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Abstract— Consider an output process defined as the sum ofM
ergodic identically distributed input random processes. Moreover,
assume that some output statistics of interest can be found as
explicit functions of M with no constraints for M real. Then,
extending the investigation of those statistics for non-integer
values of M may be desired, mainly if the output process is
in effect an idealized approximate model of a realistic random
phenomenon. Within this context and for simulation purposes,
this work presents a generic, efficient method for generating a
sample sequence matching the output statistics for a given non-
integer M . To the best of the authors’ knowledge, no solutions
to the problem addressed here exist yet.

Index Terms— Simulation, random processes, statistics for
communications.

I. I NTRODUCTION

I N several areas of knowledge, such as engineering, physics,
mathematics, and economics, some processes frequently

arise as a sum ofM ergodic identically distributed input ran-
dom processes. These output processes are usually investigated
in terms of certain statistical functions of interest, suchas
the probability density function (PDF) and the autocorrelation
function (ACF). Sometimes, these metrics can be written as
explicit functions of M and impose no mathematical con-
straints forM real, although, by construction,M is discrete
(integer). Under these circumstances, it may be desired to
extend the use of the output statistical functions for non-integer
values ofM . In effect, the output process is often an idealized
approximate model for a realistic stochastic phenomenon.
Hence, allowing forM non-integer in the resulting statistics
is an algebraic artifice which reduces the limitations of the
model in describing the true process.

Various examples of the above statistical scenario are re-
ported in the literature. For instance, in wireless communica-
tions, the fading phenomena affecting the transmitted signal
are commonly modeled as the summation of multipath signal
clusters, with non-integer numbers of clusters having been
found in practice [1], [2] (and the references therein). As
the theoretical counterpart of these practical verifications,
some fading models incorporate the number of clusters as a
generalized real-valued distribution parameter [3]. Similarly,
in the study of high-frequency ultrasonic backscattering from
in vivo human skin, the signal received by an ultrasound
transducer can be modeled as a phasor sum of the returns
from several scatterers [4]. This model is presented in [4] as an
approximate description for the realistic scattering occurring
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continuously throughout the surface and not at a discrete
number of scatterers.

As illustrated above, there is often a need for using the
output statistical expressions to establish the description of
a generalized output process with non-integerM . Of course,
such an output process isnon-realizable via the original output
definition as the summation ofM input processes, which is
meaningless forM non-integer. Indeed, the generalized output
process lacks a realization model, although certain statistical
functions of interest are specified. Thus, simulating such anon-
realizable process, i.e. generating a sample sequence whose
statistics match the output statistical functions for a given non-
integerM , poses a challenging task.

In this work, we present a generic method to simulate the
above-defined class of non-realizable processes. To this end,
a novel simulation paradigm is introduced. The optimal solu-
tion is envisaged, but it presents a prohibitive computational
cost. Alternatively, a simple, effective suboptimal solution is
proposed. The corresponding results proved very satisfactory
in all of the cases investigated by the authors, as shall be
seen from an application example. To the best of the authors’
knowledge, no solutions to the problem addressed here have
been published in the open literature.

II. T HE PROBLEM

In the following, a discrete-time simulation problem is for-
mulated and solved. Notwithstanding, because the simulation
of continuous-time processes is also attained in a discrete-
time fashion, the solution derived here applies to both types
of processes (discrete- and continuous-time).

Consider M ergodic identically distributed discrete-time
input random processesXi[n], i = 1, . . . , M , and an output
processY [n] defined as

Y [n] =
M
∑

i=1

Xi[n] (1)

Let xi[n] and y[n] denote sample sequences ofXi[n] and
Y [n], respectively. Assume that, by knowing the joint statistics
of the input processes, certain output statistics of interest
can be found as explicit functions ofM . For instance, let
the PDF fY (y; M) of Y [n] and its ACF1 RY (k; M) ,

E{Y [n + k]Y [n]} be the referred output statistics (E{·}
denotes expectation). In addition, assume thatfY (y; M) and
RY (k; M) impose no mathematical constraints forM real.

As previously discussed, for non-integer values ofM , it
may be desired to usefY (y; M) and RY (k; M) to estab-
lish the statistics of a generalized output process. Such a

1The ACF has been defined here according to [5].
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generalization enhances the output model if, for instance,it
constitutes an idealized mathematical description which in
effect only approximates the behavior of a realistic random
phenomenon. Nevertheless, forM non-integer, the original
output formulation (1) is meaningless. In other words, the
generalized output process introduced here lacks a realization
model, although certain statistical functions of interestare
specified. For this reason, such a process shall be callednon-
realizable.

Within this context and for simulation purposes, consider
the following problem:

How to simulate the above-defined class of non-
realizable processes, i.e. how to generate anN -
sample output sequencey[n] matching fY (y; M)
andRY (k; M) for a given non-integerM?

III. T HE APPROACH

In this section, we introduce a novel simulation paradigm
in order to solve the above problem. First, note that, forM
integer, the output sample sequence can be obtained directly
via (1), i.e., theM input sequencesxi[n] can be generated
and then summed to yieldy[n]. This is a standard simulation
approach, which uses the realization model of the process
to generate simultaneously the correct samples in the correct
order. However, forM non-integer, (1) makes no sense and
a realization model no more exists. Accordingly, the standard
approach does not apply. To circumvent this impasse, we shall
decompose the simulation task into two subtasks:

1) To obtainN appropriate samples in order to compose
the sequence

2) To arrange (order) those samples appropriately
This decomposition establishes a novel simulation approach,
which shall be used next in order to solve the problem stated
in section II.

IV. T HE OPTIMAL SOLUTION

Implementing the proposed approach requires solving the
two subtasks above. In the following, we address each of them.

A. The First Subtask (Static Behavior)

Note that the first subtask concerns the histogram (static
behavior) of y[n], which, from ergodicity, must approach
fY (y; M) for N sufficiently large. Thus, for all practical pur-
poses (largeN ), drawingN samples according tofY (y; M)
provides the appropriate elements to composey[n]. This can
be accomplished by well-established methods of generating
random variables with a specified PDF, such as the percentile
transformation method or the rejection method [5].

B. The Second Subtask (Dynamic Behavior)

The second subtask is rather complex. It concerns the
dynamics of the process, characterized here by the ACF.
Note that rearranging theN samples obtained in the first
subtask does not alter the realized PDF but the realized ACF.
Unfortunately, to the best of the authors’ knowledge, there
are no analytical tools to find the appropriate arrangement

in a direct manner. Indeed, this is a quite new problem
which has not been previously addressed in the literature.
Accordingly, in order to find which arrangement provides the
best fit toRY (k; M), all theN ! possible arrangements should
be investigated and compared under some deviation measure.
This exhaustive search provides the optimal solution to the
problem but, for practical purposes (largeN ), it would require
a prohibitive computational effort. For instance,N = 104

leads to more than2.8 × 1035659 sample arrangements. For
N = 105, this number exceeds2.8 × 10456573!

V. A SIMPLE SUBOPTIMAL SOLUTION

In view of the prohibitive computational cost of the optimal
solution, we present in this section an alternative, simple
suboptimal method for solving the second subtask.

First, note that, given a set ofN samples, a certain arrange-
ment of them can be specified by aN -length vector whose
ith element gives the statistical rank2 of the ith element in the
arrangement. In the following, this vector is calledstatistical
rank vector. For instance, withN = 4, the statistical rank
vectorV = [3, 2, 4, 1] (rank in ascending order), applied on the
sample setS = {5.2, 7.3, 0.5, 3.7}, leads to the arrangement
A = [5.2, 3.7, 7.3, 0.5]. Let us introduce the notationA =
R(S; V ), denotingA as the result of a rank operatorR(·; ·)
applied onS given the rank information ofV .

From the above discussion, the second subtask can be
thought of as finding a suitableN -length statistical rank
vector which establishes the appropriate arrangement for the
N samples generated in the first subtask. In principle, as said
before, an exhaustive search over all theN ! possible statistical
rank vectors would be required to determine the optimal one.

Alternatively, as a suboptimal solution, we propose to
arrange theN output samples according to the statistical rank
vector vi[n] of a N -sample sequencexi[n] of any one of
the input processes. This proposal finds an heuristical basis
on the symmetry (identically distributed inputs) and linearity
(summation of inputs) of the original output model (1). We
reinforce that, although the proposed suboptimal solutionhas
no exact analytical basis, it provides very good results, as
shall be seen from an application example. Moreover, the
complexity of this alternative approach is virtually negligible
as compared to that of the optimal solution given in the last
section. The cost now is to order a sample set according to a
rank vector, which is indeed very simple!

In short, the following suboptimal method is proposed in
order to generate anN -sample output sequencey[n] matching
fY (y; M) andRY (k; M) for a given non-integerM :

• Draw N samples of a random variable following
fY (y; M), obtaining a sample set̃y[n]

• Generate anN -sample sequencexi[n] for any one of the
input processes

• Arrange the samples of̃y[n] according to the sta-
tistical rank vectorvi[n] of xi[n], obtaining y[n] =
R(ỹ[n]; vi[n])

2The statistical rank is the ordinal number of a value in a listarranged in
a specified order.
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It is worthy noting that, although in section II the ACF has
been adopted as the dynamic metric of interest, the simulation
method derived here clearly applies to any other high-order
statistical metric or even to a set of high-order statistics.

VI. A N APPLICATION EXAMPLE

In this section, in order to illustrate the use and the efficiency
of the simulation method proposed in section V, an application
example is presented. ConsiderM independent zero-mean
white Gaussian processes each of which filtered through a
second-order lowpass digital Butterworth filter with cutoff
frequency0.1 and transfer functionH(z) [5]

H(z) =
0.0201 + 0.0402z−1 + 0.0201z−2

1.0000− 1.5610z−1 + 0.6414z−2
(2)

Let Ui[n], i = 1, 2, . . . , M , be the outputs of the filters. Define
Xi[n] = U2

i [n] as the input processes in (1). The resultant
system outputY [n] can be shown to be gamma distributed

pY (y; M) =
yα−1

Γ(α)βα
exp(−y/β) (3)

whereα = M/2 and β = 2E{X2

i } are the shape and scale
parameters, respectively. The ACFRY (k; M) of Y [n] can be
obtained as

RY (k; M) = MRXi
(k) + M(M − 1)R2

Ui
(0) (4)

whereRUi
(k) and RXi

(k) are the autocorrelation functions
of Ui[n] and Xi[n], respectively. Since the random variables
Ui[n + k] and Ui[n] are jointly normal [5],RXi

(k) is found
as [5]

RXi
(k) = R2

Ui
(0) + 2R2

Ui
(k) (5)

Replacing (5) into (4) yields

RY (k; M) = M
(

2R2

Ui
(k) + MR2

Ui
(0)

)

(6)

whereRUi
(k) is given by [5]

RUi
(k) =

1

2π

∫ π

−π

|H(ejω)|2ejkωdω (7)

with H(·) as in (2). (Evaluating (7) requires numerical inte-
gration.) Note that output statistics (3) and (6) are explicit
functions of M and no mathematical constraints exist for
allowing for non-integerM .

Now, following the steps summarized at the end of section
V, N = 106 samples according to (3) have been generated for
some arbitrarily chosen non-integer values ofM , obtaining
the sample sets̃y[n]. An N -sample sequencexi[n] of any one
of the input processes has been also generated, by filtering
a Gaussian sequence throughH(z). Finally, the statistical
rank vector vi[n] of xi[n] has been calculated and then
used to order the initial output sample setỹ[n], yielding
y[n] = R(ỹ[n]; vi[n]).

Fig. 1 shows the autocorrelation ofy[n] against the desired
exact autocorrelation function given by (6). (The discrete
points have been joined for visualization purposes.) The dif-
ferences are seen to be minimal. AsM increases, the fitting
becomes slightly poorer for lowk. A substantial number
of other application examples (not shown here) have been
investigated by the authors of this work. The corresponding
results proved indeed very satisfactory.
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Fig. 1. Autocorrelation function ofY [n] (exact: solid; simulated: dashed).

VII. C ONCLUSIONS

This work addressed a class of output processes originally
defined as the sum ofM ergodic identically distributed input
random processes. In particular, certain output statistics of
interest were assumed to be found as explicit functions of
M with no constraints forM real. Then, allowing forM
non-integer in the resulting statistics is mainly important if
the output process under study is an idealized approximate
description for a realistic stochastic phenomenon. Withinthis
context and for simulation purposes, this work presented a
generic framework to generate a sample sequence whose
realized statistics match the output statistical functions for
a given non-integerM . To this end, a novel simulation
paradigm was introduced. The optimal solution was envisaged,
but it presents a prohibitive computational cost. Alternatively,
a simple, effective suboptimal solution was then proposed.
The corresponding results proved very satisfactory in all of
the cases investigated by the authors. To the best of the
authors’ knowledge, no solutions—optimal or suboptimal—
to the problem addressed here have been published in the
literature.
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