On the other hand,
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for the SNR of 20 dB, the value of Pe achieved by

the Wiener filter is significantly smaller than that

related to the MEEC.

This fact can be explained in view of the surfaces

shown in Figures 7 and 10. For the SNR of 13 dB,

the solution that gives the minimum value of error

entropy (excluding the trivial solution) lies in the

same region of the Wiener filter, which means that

the corresponding coefficient vectors w are quite

similar, so that the probabilities of error obtained

in both cases are almost equivalent. On the other

hand, for the SNR of 20 dB, the solution that

yields the minimum value of error entropy is located

in a different region, in the vicinity of the point

w = [0.6115 0.014]T . So, it is expected that the

probability of error obtained by the MEEC solution

differs from that of the Wiener filter, which is

associated with the point w = [0.8996 − 0.3929]T .

Unfortunately, the equalizer designed by the MEEC

is not attractive in view of the significant degra-

dation of performance when compared with the

Wiener solution.

A similar phenomenon can be observed in Table

I with respect to the MCC. When the kernel size

is relatively large, we know from Figure 14 that

the optimum solution in the sense of maximum

correntropy is quite similar to the Wiener filter,

which explains the fact that the equalizer designed

according to the MCC reached almost the same

values of Pe associated with the Wiener solution.

However, when σ2
ker is small, the MCC and MSE

solutions can be significantly different and, conse-

quently, the probabilities of error as well.

For the specific value of σ2
ker = 0.01 and the

SNR of 20 dB, the optimum solution of the MCC

is given by w = [0.613 0.014]T , being almost

equivalent to that obtained by the MEEC in the

same scenario. Although this solution yields a sig-

nificantly worse performance when compared with

the Wiener solution, it has an interesting effect:

it maximizes the error PDF at the origin. This is

confirmed by Figure 17, which displays the PDFs of

the error signal, computed via (25), associated with

the Wiener filter and the MCC optimum solution.

As we can observe, the PDF of the error signal

generated by the MCC optimum solution presents a

higher amplitude at the origin. However, this PDF

is not as concentrated around the origin as that

associated with the Wiener filter, which certainly

increases the possibility of occurrence of a decision
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Fig. 17. PDFs of the error signal associated with the Wiener filter

and the MCC optimum solution considering an SNR of 20 dB and

σ2
ker = 0.01.

error, as was, in fact, verified and shown in Table I.

C. Second Specific Scenario: Minimum-Phase

Channel and AWIN

Similarly to the previous analysis, we consider

again the scenario with the minimum-phase channel

H(z) = 1 + 0.6z−1. However, the additive noise

affecting the transmitted signal is now the AWIN

(with parameters p = 0.9 and σ2
1 ≈ 0.0342 – the

other parameters were adjusted depending on the

SNR level), which may lead to different behavior

of the error entropy and the correntropy criteria in

comparison to the AWGN case. It is important to re-

mark that our analysis considers the analytical costs

functions, which may present different behavior

from the usual adaptive gradient-based algorithms.

In that sense, we present in the following some

of the noteworthy results considering the impulsive

noise.

1) Error Entropy: We start by presenting in

Figure 18 the surface of the theoretical error entropy

and its associated contours for the scenario in ques-

tion with a BPSK modulated source (σ2
g = 0) and

an SNR level of 13 dB. In comparison to the corre-

spondent AWGN case (Figure 7(a)), it is possible to

observe that the general cost shape remains the same

with the trivial solution w = [00]T as the minimum

error entropy value. Nevertheless, we can note –

specially from the contours in Figure 18(b) – that

the number of local minima is increased. Again, the

Wiener solution is close to one of the local minima,

however, the local optima that best reduces entropy
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is nearby w = [0.6 0]T , i.e., a solution that only

works as a scale factor over the received signal.

(a) Entropy Surface - Discrete source
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(b) Entropy Surface Contours - Discrete

source

Fig. 18. Surface of error entropy and its contours considering the

second scenario with SNR = 13 dB for discrete sources.

Interestingly, the variation of the SNR level for

the impulsive noise causes a similar effect as that

of the AWGN: when the SNR level is low, the error

entropy surface becomes smoother with a reduced

number of minima, as presented in Figure 10(a);

when the SNR level is higher, the number of minima

increases, like in Figure 10(b), where the SNR level

was of 20 dB (being w ≈ [0.6 0]T the local optima

with the lower entropy associated). In the vicinity

of the Wiener solution, we observe that the lower

the SNR level, the closer is the local optimum of

the error entropy criterion to the Wiener solution,

which is the same tendency found in the AWGN

case.

The particular case of a continuous source is

also considered by adjusting σ2
g = 0.15 (and an

SNR level of 13 dB). The obtained error entropy

surface is much similar to that presented in Figure

7(b) – and, for this reason, we have opted for its

omission –, which leads to two main results: first, as

already mentioned, the nature of this source reduces

the effect of the trivial solution, privileging a local

minimum close to the Wiener Solution; second,

we note that this type of source also mitigates the

peculiar AWIN effect, making the surface similar to

that observed in the AWGN case.

From these brief results of the AWIN scenario,

we can summarize that the MEEC presents a larger

number of local minima in comparison to the

AWGN case and, by promoting some adjustments

like reducing the SNR level or changing the type

of source, we note a ‘Gaussianization’ effect that

smooths the entropy surface – in a very similar way

of that observed in the AWGN scenario.

The next step involves the comparison of the

presented results to the entropy estimator for the

AWIN scenario. In order to do so, we consider the

discrete source (σ2
g = 0) and the previous minimum-

phase channel. In addition, it is assumed that the

entropy estimator has at disposal 2500 samples of

the error signal e(n) and that the SNR level is of 13
dB. Figures 19(a) and 19(b) illustrate the surfaces of

the estimated entropy for the kernel sizes σ2
ker = 1

and σ2
ker = 0.01, respectively.
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Fig. 19. Surfaces of the error entropy estimator as a function of the

kernel size considering the second scenario.

It is possible to notice from Figure 19 that the

action of the kernel size strictly follows the indi-

cated pattern discussed in Section IV-B1 for the
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AWGN case (Figure 11), i.e., for kernel sizes close

or larger than unity, the entropy surface becomes

smoother while the global optimum at the origin

vanishes; on the other hand, for small kernel sizes,

the estimated entropy surface becomes much alike

the theoretical entropy for discrete sources. We can

also say that changing the SNR levels also leads to

results that resemble those obtained for the AWGN

case. As an example, for the SNR of 20 dB, the

estimated entropy surfaces follows the same general

tendencies of that of Figure 13 – and, for that

reason, these figures are omitted from this work.

2) Correntropy: Following the sequence of the

analysis, we now focus on the MCC for a scenario

with the impulsive noise and the discrete source.

We start by analyzing the effect of the kernel size

assuming three cases: σ2
ker equal to 0.5, 0.1 and

0.01. For each case, we obtained the corresponding

theoretical correntropy surfaces, as displayed in

Figure 20, for the SNR of 13 dB.

It is possible to note from Figures 20(a) and

20(b) that the presence of AWIN is practically

indistinguishable to the case when the noise is

the AWGN – since there is great resemblance to

the Figures 14(a) and 14(b). Notwithstanding, in

Figure 20(c) (for σ2
ker = 0.01), other peaks arise

on the theoretical correntropy surface that do not

match the ones observed in the AWGN case (Figure

14(c)). This indicates that correntropy increases its

sensibility – e.g., to the noise effect – only when

the kernel size σ2
ker assumes relatively small values.

In that sense, it is an important task to evaluate the

quality of the observed solutions for different kernel

sizes from the standpoint of the problem of channel

equalization. This will be done in Section IV-C3 in

terms of the theoretical probability of error.

The effect of the SNR level on the theoretical

correntropy surface for the AWIN is also a worthy

study case. As in the AWGN scenario, we consid-

ered the SNR values of 5 and 20 dB (and a kernel

size of σ2
ker = 0.01) to illustrate the analysis. Figure

21(a) shows the obtained correntropy surface and

its associated contours for the SNR level equal to 5
dB. We can notice that, differently from the AWGN

case, the peak located near the Wiener solution is

not the preferred solution by the MCC, but the peak

located at the vicinity of w = [0.60]T . Nevertheless,

if we continue to decrease the SNR level, the peak

located near the Wiener solution becomes more

pronounced and the situation becomes similar to the

(a) σ2
ker = 0.5

(b) σ2
ker = 0.1

(c) σ2
ker = 0.01

Fig. 20. Surfaces of the theoretical correntropy as a function of the

kernel size considering an SNR of 13 dB for the second scenario.

The asterisk (*) indicates the position of the Wiener solution.

AWGN case. For a SNR level of 20 dB, the noise

effect is weakened and the correntropy surface is

very similar to that presented in Figures 15(c) and

15(d) – for this reason, we opted for their omission.

At last, to analyze the estimated correntropy cost

function, we present in Figure 22 the surfaces for

the SNR level of 13 dB and the kernel sizes σ2
ker =

0.05 and σ2
ker = 0.01. The correntropy values were

estimated from 2500 samples of the error signal.

As can be viewed in Figure 22, the smoothing

pattern observed by decreasing/increasing σ2
ker in

the theoretical correntropy is also present in the

estimated correntropy – moreover, their surfaces
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(a) SNR = 5 dB
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(b) SNR = 5 dB

Fig. 21. Surface and contour of the theoretical correntropy for

SNR = 5 dB considering σ2
ker = 0.01. The asterisk (*) indicates

the position of the Wiener solution.
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Fig. 22. Surfaces associated with the correntropy estimator as a

function of the kernel size considering the second scenario.

also tend to be similar. It is also possible to note the

emergence of local optima solutions different from

the Wiener solution (as observed in Figure 20(c)).

3) Probability of Error: Under the same assump-

tions made for the AWGN scenario, we evaluate

the performance of the solutions obtained by each

criterion for the AWIN case in terms of the analyti-

cal probability of error Pe. The obtained results for

the solutions of the Wiener filter, the MEEC and

MCC – as well as the lowest Pe attainable (using

as cost function Equation (54), in the Appendix) –

are presented in Tables II and III for each scenario.

Observe that we have decided to present more than

one solution for the MEEC and MCC, since their

cost functions present several local optima in the

AWIN case. The solutions are ordered from the best

to the worst optima (top to bottom) according to the

corresponding criterion. For a better distinction, we

also included the angle θ = arctan(w1/w0) associ-

ated with each solution, which will be helpful since

a gain factor does not change the error probability

– i.e., the decision boundary remains the same.

TABLE II

PROBABILITY OF ERROR (Pe) ASSOCIATED WITH THE SOLUTIONS

OF MSE, MEEC AND MCC, CONSIDERING DIFFERENT VALUES

OF SNR AND σ2
ker .

SNR

Criterion Solution 13 dB 20 dB

Lowest Pe 1 0.0114 0.0011
Wiener 1 0.0117 0.0011

MEEC

1 0.0166 0.0057
2 0.0156 0.0055
3 0.0149 0.0014

MCC

σ2
ker = 0.1 1 0.0116 0.0012

σ2
ker = 0.01

1 0.0166 0.0057
2 0.0114 0.0012
3 0.0150 0.0014

As can be noted, the analytical values of the error

probability Pe shown in Table II are considerably

higher than that presented in Table I, which is a

direct consequence of the difficulty to deal with

the impulsive noise. Table III shows that none of

the solutions are equivalent and, in most cases, the

solutions provided by MEEC and MCC lead to Pe

values higher than those of the Wiener solution.

Exceptions are only made when the SNR value is

of 13 dB and for certain configurations of MCC: for

σ2
ker = 0.1, the MCC surface has a single maximum
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TABLE III

FILTER w AND ANGLE θ ASSOCIATED WITH THE SOLUTIONS OF MSE, MEEC AND MCC, CONSIDERING DIFFERENT VALUES OF SNR

AND σ2
ker .

SNR

13 dB 20 dB

Criterion Sol. w0 w1 θ(rad) w0 w1 θ(rad)
Lowest Pe 1 – – −0.3280 – – −0.4502

Wiener 1 0.8503 −0.3572 −0.3977 0.8997 −0.3930 −0.4118

MEEC

1 0.6105 0.0135 0.0221 0.6215 0.0035 0.0056

2 0.9825 −0.0025 −0.0025 0.9965 0 0

3 0.7255 −0.4305 −0.5355 0.7325 −0.4390 −0.5399

MCC

σ2
ker = 0.1 1 0.8705 −0.3550 −0.3872 0.8855 −0.3635 −0.3895

σ2
ker = 0.01

1 0.6120 0.0145 0.0237 0.6210 0.0045 0.0057

2 0.9695 −0.3640 −0.3592 0.9950 −0.3725 −0.3582

3 0.7280 −0.4340 −0.5376 0.7340 −0.4390 −0.5390

– Figure 20(b) – very close to Wiener solution

(note the angle θ proximity) with associated Pe of

0.0116; for σ2
ker = 0.01, the (second) maximum

w = [0.9695 − 0.3640]T leads to Pe = 0.0114,

which is the solution that best approximates the

lowest Pe, but is not equivalent – note that its angle

θ is in the middle of the range between the angles

of the Wiener solution and the lowest Pe. For the

SNR of 20 dB, the solutions of MEEC and MCC

lead to higher Pe and angles more distant than those

associated with the lowest Pe.

As discussed earlier in the AWGN scenario, the

most promising solutions lie in the vicinity of the

Wiener solution, and, as shown by Table III this

also is the case for the AWIN scenario for the

solutions of the MEEC and MCC. However, from

the results of both SNR of 13 and 20 dB, we

note that there is no specific case or solution for

the MEEC and MCC that is more suitable to the

problem of channel equalization in place of the

Wiener solution as a generic tool to deal with the

diverse and variable range of SNR levels present in

communication scenarios.

D. Third Specific Scenario: K > 2

The previous sections were devoted to the study

of the ITL criteria considering cases where the

equalizer had only two coefficients (K = 2). This

restriction allowed us to visualize the surfaces of the

theoretical error entropy and correntropy, as well

as of their kernel-based estimators, enabling the

analysis of their behavior as a function of the SNR

and/or of the kernel size, as well as the identification

of the optimum solution of each criterion and,

finally, the comparison of the performance offered

by these solutions with that obtained by the Wiener

filter. Now, we shall consider the design of an

equalizer containing a larger number of coefficients

according to the MEEC, MCC and MSE with the

purpose of assessing their performances.

Let H(z) = 0.2144 + 0.7505z−1 − 0.5361z−2 +
0.3216z−3 be the transfer function of the channel,

which receives sequences of BPSK symbols at the

input. A FIR filter composed of K = 5 coefficients

shall be employed as the equalizer considering a

SNR of 17 dB, an equalization delay of d = 1 and

the AWGN model of noise. We can safely restrict

the analysis to the AWGN case having in view the

central limit theorem [21]: since the filtered noise,

which is the basis for deriving the expression of the

error PDF, consists of the linear combination of K
noise samples (recall that the term related to g(n) is

not present when the source is discrete), as shown

in Section III-B, its PDF can be approximated by a

Gaussian function as K is increased. In other words,

as the length of the equalizer increases, the less im-

portant is the actual PDF of the noise for the signal

model, since the filtered noise can be represented in

the form of a Gaussian random variable. Therefore,

the analysis of the AWGN case encompasses, to a

certain extent, the scenarios considering other noise

models, such as the AWIN.

Since it is no longer possible to see the surfaces

of the error entropy and correntropy and there is
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the menace of the trivial solution, particularly in

the context of the error entropy, we adopted a

more elaborate strategy for determining the optimal

solutions of these criteria: (i) an immune-inspired

search algorithm, known as CLONALG [27], was

employed to spread a large repertoire of candidate

solutions throughout the search space and progres-

sively improve such solutions towards the optimal

regions; (ii) having the final set of candidate solu-

tions, we compute the norm of the gradient of the

error entropy or correntropy at each solution; (iii)

finally, among the solutions with the smallest values

of the gradient norm, the solution which yields the

best value for the error entropy or correntropy is

considered to be the optimum, as long as it does

not correspond to the origin.

After determining the optimal solutions of the

ITL criteria, we evaluated the performances of the

corresponding equalizers in terms of the analytical

probability of error, whose values are displayed

in Table IV along with those associated with the

Wiener solution. Additionally, we show in Table

V the optimum filter coefficients obtained by each

criterion.

TABLE IV

PROBABILITY OF ERROR (Pe) ASSOCIATED WITH THE OPTIMAL

SOLUTIONS OF MSE, MEEC AND MCC CONSIDERING

DIFFERENT VALUES OF σ2
ker .

SNR

Criterion 17 dB

Wiener 4.23× 10−5

MEEC 4.26× 10−5

MCC
σ2
ker = 0.05 4.48× 10−5

σ2
ker = 0.01 4.18× 10−5

TABLE V

OPTIMUM COEFFICIENTS ASSOCIATED WITH THE MSE, MEEC

AND MCC CONSIDERING THE THIRD SCENARIO.

Criterion

Coefficients Wiener MEEC
MCC

σ2
ker = 0.05 σ2

ker = 0.01
w0 1.015 1.015 0.9770 0.9199
w1 0.6933 0.6951 0.6776 0.6249
w2 0.1049 0.1057 0.1054 0.0937
w3 −0.1631 −0.1629 −0.1564 −0.1472
w4 −0.1260 −0.1261 −0.1222 −0.1133

The results shown in Table IV indicate that

the performances associated with each criterion

are relatively similar. For instance, the optimum

solution offered by the MEEC is quite similar to

the Wiener solution, as indicated in Table V, and

the corresponding probabilities of error are almost

equivalent, being the performance of the Wiener

solution slightly superior to that obtained by the

MEEC solution.

Interestingly, the best and the worst performances

are related to the MCC: when σ2
ker = 0.01, the

probability of error obtained by the MCC solution is

slightly smaller than that associated with the Wiener

solution; on the other hand, when σ2
ker = 0.05, the

MCC solution reaches a slightly worse value for the

probability of error. The reason behind these results

can be observed in Figure 23, which presents the

shape of the PDF of the error signal considering

the Wiener and the MCC solutions.
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Fig. 23. PDFs of the error signal associated with the Wiener filter

and the MCC optimum solution considering σ2
ker = 0.05 and σ2

ker =
0.01.

As we can notice, the error PDF associated with

the MCC using σ2
ker = 0.01 achieves a significantly

higher peak at the origin and is also narrower than

the error PDF related to the Wiener solution in

the region where the magnitude of the error values

are below 0.5. Having in view the performances

verified in Table IV, it is possible to say that these

characteristics counterbalance the larger tail of the

error PDF associated with the MCC and, ultimately,

lead to the slightly smaller value of the probability

of error.

However, if σ2
ker = 0.05, even though the peak at

the origin is also higher than that associated with the

Wiener solution, it is not sufficient to compensate

the slower decay of the error PDF in the regions

close to the tails, which may be the factor causing

the small deterioration in the probability of error
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when compared with the value obtained by the

Wiener solution.

V. CONCLUSIONS

In this work, we performed an analysis - in the

context of linear channel equalization – of two cri-

teria central to the theory of supervised information

theoretic learning, those of minimum error entropy

(MEEC) and maximum correntropy (MCC). The

work brought a number of original contributions that

allowed a clearer view of the potential and of the

drawbacks of both approaches to be reached:

• A derivation of the exact cost functions in the

case of interest. This allowed the question of

statistical estimation (e.g. via kernel methods)

to be separated from the inherent characteristics

of each criterion. This derivation is explicitly

shown for both Gaussian and impulsive addi-

tive white noises for linear FIR equalizers.

• A detailed discussion between the points

of contact between the aforementioned exact

derivations and the data-driven canonical cost

functions based on Parzen window estimation.

• An analysis of the cost functions of both

criteria in the combined channel + equalizer

space. This space, in which the solutions of

interest are known a priori (they are zero-

forcing receivers), is important in revealing the

consistency of any adaptive criterion. For in-

stance, the existence of spurious minima in this

space (which occurs for some Bussgang meth-

ods [20]) indicates that the algorithm might

not have a satisfactory degree of robustness.

With respect to the MEEC, it is shown that

it may present undesirable solutions as global

optima for the case of discrete sources, whereas

it is more robust when continuous sources are

employed. The MCC, albeit also more suited to

the case of continuous sources, is more robust

that the MEEC in terms of the quality of the

verified optima.

• A similar analysis in the equalizer parameter

space, including different noise models, that

raises points of contact between the use of

Gaussian-based Parzen window estimators and

the effect of additive noise and reveals draw-

backs associated with the MEEC, for discrete

sources, insofar as the null solution is consid-

ered. More robustness is obtained, once more,

if continuous sources are adopted.

• Finally, a careful study including Wiener and

minimum probability of error solutions is car-

ried out for distinct noise levels, which indi-

cates that, in some cases, the use of ITL leads

to solutions with a better symbol error rate than

those obtained with the classical mean squared

error paradigm.

As perspectives for future works, we may point

out (i) a theoretical analysis regarding the use of

Shannon’s entropy and (ii) the extension of the

study to the unsupervised scenario, starting with

a prediction-based approach [20], considering both

the MEEC and the MCC, followed by an analysis

of blind ITL criteria, such as the blind counterparts

of entropy and correntropy, as well as those based

on the notion of PDF matching [28].

APPENDIX

DERIVATION OF THE THEORETICAL

PROBABILITY OF ERROR

Considering the 2-PAM modulation, the proba-
bility of error, denoted by Pe, can be expressed as
follows:

Pe = P (e|s(n− d) = +1)P (s(n− d) = +1)

+ P (e|s(n− d) = −1)P (s(n− d) = −1). (42)

The decision rule of the equalizer is given by

ŝ(n − d) = sign(y(n)). Thus, assuming that the

transmitted symbol we wish to recover is s(n −
d) = +1, a decision error occurs if y(n) < 0.

Analogously, if s(n − d) = −1, the decision is

incorrect if y(n) > 0. Hence, by expressing the

conditional probabilities of error as a function of

the equalizer output y(n), we obtain:

Pe =
1

2
P (y(n) < 0|s(n− d) = +1)

+
1

2
P (y(n) > 0|s(n− d) = −1). (43)

In Section III-B, we have derived the expressions

of the conditional PDFs fY (Y = y|s(n− d) = +1)
and fY (Y = y|s(n− d) = −1). Having these PDFs

at hand, the probability of error can be determined

by the following equation:

Pe =
1

2

∫ 0

−∞
fY (y|s(n− d) = +1)dy

+
1

2

∫ ∞

0

fY (y|s(n− d) = −1)dy. (44)
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By substituting (14) and (15) in (44), we obtain:

Pe =
1

2K+D−1

(

∑

i∈SD+

∫ 0

−∞

fηf
(y −wTHsi(n))dy

+
∑

i∈SD−

∫ ∞

0

fηf
(y −wTHsi(n))dy

)

, (45)

where η′(n) is given by (11). However, in the

context of the 2-PAM, the first term in (11) does

not exist.

AWGN

In the case of the AWGN model, the filtered noise
η′(n) is a Gaussian random variable with zero mean
and variance σ2

ηf
= wTσ2

ηw. This means that the

conditional probability P (y(n) < 0|s(n−d) = +1),
denoted as Py|s+ , can be calculated by the following
expression:

Py|s+ =
∑

i∈SD+

1

2K+D−2

×
∫ 0

−∞

1
√

2πσ2
ηf

exp

(

− (y −w
T
Hsi(n))

2

2σ2
ηf

)

dy.

Let x = y−w
T
Hsi(n)

σηf

. By expressing the integral in

terms of the variable x and exploring the symmetry
of the Gaussian function, we obtain:

Py|s+ =
∑

i∈SD+

1

2K+D−2

×
∫ ∞

wT Hsi(n)
σηf

1√
2π

exp

(

−x2

2

)

dx. (46)

Using the Q-function, defined as

Q(x) , P (X > x) =
1√
2π

∫ ∞

x

exp

(

−t2

2

)

dt,

(47)

the conditional probability Py|s+ is determined as

follows:

Py|s+ =
∑

i∈SD+

1

2K+D−2
Q

(

wTHsi(n)

σηf

)

. (48)

The same procedure can be employed to derive

the conditional probability P (y(n) > 0|s(n − d) =
−1), which is given by the following equation:

Py|s− =
∑

i∈SD−

1

2K+D−2
Q

(−wTHsi(n)

σηf

)

. (49)

Therefore, the probability of error can be written
as:

Pe =
1

2

∑

i∈SD+

1

2K+D−2
Q

(

wTHsi(n)

σηf

)

+
1

2

∑

i∈SD−

1

2K+D−2
Q

(−wTHsi(n)

σηf

)

. (50)

Finally, using the variable β, defined in (23), the

theoretical probability of error associated with the

equalizer in the AWGN case is given by:

P (e) =
1

2K+D−1

2K+D−1−1
∑

i=0

Q

(

βi

wTHsi(n)

σηf

)

.

(51)

AWIN

For this type of noise, the PDF of the filtered
noise is given by Equation (32). Hence, the condi-
tional probability P (y(n) < 0|s(n − d) = +1) can
be calculated as follows:

Py|s+ =
∑

i∈SD+

1

2K+D−2

×
∫ 0

−∞

(

p
2
Gw2

0α
2σ2

1+w2
1α

2σ2
1
(y −w

T
Hsi(n))

+p(1− p)Gw2
0α

2σ2
1+w2

1α
2σ2

2
(y −w

T
Hsi(n))

+(1− p)pGw2
0α

2σ2
2+w2

1α
2σ2

1
(y −w

T
Hsi(n))

+(1− p)2Gw2
0α

2σ2
2+w2

1α
2σ2

2
(y −w

T
Hsi(n))

)

dy.

The four integrals involved in the computation of
P (y(n) < 0|s(n − d) = +1) can be represented
in terms of the Q-function, so that the conditional
probability can be determined by the following
equation:

Py|s+ =
1

2K+D−2

∑

i∈SD+

p2Q

(

wTHsi(n)
√

w2
0α

2σ2
1 + w2

1α
2σ2

1

)

+p(1− p)Q

(

wTHsi(n)
√

w2
0α

2σ2
1 + w2

1α
2σ2

2

)

(1− p)pQ

(

wTHsi(n)
√

w2
0α

2σ2
2 + w2

1α
2σ2

1

)

(1− p)2Q

(

wTHsi(n)
√

w2
0α

2σ2
2 + w2

1α
2σ2

2

)

. (52)

By employing a similar approach, the conditional
probability P (y(n) > 0|s(n − d) = −1) can be
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expressed as follows:

Py|s− =
1

2K+D−2

∑

i∈SD−

p2Q

(

− wTHsi(n)
√

w2
0α

2σ2
1 + w2

1α
2σ2

1

)

+p(1− p)Q

(

− wTHsi(n)
√

w2
0α

2σ2
1 + w2

1α
2σ2

2

)

(1− p)pQ

(

− wTHsi(n)
√

w2
0α

2σ2
2 + w2

1α
2σ2

1

)

(1− p)2Q

(

− wTHsi(n)
√

w2
0α

2σ2
2 + w2

1α
2σ2

2

)

. (53)

Therefore, by combining the two conditional
probabilities according to (43), we obtain the exact
expression of the probability of error considering
the model:

P (e) =
1

2K+D−1

NS−1
∑

i=0

p
2
Q

(

βi
w

T
Hsi(n)

√

w2
0α

2σ2
1 + w2

1α
2σ2

1

)

+p(1− p)Q

(

βi
w

T
Hsi(n)

√

w2
0α

2σ2
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1α
2σ2

2

)

+(1− p)pQ

(

βi
w

T
Hsi(n)

√

w2
0α

2σ2
2 + w2

1α
2σ2

1

)

+(1− p)2Q

(

βi
w

T
Hsi(n)

√

w2
0α

2σ2
2 + w2

1α
2σ2

2

)

. (54)
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