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The Asymmetricaly — x Distribution
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Abstract— This paper specializes and parameterizes the gen- renders it more flexible. Of course, in situations in whichsi
eral result presented el_sewhere in the_ literature in order_to distributions included in it give good results a better figigen
propose, fully characterize, and investigate the Asymmetrical by the Asymmetricah — « Distribution. In addition, in many

n—« Distribution. It yields estimators for the involved parameters . . . . o .
and uses field measurements to validate the distribution. The Other situations in which these distributions give pooulss

Asymmetrical 1 — x Distribution includes, as special cases, @ good fit may be found through the Asymmetriepl-
important distributions such as Rayleigh, Rice, Hoyt, Nakagami- Distribution. More specifically, its non-monomodal feaur
g, and One-Sided Gaussian. The fact that the Asymmetrical finds applications in several circumstances, examples aftwh
n — r Distribution has one more parameter than the well-known 5. given in this paper.

distributions renders it more flexible. Of course, in situations in
which those distributions included in it give good results a better
fit is given by the Asymmetrical n — x Distribution. In addition,

in many other situations in which these distributions give poor
results a good fit may be found through the Asymmetricaly —
Distribution. More specifically, its non-monomodal feature finds
applications in several circumstances, examples of which are
given in this paper.

Il. THE GENERAL RESULT

In his classical paper [1], Nakagami departs from a very
general fading model and carries out a series of simplitioati
_Index Terms— Fading distributions, Rayleigh distribution, Rice  considered to be “sufficiently good enough for engineering
distribution, One-sided Gaussian distribution, Hoyt distribution. problems [1]", in order to arrive at the well-known Nakagami
m distribution. In the very general model, i.e. without layi
[. INTRODUCTION hold of the mentioned simplifications, the signal intensity
HE propagation of energy in a mobile radio environmer@&ny observing point is assumed to be composed of a sum
is characterized by incident waves interacting with sugf independent random phasors, subject that the in-phate an
face irregularities via diffraction, scattering, reflectj and quadrature components of the sum are normal, i.e., thenster
absorption. The interaction of the wave with the physic&gtisfy the conditions of the Central Limit Theorem. These
structures generates a continuous distribution of pastales, components, therefore, adependent Gaussian variables with
with these waves showing amplitudes and phases varyidiferent non-zero means and unequal variances. By chgosin
according to the physical properties of the surface. A gre#e in-phase and quadrature axes parallel to the axes of
number of distributions exist that well describe the statis the equiprobability ellipses (i.e., by performing a corieen
of the mobile radio signal. Among those describing the shathange of reference phase), the covariance between the Gaus
term signal variation, Rayleigh, Rice, Hoyt, Nakagami-ng a sian terms vanishes. The distribution can then be written in
Nakagami-m are the well-known distributions. It has bedgrms ofindependent Gaussian variables with different non-
found that the different distributions yield different fita zero means and unequal variances. The derivation of the
different situations. Finding general fading distribmsois distribution in its very general form is presented in [3], ent
indeed an old problem that still attracts the attention @ tht is shown in terms of the means and variances of the Gaussian
communications researchers [1]-[6]. In [3], a generalltésu components.
presented in which the in-phase and quadrature componentk seems that very little attention has been given to this
of the fading envelope ardependent Gaussian variables with distribution, maybe because of its rather intricate fornpia-
different non-zero means andunegual variances. The classical sentation, or for lack of estimators, or, in general, foklat
Rayleigh, Rice, Hoyt, Nakagami-g, and One-Sided Gaussifuil characterization. In a work from which the present pape
density functions are special cases of this general result. extracted [7], this general fading distribution is parasnieged
This paper specializes and parameterizes the generat reguterms of the envelope rms value and three power ratios: 1)
presented in [3] in order to propose, fully characterized arin-phase dominant component and in-phase scattered wave;
investigate the Asymmetrical — s Distribution. It yields 2) quadrature dominant component and quadrature scattered
estimators for the involved parameters and uses field m&gave; and 3) in-phase term and quadrature term [7]. By taking
surements to validate the distribution. The Asymmetricalc  some specific, but still wide-ranging conditions, simplemfis
Distribution includes, as special cases, important diistions of the general case can be achieved. In particular, for theepo
such as Rayleigh, Rice, Hoyt, Nakagami-q, and One-Sidestios of 1) and 2) assumed to be identical the Symmetrical
Gaussian. The fact that the Asymmetrieal- « Distribution 17—« Distribution is attained [8]. For either one of the ratios of
has one more parameter than the well-known distribution$ or 2) assumed to be nil, the Asymmetrigat x Distribution

, o is accomplished. The concept of symmetry shall be clarified
The authors are with the Department of Communications of the@&ch

of Electrical and Computer Engineering, University of CanaginCP 6101, 'n_ th.e I?Xt' This paper explores the Asymmetrical- «
13083-970 Campinas, SP, Brazil, e-mail: michel@decom.fezaomp.br Distribution.

ISSN 1980-6604/$20.00 © 2005 SBrT/IEEE



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 20, NO. 3, 2005 183

[1l. THE ASYMMETRICAL 77 — k DISTRIBUTION in which ¢ =0,

distribution that can be used to represent the small-scale

variation of the fading signal. For a fading signal with dope . . ) .

r, phasef, and normalized envelopg = r/#, in which Fig. 1, for a fixeds (77.= 0) and varyingr, Fig. 2, for a fixed

# = /E (r?) is the rms value ofr, the Asymmetrical) —x " (n = 0.5) and varyingr, and Fig. 3, for a fixed: (v = 1)

joint probability density functiomn (p, 8) is written as and varyingr, _show th_e various shapes of the Asymmetrical
1 — k probability density functiorp (p).

The Asymmetricaly — « Distribution is a general fading M (1,0,0) = Ip(u) I (v) +2§: ( 1)ka(U)I NORG)
» Uy — 10 0 - 2
k=1

pipo) = YROER &

X62 (h+H) /K (14k) p cos(8)—(14k) p> (h+H cos(20))

where h = %, H = ”_%”, k > 0 is the ratio
between the total power of the dominant components and =20
the total power of the scattered waves, ang > 0 is the - =10 n=0
ratio between the powers of the in-phase term and quadrature —————— <
term. The normalized envelope probability density funtctie

obtained as

p(p)

:2\/5(1+/<;)

SVRAL TR eh(4r)p?
p(p) o(h+H)r pe 7 M (u,v,0) (2)

where theM (., .,.) function, as defined here, is given by

2
M (u,v,¢) = i/0 exp (ucos (0) +veos (2 (0 + ¢))) db

2
3)
with v« = 2(Mh+H)\c(Q+k)p and v = 4
—(H (1+k) p*). The phase distribution is obtained P

here in a closed-form manner as (4). , where(@ris the

Gaussian error function. The — th moment E [p"] of p

can be attained in the usual integral manner or in a serigég. 1. The Asymmetrical) — x probability density function for a fixeq
expansion given by (5) , whereF(.,.;.;.) is the Gauss (7=0)

hypergeometric functionI' (.) is the Gamma function. Of

course,E [r"] = #"E [p"]. In the same way, the cumulative

probability function can be obtained in the usual integral

manner or in series expansion given by [7]

P(p) = iii( " ) (-1 47;/;)1+i2jn 5

j=0n=0 i=0 exp (th =10 =0.5
4 _ n=u.
(D1 —i+2j+2n] =T [L—i+2j + 2n, p* (1 + 1) h]) o =
VAT 1+ 4] T [1+2n] T [1 — i + 25 + 2n] ' -
1 1_ : : 1 ) A K="
O || (o B s
(6) _ =3
& k=2
where I'[a,z] = [’t"lexp(—t)dt is the incomplete S o § ]
Gamma function. TheM (.,.,.,.) function presents some =1
interesting properties related to the Bessel functiongdn )
ticular M (u, 0, ¢) = Io (u) and M (0,v,¢) = I, (v), where 05 =0 i

Iy (.) is the modified Bessel function of the first kind and order
zero. It can be written in terms of the Bessel functions as

0.0 . ;

M(uv,6)= Y > ’ o

k=—o00 n=—o0
()™ (—1)* Ie(—v c08(26)) I (v 5in(26)) Iainy (1) (7)
For the particular case of the Asymmetrigat « Distribution, '(:gg'zz(j_ 5)The Asymmetricah — r probability density function for a fixedj
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~(htH) O i (htH) V& cos(6)
o e Vh ( h+ H cos(20) + e "o (h+ H)/mk cos(f) | 1+ erf( St o2 6) ) @
p =
27 (h+ H cos(20))

vl

1-2t4n

E[ n] iii ( t ) (_1)—i+2j+t 4t 6% h71+i72j7t7n (h _ H) ) H7i+2j+t
pl= . =
‘ ' VA(L+K)PTA+) T +20)T(1 i+ 25 +2¢)

X
=
+
=
NI

i3t (ot gl L
PTG 4+ )DL =i+ 2 + 2+ ) ®)

Q
5

andx = =, For the Asymmetrical case then

n=; AT
E(r*) =%, = (1+n7') (1+k) 0,% By carrying out

k=1 the appropriate substitutions and after long algebraicipoan
. —— n=00m lations the densities as presented in Section III follow.

<y

V. ESTIMATORS FOR THEPARAMETERS7) AND K

Estimators for the parametersand x can be obtained in
_ terms of the moments of the envelope. In particutglp?] and
£ |n=1000 n=0.01 E [p°] can be express*ed in a radical form as functions) of
12003 and k. These equations are then manipulated to produce (9)
and (10)

1—kd\/2+E]pY—4r+2E[pY k+E[p?] 2
I h T /2Bl —Ar+ 2Bk E[pH] 22

0.0 0.5 1.0 15 20 25 3.0 Given E[p*] andE [p°] (9) yields six possible solutions for
P k, but only one will be non-negative and real. Using this value
for x, (10) can be solved to obtain two possible valuesrfor
Therefore, two possible pairs of solutiorig; , <) and (12, k),
Fig. 3. The Asymmetrical) — « probability density function for a fixee are attained. Such an ambiguity can be resolved by means of
(k=1). the use of another moment (e.g., the first moment). In such a
case: 1) estimate the first momen{{F with the pair ¢1,%1)
IV. OUTLINE OF THE DERIVATION OF THE in (5); 2) estimate the first moment (&) with the pair ,x2)
ASYMMETRICAL i — x DISTRIBUTION in (5); 3) Estimate the first moment of the measured data; 4)

The fading model for the Asymmetrical— « Distribution COMPare the resuits of 1) with 3) and 2) with 3); 4) Choose
considers a signal composed of multipath waves propag'mtingthe pair whose corresponding first moment is closest to the
a non-homogeneous environment. The powers of the in-ph&%§ Of the measured data. Of course, if the the data follows
and quadrature scattered waves are assumed to be arbit,li@_Asymmetn.calr; — « distribution in an exact manner, then
In the same way, the power of the in-phase component i€ Smallest difference is nil. _
also assumed to be arbitrary but the power of the quadraturé>VeN & set of measured data for the fading envelope, the
dominant component is assumed to be nil, which explaif§actical procedure in order to determinate the2 d'Sth“I'
the reason for it to be called the asymmetrical distributioframeters; and  is as follows: }) Est2|rr21ate ), E[r I,

Let z and y be independent Gaussian wide sense station % Br ]2’ 32_) Using Bp®] = E[r*]/E[r*]" and Ep°’] =
processes of the in-phase and quadrature components of e /E["]” in (9) and (10); and are obtained. According

propagated wave, respectively. Assume thatwE = i, to the _definition of these parameters as give_n previously,
E(y) = 0, Var(z) = o2, and Vary) = o2, where E(.) the ratio between the total power of the dominant components

x! - y! . .
andVar (.) are the mean and variance operators, respectiveg@.d the tor:al power Offt?]e _scat:}ered waves,dansl tr(;e ratio
The joint distributionp (z,y) of « and y is found in the Detween the powers of the in-phase term and quadrature term.

usual manner. The envelope can be written in terms of One important point to raise is that, because the estimafors
the in-phase and quadrature components of the fading sigh§l As_ymmetncah-/zrequwe t?elcomputatmn of higher order
asr? = 22 + y® with = = rcos(0), y = rsin(8), and statistics, namely [g*] and Ep°] -, a large quantity of data is

0 — arctan (g) Then the joint dens’it)p (r,) of r énd& required for an appropriate convergence. In case a sufficien
. . Z ’ B

IS Obtglned by _the WeII-know_n procedure of tran_Sfo_rma_t'on 1For the Nakagamin parameter the higher order statistics required is
of variables. Given the physical model of the distributiorg[p?].
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144 — 216 E [p*] + 81E [p"]* + 24 E [p°] — 18E[p*] E[°] + E [p°]"+
(864 — 1296 E [p"] + 486 E [p*]” + 144E [p°] — 108E [p*] E ] + 6 E [p°] 2) Kt
(2160 — 3240E [p*] + 1215E [p*]” + 360 E [0°] — 270E [p*] E[p°] + 15E [4°] 2) K2+
(2496 — 4032 E "] + 1620 [*)” + 448 E [1°] — 360 E [p*] E[o°] + 20E [1°]") w'+
(1296 — 2520 E [p*] + 1215E [p*]” + 264 [o°] — 270E [p*] E[6°] + 15E [p°]") s+
(288 — 720E "] + 486 E [*]” + 48E [°] — 103E [p*] E[o°] + 6E[6%)") K™+
(16— 72E "] + 81E [p*]* = SE[6°] ~ 18E [¢*] E[°] + E[¢°]") x* =0 )

amount of data is not available, it may be adequate to use dreefound that leads to the best Nagakami-m approximation.
of the alternative fit method as described in Sec. VII. Interestingly, it can be observed that the minimum of (11) is
obtained for(n, k) = (0,0), for which m = 0.5. In this case,
VI. THE ASYMMETRICAL 1 — k DISTRIBUTION AND THE  the Asymmetrical; — « Distribution specializes into the One-
OTHER FADING DISTRIBUTIONS Sided Gaussian, as does Nakagami-m.

The Asymmetricalp — « Distribution is a general fading
distribution that includes the Rayleigh, Rice, Hoyt, Nadanis VII. A PPLICATION OF THEn — £ DISTRIBUTION
g, and One-Sided Gaussian distributions as special cases. frhe application of the Asymmetricgl—  Distribution im-
may also approximate the Nakagami-m distribution. plies the estimation of its parameterandx (see Section V).

On the other hand, it may be possible to use the Asymmetrical

A. Rayleigh, Rice, Hoyt, Nakagami-g, and One-Side Gaussian 77— Distribution by estimating the parameterand choosing

The Hoyt distribution can be obtained from the Asymmetri'€ @PPropriaterf, ) pair satisfying (11) that leads to the best
calyj— « Distribution in an exact manner by setting= 0 and fit. In particular, for a givenn andx the remaining parameter

using the relatiorb = Z—j& whereb is the Hoyt parameter. " can be chosen as
From the Hoyt distribution the One-Sided Gaussian is obthin

for b — F1 (n — 0 or n — o0). In the same way, from the _ 1 (1 9k 9 2
Hoyt distribution the Rayleigh distribution is obtained am =9 +2m—2k+4mk — K2 w mET R
exact manner fob =0 (n = 1). Th.e Nakaga'\m|.-q d.|str|'but|on +9 \/m I—m+2k_2mr+rZt mﬁg)) (12)
can be obtained from Asymmetrical— ~ Distribution in an

exact manner by setting = 0 and usingg = 7n, whereg with the usual physical constraint > 0 and real. Fig. 4

is the respective parameter. From the Nakagami-g the Omepicts a sample of the various shapes of the Asymmetrical

Sided Gaussian can be obtained §or> 0 or ¢ — oo (n — 0 15—« probability distribution functiorP (p) as a function of the

or n — o0). In the same way, from the Nakagami-q theormalized envelopg for the same Nakagami parameter=

Rayleigh distribution can be obtained by setting 1 (n = 1). 1.25. It can be seen that, although the normalized variance

The Rice Distribution can be obtained from the Asymmetricparameterm) is kept constant, the curves are substantially

n —  Distribution in an exact manner by settimg= 1 and different from each other. Note that the lower tail of the

using k = x, wherek is the Rice parameter. From the Ricalistribution may yield differences in the probability ofrse

distribution the Rayleigh can be obtained fore= 0 (x = 0).  orders of magnitude. Note also that the Asymmetrigal
curves can be above or below the Nakagami curve.

B. Nakagami-m

The Nakagami parameten can be written in terms ofy
and k by recognizing thain is the inverse of the normalized A series of field trials was conducted at the University of
variance of the squared envelope, ie= Var~* (p?). Using Campinas (Unicamp), Brazil, in order to investigate thersho
such a definition for the Asymmetricgl — « Distribution, it term statistics of the fading signal at 1.8GHz [9]. In pauléc,

VIIl. VALIDATION THROUGHFIELD MEASUREMENTS

can be shown that transmitter and receiver were placed within buildinggigor
(1 +77*1)2 (1+ H)z propagation), and the procedure used is that of the already
m = (11) widely reported in the literature [10].
2(1+n2+2 04071 k) Through our measurements, it has been observed that the

From (11) it can be seen that, apart from the case 0.5, for Asymmetricaly — x Distribution finds its applications for the
which (n, k) = (0,0) is the only possible solutigran infinite cases in which the Rice Distribution is also applicabte ¥
number of Asymmetrical) — x curves can be found for the1). In the same way, it has found its applicability in those
samemn parameter. An appropriate choice (@f, <) pairs may (less frequent) cases in which Hoyt is also applicale<(
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14
1 1 m=1.25 i| = Experimental Data m=1.4986
E Nakagami Asymmetrical n-x (n=5 k=3.34)
0.1 5 1n=0.1
1=0.09 0.1
n=0.08 b
1 n=0.07
2 0014 1=0.06 <
o ] n=0.05 o
n=0.04
| n=0.03 0.01 4
183 5 1=0.02 3
1n=0.01
| n=0.005 Experimental Data m=2.1034
1E-4 ~———— 1=0.001 Asymmetrical n-x (n=0.35 «=1.35)
E S Rice
f T T T T T T 1E-3 — T T T T T
-30 -20 -10 0 10 -30 -20 -10 0
20 Log (p) 20 Log(p)

Fig. 4. The Asymmetricahh — x probability distribution function for the Fig. 5. The Asymmetricah — « distribution function adjusted to data of an
same Nakagami parameter (m=1.25). indoor propagation measurement at 1.8 GHz conducted at Unicamp

Asymmetricalp — x | Rice
Fig.5 (upper curve) | 0.081 0.160
. e Fig. 5 (lower curve)| 0.145 0.383
m < 1). On the other hand, because of its versatility it yields 9.5 )
TABLE |

excellent fit for the cases in which the fit provided by these
respective distributions is only moderate. Fig. 5 showseom
sample plots illustrating the adjustment by the Asymmatric
n —  Distribution as compared to the Rice one. Note, in Fig.
5, that the Rice distribution provides good fit in both cases,
although the Asymmetricaj — « Distribution gives a better
adjustment. Also in Fig. 5 note how the Asymmetrieca- This paper has presented the Asymmetrigat « Distri-
« Distribution tends to reproduce or very closely follow théution, a general fading distribution that includes Ragtei
trends (concavity and/or convexity) of the true curve. Rice, Hoyt, Nakagami-g, and One-Sided Gaussian as special
cases. Simulation and field trials have been conducted erord
A numerical measure of the mean error deviatibetween to better characterize this distribution. It has been fothrat
the true curve and the distributions chosen to fit the expeAsymmetricaly —  Distribution finds its applications for the
mental data (namely, Rice and Asymmetrigak) has been cases in which Hoyt as well as Rice distributions are also
calculated for all of the cases. Tab. | shows these for tlagplicable. Because of its versatility it yields excellditt
curves in Fig. 5. In both cases, the error for the Asymmeétriceor the cases in which the fit provided by these respective
n-r distribution is lower than that for the Rice distributiondistributions is only moderate. It has been observed that th
although, the Rice distribution also gives good resultsti@n Asymmetricaln — x Distribution tends to closely follow the
other hand, as opposed to the Rice one, the Asymmetrishlapes of the true distribution which, sometimes, does not
n — r Distribution tends to reproduce or very closely folloncomply with the monomodal behavior of the well-known
the trends (concavity and/or convexity) of the true curve. distributions.

MEAN ERROR DEVIATION.

IX. CONCLUSIONS
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