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Simulating Non-Realizable Processes
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Abstract— Consider an output process defined as the sum dff  continuously throughout the surface and not at a discrete
ergodic identically distributed input random processes. Moreover, number of scatterers.
assume that some output statistics of interest can be foundsa As illustrated above, there is often a need for using the

explicit functions of M with no constraints for M real. Then, tout statistical . t tablish the d i tif
extending the investigation of those statistics for non-iteger output staustical expressions 10 establis e desonpt

values of M may be desired, mainly if the output process is @ generalized output process with non-integéd. Of course,
in effect an idealized approximate model of a realistic randm such an output processnsn-realizable via the original output

phenomenon. Within this context and for simulation purposs, definition as the summation a¥/ input processes, which is
this work presents a generic, efficient method for generatig a  eaningless fot/ non-integer. Indeed, the generalized output

sample sequence matching the output statistics for a givenon- L o
integer M. To the best of the authors’ knowledge, no solutions process lacks a realization model, although certain &ttis

to the problem addressed here exist yet. functions of interest are specified. Thus, simulating sucbra
. . - realizable process, i.e. generating a sample sequence whose
Index Terms— Simulation, random processes, statistics for L LS . .
communications. statistics match the output statistical functions for aginon-

integer M, poses a challenging task.
In this work, we present a generic method to simulate the
|. INTRODUCTION above-defined class of non-realizable processes. To tlis en

N several areas of knowledge, such as engineering, phys4l0vel simulation paradigm is introduced. The optimal solu
I mathematics, and economics, some processes frequeH@{ is envisaged, but it presents a prohibitive computetio
arise as a sum af/ ergodic identically distributed input ran-Cost. Alternatively, a simple, effective suboptimal saltis
dom processes. These output processes are usually iratestigProPosed. The corresponding results proved very satsiact
in terms of certain statistical functions of interest, swah in all of the cases investigated by the authors, as shall be
the probability density function (PDF) and the autocotieta S€€N from an application example. To the best of the authors’
function (ACF). Sometimes, these metrics can be written ¥80Wledge, no solutions to the problem addressed here have
explicit functions of M and impose no mathematical conPeen published in the open literature.
straints for M real, although, by constructiod/ is discrete
(integer). Under these circumstances, it may be desired to Il. THE PROBLEM

extend the use of the output statistical functions for maeger | the following, a discrete-time simulation problem is-for

values ofM. In effect, the output process is often an idealizeg, jated and solved. Notwithstanding, because the sinonlati
approximate model for a realistic stochastic phenomenqg. continuous-time processes is also attained in a discrete
Hence, allowing forM/ non-integer in the resulting statistics;; e fashion, the solution derived here applies to both gype
is an algebraic artifice which reduces the limitations of thg; processes (discrete- and continuous-time).
model in describing the true process. _ Consider M ergodic identically distributed discrete-time

Various examples of the above statistical scenario are fRput random processex;[n], i = 1,..., M, and an output
ported in the literature. For instance, in wireless comroami processY [n] defined as
tions, the fading phenomena affecting the transmittedasign
are commonly modeled as the summation of multipath signal
clusters, with non-integer numbers of clusters having been Yin] = ZXZ'[”] 1)
found in practice [1], [2] (and the references therein). As 4
the theoretical counterpart of these practical verificatjo Let x;[n] and y[n] denote sample sequences Xf[n] and
some fading models incorporate the number of clusters ad’ &, respectively. Assume that, by knowing the joint statsstic
generalized real-valued distribution parameter [3]. &nhi, of the input processes, certain output statistics of istere
in the study of high-frequency ultrasonic backscatterirggrf can be found as explicit functions af/. For instance, let
in vivo human skin, the signal received by an ultrasourtie PDF fy (y; M) of Y[n] and its ACE Ry (k; M) =
transducer can be modeled as a phasor sum of the retufH§ [n + k]Y[n]} be the referred output statisticE{-}
from several scatterers [4]. This model is presented in§4rm denotes expectation). In addition, assume thaty; M) and
approximate description for the realistic scattering edog Ry (k; M) impose no mathematical constraints faf real.

As previously discussed, for non-integer valuesidf it
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generalization enhances the output model if, for instaitce,in a direct manner. Indeed, this is a quite new problem
constitutes an idealized mathematical description whith which has not been previously addressed in the literature.
effect only approximates the behavior of a realistic randoAccordingly, in order to find which arrangement provides the
phenomenon. Nevertheless, fd8f non-integer, the original best fit toRy (k; M), all the N! possible arrangements should
output formulation (1) is meaningless. In other words, tHee investigated and compared under some deviation measure.
generalized output process introduced here lacks a réaliza This exhaustive search provides the optimal solution to the
model, although certain statistical functions of interase problem but, for practical purposes (largyg, it would require
specified. For this reason, such a process shall be catied a prohibitive computational effort. For instanc#, = 10*
realizable. leads to more thar.8 x 1035%%° sample arrangements. For
Within this context and for simulation purposes, conside¥ = 10°, this number exceed&8 x 10456573
the following problem:

Hovx_/ to simulate the a_lbove—defined class of non- V. A SIMPLE SUBOPTIMAL SOLUTION
realizable processes, i.e. how to generate \én
sample output sequenggn] matching fy (y; M) In view of the prohibitive computational cost of the optimal
and Ry (k; M) for a given non-integef/? solution, we present in this section an alternative, simple
suboptimal method for solving the second subtask.
I1l. THE APPROACH First, note that, given a set @f samples, a certain arrange-

rL;qent of them can be specified byM-length vector whose
in order to solve the above problem. First, note that, fér 1th element gives the statistical r&néf the ith element in the

integer, the output sample sequence can be obtained yire(?g;in\?:cgfntl':g? :Egt;?]ic;w'vr\]l%h]t\? 'S_VZCtg:e'SSf;tlig?ctﬁ'f;l:‘k
via (1), i.e., theM input sequences;[n] can be generated . ' L

and then summed to yielgn]. This is a standard simulationveCtorV =13, 2’?’ 1] (rankiin asc}ending order), applied on the
. o sample setS = {5.2,7.3,0.5,3.7}, leads to the arrangement
approach, which uses the realization model of the procejs: 5.2,3.7,7.3,0.5]. Let us introduce the notatio —

to generate simultaneously the correct samples in the corr

order. However, forM non-integer, (1) makes no sense anﬁ(sf V), denotingA as the result of a rank operat@(:;-)
applied onS given the rank information of/.

a realization model no more exists. Accordingly, the statda F the ab di ) th d subtask b
approach does not apply. To circumvent this impasse, wé Sh[ﬁ| rohmt fe a ?vg_ ISCUSSIFI;ané\fel Se;?n ¢ f‘ut' asl cal? €
decompose the simulation task into two subtasks: ought of as Tinding a suitablev-iength statistical ran

. . . vector which establishes the appropriate arrangementor t
1) To obtainV appropriate samples in order to COMPOSE; samples generated in the first subtask. In principle, as said
the sequence . before, an exhaustive search over all ffiepossible statistical
2) To arrange (order) those samples appropriately rank vectors would be required to determine the optimal one.
This decomposition establishes a novel simulation apgroac Alternatively, as a suboptimal solution, we propose to

which shall be used next in order to solve the problem Statﬁﬂange theV output samples according to the statistical rank

in section II. vector v;[n] of a N-sample sequence;[n] of any one of
the input processes. This proposal finds an heuristicak basi
IV. THE OPTIMAL SOLUTION on the symmetryi¢lentically distributed inputs) and linearity
Implementing the proposed approach requires solving tf@mmation of inputs) of the original output model (1). We
two subtasks above. In the following, we address each of theminforce that, although the proposed suboptimal solutias
no exact analytical basis, it provides very good results, as
A. The First Subtask (Static Behavior) shall be seen from an application example. Moreover, the

Note that the first subtask concerns the histogram (Sta%%mplexny of this alternative approach is virtually negfile

behavior) of y[n], which, from ergodicity, must approachas c_ompared to that of_ the optimal solution given in the last
Fy(y: M) for N sufficiently large. Thus, for all practical IC)ur_sectlon. The cost now is to order a sample set according to a

poses (largeV), drawing N samples according t@y (y; M) rar|1k VﬁCt?r’thh'le 'S !ndeedbve?/ S|r|nplet!h di di
provides the appropriate elements to compgse. This can n St ort, the toat;;r/vmg SL: Opt'm"’tl method 1S protpcr)fe n
be accomplished by well-established methods of generati [gler to generate aN-sample output sequengg:] matching

random variables with a specified PDF, such as the percen ifelys M) and Ry (k; M) for a given non-integed/:

In this section, we introduce a novel simulation paradig

transformation method or the rejection method [5]. « Draw N samples of a random variable following
fy(y; M), obtaining a sample séfn|
B. The Second Subtask (Dynamic Behavior) « Generate arV-sample sequence [n] for any one of the

. input processes
The second subtask is rather complex. It concerns the, Arrange the samples ofj[n] according to the sta-

dynamics of the process, characterized here by the ACF. iisiical rank vectorv;[n] of a;[n], obtaining y[n] =
Note that rearranging thév samples obtained in the first R(§[n]; vi[n])

subtask does not alter the realized PDF but the realized ACF. o

Unfortunately*. to the best qf the authors’ KnOWIGdge* therezThe statistical rank is the ordinal number of a value in adisanged in
are no analytical tools to find the appropriate arrangemenspecified order.



190 JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 20, NO. 3, 2005

It is worthy noting that, although in section Il the ACF has
been adopted as the dynamic metric of interest, the siroulati
method derived here clearly applies to any other high-order
statistical metric or even to a set of high-order statistics 08

10

VI. AN APPLICATION EXAMPLE

In this section, in order to illustrate the use and the efficje 06
of the simulation method proposed in section V, an applbcati =’
example is presented. Considéf independent zero—meanQ? ol
white Gaussian processes each of which filtered through a

second-order lowpass digital Butterworth filter with ctitof

B T e (Rt R

[~0~——0~——0——0——Q———0——-0-~—-Q 00O

frequency0.1 and transfer functiort (z) [5] 02 )y —0.7428,1.2356,2.2198, 3.4164, 4.3272, 6.0222,9.0438 ]
0.0201 + 0.04022~! +0.0201 22 A
H(z) = = — )
1.0000 — 1.5610z—1 + 0.64142 o . L . L . L .
LetU;[n], i =1,2,..., M, be the outputs of the filters. Define 0 ° 10 1 20
X;[n] = U?[n] as the input processes in (1). The resultant k
system outpul’[n] can be shown to be gamma distributed
a—1 . . . . .
Fig. 1. Aut lation functi g t: solid; lated: dashed).
py (y: M) = F?a)ﬂa exp(—y/ﬁ) 3) ig utocorrelation function o¥ [n] (exact: solid; simulated: dashed)

wherea = M/2 and 3 = 2E{X?} are the shape and scale

parameters, respectively. The AGH (k; M) of Y[n] can be VIl. CONCLUSIONS
obtained as This work addressed a class of output processes originally

5 defined as the sum aff ergodic identically distributed input
Ry (k; M) = MRx, (k) + M(M — 1)Ry, (0) 4)  random processes. In particular, certain output stagishic
where Ry, (k) and Rx, (k) are the autocorrelation functionsinterest were assumed to be found as explicit functions of
of U;[n] and X;[n], respectively. Since the random variabled/ with no constraints forM/ real. Then, allowing forM
U;[n + k] and U;[n] are jointly normal [5],Rx, (k) is found non-integer in the resulting statistics is mainly impottén
as [5] the output process under study is an idealized approximate
Rx, (k) = R}, (0) + 2R (k) (5) description for a realistic stochastic phenomenon. Withia
context and for simulation purposes, this work presented a
generic framework to generate a sample sequence whose
Ry (k; M) = M (2R}, (k) + MR} (0)) (6) realized statistics match the output statistical functidar
a given non-integerM. To this end, a novel simulation
- paradigm was introduced. The optimal solution was envidage
Ry, (k) = i/ |H(ejw)|2ejk“’dw (7) butit presents a prohibitive computational cost. Alteiedy,
2r ) . a simple, effective suboptimal solution was then proposed.
with H(-) as in (2). (Evaluating (7) requires numerical inteThe corresponding results proved very satisfactory in &ll o
gration.) Note that output statistics (3) and (6) are eXplicthe cases investigated by the authors. To the best of the
functions of M and no mathematical constraints exist foauthors’ knowledge, no solutions—optimal or suboptimal—
allowing for non-integei\/. to the problem addressed here have been published in the
Now, following the steps summarized at the end of sectiditerature.
V, N = 10° samples according to (3) have been generated for
some arbitrarily chosen non-integer values Mdf, obtaining REFERENCES
the sample Setﬁ[n]. An N-sample Sequenc@[n] of any On.e [1] H. Asplund, A. F. Molisch, M. Steinbauer, and N. B. Meht&|lustering
of the input processes has been also generated, by filteringof scatterers in mobile radio channels—evaluation and iimagein
a Gaussian sequence througf(z). Fina||y, the statistical the COST259 directio_nal_channel model,” Broc. |EEE |nternational
rank vector Ul[n] of xl[n] has been calculated and theer] \c/:v?nlf?e.r%]rcaeuﬁnai?jmtrrug(e:?slc?r?? "A\Iivr\:y\s(iocrell(ll r?ﬁc())%zlle radio chanmedel,”

used to order the initial output sample sgt:], yielding IEEE Trans. Veh. Technol., vol. 40, no. 2, pp. 472-482, May 1991.
y[n] = R(ﬂ[n},vz[n]) [3] M. Nakagami, “The mdistribution - a general formula of intensity

: ; ; ; distribution of rapid fading,” inSatistical Methods in Radio Wave
Flg. 1 shows the autocorrelation gfn] against the desired Propagation, W. C. Hoffman, Ed. Oxford, England: Pergamon, 1960.

exact autocorrelation function given by (6). (The discretg] B. 1. Raju and M. A. Srinivasan, “Statistics of envelopihigh-frequency

points have been joined for visualization purposes.) The di ultrasonic backscatter from human skin in VivéEEEE Trans. Ultrason.,
. : s Ferroelect., Freg. Contr., vol. 49, no. 7, pp. 871-882, July 2002.

ferences are seen to be minimal. Aé increases, the fitting |5 A"papouiis and s, U. Pillabrobability, Random Variables and Sochastic

becomes slightly poorer for low:. A substantial number Processes, 4th ed. New York: McGraw-Hill, 2002.

of other application examples (not shown here) have been

investigated by the authors of this work. The corresponding

results proved indeed very satisfactory.

Replacing (5) into (4) yields

where Ry, (k) is given by [5]
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