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Abstract— This paper specializes and parameterizes the gen-
eral result presented elsewhere in the literature in order to
propose, fully characterize, and investigate the Asymmetrical
η−κ Distribution. It yields estimators for the involved parameters
and uses field measurements to validate the distribution. The
Asymmetrical η − κ Distribution includes, as special cases,
important distributions such as Rayleigh, Rice, Hoyt, Nakagami-
q, and One-Sided Gaussian. The fact that the Asymmetrical
η−κ Distribution has one more parameter than the well-known
distributions renders it more flexible. Of course, in situations in
which those distributions included in it give good results a better
fit is given by the Asymmetrical η − κ Distribution. In addition,
in many other situations in which these distributions give poor
results a good fit may be found through the Asymmetricalη−κ

Distribution. More specifically, its non-monomodal feature finds
applications in several circumstances, examples of which are
given in this paper.

Index Terms— Fading distributions, Rayleigh distribution, Rice
distribution, One-sided Gaussian distribution, Hoyt distribution.

I. I NTRODUCTION

T HE propagation of energy in a mobile radio environment
is characterized by incident waves interacting with sur-

face irregularities via diffraction, scattering, reflection, and
absorption. The interaction of the wave with the physical
structures generates a continuous distribution of partialwaves,
with these waves showing amplitudes and phases varying
according to the physical properties of the surface. A great
number of distributions exist that well describe the statistics
of the mobile radio signal. Among those describing the short
term signal variation, Rayleigh, Rice, Hoyt, Nakagami-q, and
Nakagami-m are the well-known distributions. It has been
found that the different distributions yield different fitsin
different situations. Finding general fading distributions is
indeed an old problem that still attracts the attention of the
communications researchers [1]–[6]. In [3], a general result is
presented in which the in-phase and quadrature components
of the fading envelope aredependent Gaussian variables with
different non-zero means andunequal variances. The classical
Rayleigh, Rice, Hoyt, Nakagami-q, and One-Sided Gaussian
density functions are special cases of this general result.

This paper specializes and parameterizes the general result
presented in [3] in order to propose, fully characterize, and
investigate the Asymmetricalη − κ Distribution. It yields
estimators for the involved parameters and uses field mea-
surements to validate the distribution. The Asymmetricalη−κ
Distribution includes, as special cases, important distributions
such as Rayleigh, Rice, Hoyt, Nakagami-q, and One-Sided
Gaussian. The fact that the Asymmetricalη − κ Distribution
has one more parameter than the well-known distributions
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renders it more flexible. Of course, in situations in which those
distributions included in it give good results a better fit isgiven
by the Asymmetricalη − κ Distribution. In addition, in many
other situations in which these distributions give poor results
a good fit may be found through the Asymmetricalη − κ
Distribution. More specifically, its non-monomodal feature
finds applications in several circumstances, examples of which
are given in this paper.

II. T HE GENERAL RESULT

In his classical paper [1], Nakagami departs from a very
general fading model and carries out a series of simplifications,
considered to be “sufficiently good enough for engineering
problems [1]”, in order to arrive at the well-known Nakagami-
m distribution. In the very general model, i.e. without laying
hold of the mentioned simplifications, the signal intensityat
any observing point is assumed to be composed of a sum
of independent random phasors, subject that the in-phase and
quadrature components of the sum are normal, i.e., their terms
satisfy the conditions of the Central Limit Theorem. These
components, therefore, aredependent Gaussian variables with
different non-zero means and unequal variances. By choosing
the in-phase and quadrature axes parallel to the axes of
the equiprobability ellipses (i.e., by performing a convenient
change of reference phase), the covariance between the Gaus-
sian terms vanishes. The distribution can then be written in
terms of independent Gaussian variables with different non-
zero means and unequal variances. The derivation of the
distribution in its very general form is presented in [3], where
it is shown in terms of the means and variances of the Gaussian
components.

It seems that very little attention has been given to this
distribution, maybe because of its rather intricate form ofpre-
sentation, or for lack of estimators, or, in general, for lack of
full characterization. In a work from which the present paper is
extracted [7], this general fading distribution is parameterized
in terms of the envelope rms value and three power ratios: 1)
in-phase dominant component and in-phase scattered wave;
2) quadrature dominant component and quadrature scattered
wave; and 3) in-phase term and quadrature term [7]. By taking
some specific, but still wide-ranging conditions, simpler forms
of the general case can be achieved. In particular, for the power
ratios of 1) and 2) assumed to be identical the Symmetrical
η−κ Distribution is attained [8]. For either one of the ratios of
1) or 2) assumed to be nil, the Asymmetricalη−κ Distribution
is accomplished. The concept of symmetry shall be clarified
in the text. This paper explores the Asymmetricalη − κ
Distribution.
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III. T HE ASYMMETRICAL η − κ DISTRIBUTION

The Asymmetricalη − κ Distribution is a general fading
distribution that can be used to represent the small-scale
variation of the fading signal. For a fading signal with envelope
r, phaseθ, and normalized envelopeρ = r/ r̂, in which
r̂ =

√

E (r2) is the rms value ofr, the Asymmetricalη − κ
joint probability density functionp (ρ, θ) is written as

p (ρ, θ) =

√
h (1 + κ) ρ

πe(h+H)κ
(1)

×e2 (h+H)
√

κ (1+κ) ρ cos(θ)−(1+κ) ρ2 (h+H cos(2 θ))

where h = 2+η+η−1

4 , H = η−1−η
4 , κ ≥ 0 is the ratio

between the total power of the dominant components and
the total power of the scattered waves, andη ≥ 0 is the
ratio between the powers of the in-phase term and quadrature
term. The normalized envelope probability density function is
obtained as

p (ρ) =
2
√

h (1 + κ)

e(h+H)κ
ρ e−h (1+κ) ρ2

M (u, v, 0) (2)

where theM (., ., .) function, as defined here, is given by

M (u, v, φ) =
1

2π

∫ 2π

0

exp (u cos (θ) + v cos (2 (θ + φ))) dθ

(3)
with u = 2 (h + H)

√

κ (1 + κ) ρ and v =
−

(

H (1 + κ) ρ2
)

. The phase distribution is obtained
here in a closed-form manner as (4). , where erf(.) is the
Gaussian error function. Then − th moment E [ρn] of ρ
can be attained in the usual integral manner or in a series
expansion given by (5) , where2F1(., .; .; .) is the Gauss
hypergeometric function,Γ (.) is the Gamma function. Of
course,E [rn] = r̂nE [ρn]. In the same way, the cumulative
probability function can be obtained in the usual integral
manner or in series expansion given by [7]

P (ρ) =

∞
∑

j=0

∞
∑

n=0

n
∑

i=0

(

n
i

)

(−1)
−i+2j+n

4nh−1+i−2j−n

exp
(

κh
h−H

)

×
(

Γ [1 − i + 2j + 2n] − Γ
[

1 − i + 2j + 2n, ρ2 (1 + κ)h
])

√
πΓ [1 + j] Γ [1 + 2n] Γ [1 − i + 2j + 2n]

×Γ

[

1

2
+ j + n

]

(h − H)
1
2−n

H−i+2j+n (h + H)
1
2+n

κn

(6)

where Γ [a, z] =
∫ ∞

z
ta−1 exp (−t) dt is the incomplete

Gamma function. TheM (., ., ., .) function presents some
interesting properties related to the Bessel functions. Inpar-
ticular M (u, 0, φ) = I0 (u) and M (0, v, φ) = I0 (v), where
I0 (.) is the modified Bessel function of the first kind and order
zero. It can be written in terms of the Bessel functions as

M (u, v, φ) =

∞
∑

k=−∞

∞
∑

n=−∞

()n (−1)
k
Ik(−v cos(2φ))In(v sin(2φ))I2(k+n)(u) (7)

For the particular case of the Asymmetricalη−κ Distribution,

in which φ = 0,

M (u, v, 0) = I0(u)I0(v) + 2

∞
∑

k=1

(−1)
k
Ik(v)I2k(u) (8)

Fig. 1, for a fixedη (η = 0 ) and varyingκ, Fig. 2, for a fixed
η (η = 0.5) and varyingκ, and Fig. 3, for a fixedκ (κ = 1)
and varyingη, show the various shapes of the Asymmetrical
η − κ probability density functionp (ρ).
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Fig. 1. The Asymmetricalη − κ probability density function for a fixedη
(η = 0).
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Fig. 2. The Asymmetricalη − κ probability density function for a fixedη
(η = 0.5).
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p (θ) =

e−(h+H) κ
√

h

(

√

h + H cos(2 θ) + e
(h+H)2 κ cos(θ)2

h+H cos(2 θ) (h + H)
√

πκ cos(θ)

(

1 + erf( (h+H)
√

κ cos(θ)√
h+H cos(2 θ)

)

))

2π (h + H cos(2 θ))
3
2

(4)

E [ρn] =

∞
∑

j=0

∞
∑

t=0

t
∑

i=0

(

t
i

)

(−1)
−i+2 j+t

4t e
h κ

−h+H h−1+i−2 j−t−n (h − H)
1−2 t+n

2 H−i+2 j+t

√
π (1 + κ)

n
2 Γ(1 + j) Γ(1 + 2 t) Γ(1 − i + 2 j + 2 t)

×(h + H)
1
2−2 i+4 j+3 t−2 (−i+2 j+t)+ n

2 κt Γ(
1

2
+ j + t) Γ(1 − i + 2 j + 2 t +

n

2
) (5)
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Fig. 3. The Asymmetricalη − κ probability density function for a fixedκ
(κ = 1).

IV. OUTLINE OF THE DERIVATION OF THE

ASYMMETRICAL η − κ DISTRIBUTION

The fading model for the Asymmetricalη − κ Distribution
considers a signal composed of multipath waves propagatingin
a non-homogeneous environment. The powers of the in-phase
and quadrature scattered waves are assumed to be arbitrary.
In the same way, the power of the in-phase component is
also assumed to be arbitrary but the power of the quadrature
dominant component is assumed to be nil, which explains
the reason for it to be called the asymmetrical distribution.
Let x and y be independent Gaussian wide sense stationary
processes of the in-phase and quadrature components of the
propagated wave, respectively. Assume that E(x) = µx,
E(y) = 0, Var(x) = σ2

x, and Var(y) = σ2
y, where E (.)

andV ar (.) are the mean and variance operators, respectively.
The joint distributionp (x, y) of x and y is found in the
usual manner. The enveloper can be written in terms of
the in-phase and quadrature components of the fading signal
as r2 = x2 + y2 with x = r cos (θ), y = r sin (θ) , and
θ = arctan

(

y
x

)

. Then the joint densityp (r, θ) of r and θ
is obtained by the well-known procedure of transformation
of variables. Given the physical model of the distribution,

η =
σ2

x

σ2
y

and κ =
µ2

x

σ2
x+σ2

y
. For the Asymmetrical case then

E
(

r2
)

= r2
rms =

(

1 + η−1
)

(1 + κ) σx
2. By carrying out

the appropriate substitutions and after long algebraic manipu-
lations the densities as presented in Section III follow.

V. ESTIMATORS FOR THEPARAMETERSη AND κ

Estimators for the parametersη and κ can be obtained in
terms of the moments of the envelope. In particular,E[ρ4] and
E

[

ρ6
]

can be express*ed in a radical form as functions ofη
and κ. These equations are then manipulated to produce (9)
and (10)

η =
1 − κ ±

√

−2 + E [ρ4] − 4κ + 2 E [ρ4] κ + E [ρ4] κ2

1 + κ ∓
√

−2 + E [ρ4] − 4κ + 2 E [ρ4] κ + E [ρ4] κ2

(10)

GivenE[ρ4] andE
[

ρ6
]

(9) yields six possible solutions for
κ, but only one will be non-negative and real. Using this value
for κ, (10) can be solved to obtain two possible values forη.
Therefore, two possible pairs of solutions,(η1, κ) and(η2, κ),
are attained. Such an ambiguity can be resolved by means of
the use of another moment (e.g., the first moment). In such a
case: 1) estimate the first moment (E[ρ]) with the pair (η1,κ1)
in (5); 2) estimate the first moment (E[ρ]) with the pair (η2,κ2)
in (5); 3) Estimate the first moment of the measured data; 4)
Compare the results of 1) with 3) and 2) with 3); 4) Choose
the pair whose corresponding first moment is closest to the
one of the measured data. Of course, if the the data follows
the Asymmetricalη − κ distribution in an exact manner, then
the smallest difference is nil.

Given a set of measured data for the fading envelope, the
practical procedure in order to determinate the distributions
parametersη and κ is as follows: 1) Estimate E[r2], E[r4],
and E[r6]; 2) Using E[ρ4] = E[r4]/E[r2]2 and E[ρ6] =
E[r6]/E[r2]3 in (9) and (10)η andκ are obtained. According
to the definition of these parameters as given previously,κ is
the ratio between the total power of the dominant components
and the total power of the scattered waves, andη is the ratio
between the powers of the in-phase term and quadrature term.
One important point to raise is that, because the estimatorsof
the Asymmetricalη-κ require the computation of higher order
statistics, namely E[ρ4] and E[ρ6] 1, a large quantity of data is
required for an appropriate convergence. In case a sufficient

1For the Nakagami-m parameter the higher order statistics required is
E[ρ4].

184                                                                                                     JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 20, NO. 3, 2005



144 − 216 E
[

ρ4
]

+ 81 E
[

ρ4
]2

+ 24 E
[

ρ6
]

− 18 E
[

ρ4
]

E
[

ρ6
]

+ E
[

ρ6
]2

+
(

864 − 1296 E
[

ρ4
]

+ 486 E
[

ρ4
]2

+ 144 E
[

ρ6
]

− 108 E
[

ρ4
]

E
[

ρ6
]

+ 6 E
[

ρ6
]2

)

κ+
(

2160 − 3240 E
[

ρ4
]

+ 1215 E
[

ρ4
]2

+ 360 E
[

ρ6
]

− 270 E
[

ρ4
]

E
[

ρ6
]

+ 15 E
[

ρ6
]2

)

κ2+
(

2496 − 4032 E
[

ρ4
]

+ 1620 E
[

ρ4
]2

+ 448 E
[

ρ6
]

− 360 E
[

ρ4
]

E
[

ρ6
]

+ 20 E
[

ρ6
]2

)

κ3+
(

1296 − 2520 E
[

ρ4
]

+ 1215 E
[

ρ4
]2

+ 264 E
[

ρ6
]

− 270 E
[

ρ4
]

E
[

ρ6
]

+ 15 E
[

ρ6
]2

)

κ4+
(

288 − 720 E
[

ρ4
]

+ 486 E
[

ρ4
]2

+ 48 E
[

ρ6
]

− 108 E
[

ρ4
]

E
[

ρ6
]

+ 6 E
[

ρ6
]2

)

κ5+
(

16 − 72 E
[

ρ4
]

+ 81 E
[

ρ4
]2 − 8 E

[

ρ6
]

− 18 E
[

ρ4
]

E
[

ρ6
]

+ E
[

ρ6
]2

)

κ6 = 0 (9)

amount of data is not available, it may be adequate to use one
of the alternative fit method as described in Sec. VII.

VI. T HE ASYMMETRICAL η − κ DISTRIBUTION AND THE

OTHER FADING DISTRIBUTIONS

The Asymmetricalη − κ Distribution is a general fading
distribution that includes the Rayleigh, Rice, Hoyt, Nakagami-
q, and One-Sided Gaussian distributions as special cases. It
may also approximate the Nakagami-m distribution.

A. Rayleigh, Rice, Hoyt, Nakagami-q, and One-Side Gaussian

The Hoyt distribution can be obtained from the Asymmetri-
cal η−κ Distribution in an exact manner by settingκ = 0 and
using the relationb = η−1

η+1 , whereb is the Hoyt parameter.
From the Hoyt distribution the One-Sided Gaussian is obtained
for b → ∓1 (η → 0 or η → ∞). In the same way, from the
Hoyt distribution the Rayleigh distribution is obtained inan
exact manner forb = 0 (η = 1). The Nakagami-q distribution
can be obtained from Asymmetricalη − κ Distribution in an
exact manner by settingκ = 0 and usingq = η, where q
is the respective parameter. From the Nakagami-q the One-
Sided Gaussian can be obtained forq → 0 or q → ∞ (η → 0
or η → ∞). In the same way, from the Nakagami-q the
Rayleigh distribution can be obtained by settingq = 1 (η = 1).
The Rice Distribution can be obtained from the Asymmetrical
η − κ Distribution in an exact manner by settingη = 1 and
using k = κ, wherek is the Rice parameter. From the Rice
distribution the Rayleigh can be obtained fork = 0 (κ = 0).

B. Nakagami-m

The Nakagami parameterm can be written in terms ofη
andκ by recognizing thatm is the inverse of the normalized
variance of the squared envelope, i.e.m = V ar−1

(

ρ2
)

. Using
such a definition for the Asymmetricalη − κ Distribution, it
can be shown that

m =

(

1 + η−1
)2

(1 + κ)
2

2 (1 + η−2 + 2 (1 + η−1) κ)
(11)

From (11) it can be seen that, apart from the casem = 0.5, for
which (η, κ) = (0, 0) is the only possible solution, an infinite
number of Asymmetricalη − κ curves can be found for the
samem parameter. An appropriate choice of(η, κ) pairs may

be found that leads to the best Nagakami-m approximation.
Interestingly, it can be observed that the minimum of (11) is
obtained for(η, κ) = (0, 0), for which m = 0.5. In this case,
the Asymmetricalη−κ Distribution specializes into the One-
Sided Gaussian, as does Nakagami-m.

VII. A PPLICATION OF THEη − κ DISTRIBUTION

The application of the Asymmetricalη−κ Distribution im-
plies the estimation of its parametersη andκ (see Section V).
On the other hand, it may be possible to use the Asymmetrical
η−κ Distribution by estimating the parameterm and choosing
the appropriate (η, κ) pair satisfying (11) that leads to the best
fit. In particular, for a givenm andκ the remaining parameter
η can be chosen as

η =
1

−1 + 2m − 2κ + 4mκ − κ2

(

1 + 2κ − 2mκ + κ2

±2
√

m (1 − m + 2κ − 2mκ + κ2 + mκ2)
)

(12)

with the usual physical constraintη ≥ 0 and real. Fig. 4
depicts a sample of the various shapes of the Asymmetrical
η−κ probability distribution functionP (ρ) as a function of the
normalized envelopeρ for the same Nakagami parameterm =
1.25. It can be seen that, although the normalized variance
(parameterm) is kept constant, the curves are substantially
different from each other. Note that the lower tail of the
distribution may yield differences in the probability of some
orders of magnitude. Note also that the Asymmetricalη − κ
curves can be above or below the Nakagami curve.

VIII. V ALIDATION THROUGH FIELD MEASUREMENTS

A series of field trials was conducted at the University of
Campinas (Unicamp), Brazil, in order to investigate the short
term statistics of the fading signal at 1.8GHz [9]. In particular,
transmitter and receiver were placed within buildings (indoor
propagation), and the procedure used is that of the already
widely reported in the literature [10].

Through our measurements, it has been observed that the
Asymmetricalη − κ Distribution finds its applications for the
cases in which the Rice Distribution is also applicable (m ≥
1). In the same way, it has found its applicability in those
(less frequent) cases in which Hoyt is also applicable (0 ≤
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Fig. 4. The Asymmetricalη − κ probability distribution function for the
same Nakagami parameterm (m=1.25).

m ≤ 1). On the other hand, because of its versatility it yields
excellent fit for the cases in which the fit provided by these
respective distributions is only moderate. Fig. 5 shows some
sample plots illustrating the adjustment by the Asymmetrical
η − κ Distribution as compared to the Rice one. Note, in Fig.
5, that the Rice distribution provides good fit in both cases,
although the Asymmetricalη − κ Distribution gives a better
adjustment. Also in Fig. 5 note how the Asymmetricalη −
κ Distribution tends to reproduce or very closely follow the
trends (concavity and/or convexity) of the true curve.

A numerical measure of the mean error deviation2 between
the true curve and the distributions chosen to fit the experi-
mental data (namely, Rice and Asymmetricalη-κ) has been
calculated for all of the cases. Tab. I shows these for the
curves in Fig. 5. In both cases, the error for the Asymmetrical
η-κ distribution is lower than that for the Rice distribution,
although, the Rice distribution also gives good results. Onthe
other hand, as opposed to the Rice one, the Asymmetrical
η − κ Distribution tends to reproduce or very closely follow
the trends (concavity and/or convexity) of the true curve.

2The mean error deviation between the measured dataxi and the theoretical
value yi (Rice or Asymmetricalη-κ) is defined asǫ = 1

N

PN
i=1

|yi−xi|
xi

,
where N is the number of points. Other metrics have been tested, e.g.
rms deviation, and in all of them the Asymmetricalη-κ presented a better
performance.
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Fig. 5. The Asymmetricalη−κ distribution function adjusted to data of an
indoor propagation measurement at 1.8 GHz conducted at Unicamp.

Asymmetricalη − κ Rice
Fig.5 (upper curve) 0.081 0.160
Fig. 5 (lower curve) 0.145 0.383

TABLE I

MEAN ERROR DEVIATION.

IX. CONCLUSIONS

This paper has presented the Asymmetricalη − κ Distri-
bution, a general fading distribution that includes Rayleigh,
Rice, Hoyt, Nakagami-q, and One-Sided Gaussian as special
cases. Simulation and field trials have been conducted in order
to better characterize this distribution. It has been foundthat
Asymmetricalη − κ Distribution finds its applications for the
cases in which Hoyt as well as Rice distributions are also
applicable. Because of its versatility it yields excellentfit
for the cases in which the fit provided by these respective
distributions is only moderate. It has been observed that the
Asymmetricalη − κ Distribution tends to closely follow the
shapes of the true distribution which, sometimes, does not
comply with the monomodal behavior of the well-known
distributions.
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