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Abstract— New continuous wavelets of compact support are
introduced, which are related to the beta distribution. They can
be built from probability distributions using ”blur”derivatives.
These new wavelets have just one cycle, so they are termed
unicycle wavelets. They can be viewed as a soft variety of Haar
wavelets whose shape is fine-tuned by two parameters a and b.
Close expressions for beta wavelets and scale functions as well as
their spectra are derived. Their importance is due to the Central
Limit Theorem applied for compactly supported signals. 1

Index Terms— One cycle-wavelets, continuous wavelet, blur
derivative, beta distribution, central limit theory, compactly
supported wavelets.

I. PRELIMINARIES AND BACKGROUND

WAvelets are strongly connected with probability dis-
tributions. Recently, a new insight into wavelets was

presented, which applies Max Born reading for the wave-
function [1] in such a way that an information theory focus
has been achieved [2]. Many continuous wavelets are derived
from a probability density (e.g. Sombrero). This approach
also sets up a link among probability densities, wavelets and
“blur derivatives” [3]. To begin with, let P (.) be a probability
density, P ∈ C∞, the space of complex signals f : R → C
infinitely differentiable.

If
lim
t→∞

dn−1P (t)
dtn−1

= 0 (1)

then

ψ(t) = (−1)n
dnP (t)
dtn

(2)

is a wavelet engendered by P (.). Given a mother wavelet ψ
that holds the admissibility condition [4,5] then the continuous
wavelet transform is defined by

CWT (a, b) =
∫ +∞

−∞
f(t) · 1√

|a|
ψ(
t− b

a
)dt, (3)

∀a ∈ R− {0}, b ∈ R.
Continuous wavelets have often unbounded support, such as

Morlet, Meyer, Mathieu, de Oliveira wavelets [6-8]. In the case
where the wavelet was generated from a probability density,
one has
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1√
|a|
ψn(

t− b

a
) = (−1)n

1√
|a|

∂nP ( t−ba )
∂tn

. (4)

Now

∂nP ( t−ba )
∂bn

= (−1)n
1
an
P (n)(

t− b

a
), (5)

so that

CWT (a, b) =
1√
|a|

∫ +∞

−∞
f(t) ·

∂nP ( t−ba )
∂bn

dt. (6)

If the order of the integral and derivative can be commuted,
it follows that

CWT (a, b) =
1√
|a|

∂n

∂bn

∫ +∞

−∞
f(t) · P (

t− b

a
)dt. (7)

Defining the LPFed signal as the ”blur”signal

f̃(a, b) =
∫ +∞

−∞
f(t)· 1√

|a|
P (
t− b

a
)dt =

∫ +∞

−∞
f(t)·Pa,b(t)dt,

(8)
an interesting interpretation can be made: set a scale a and

take the average (smoothed) version of the original signal -
the blur version f̃(a, b). The “blur derivative”

∂n

∂bn
f̃(a, b) (9)

is the nth derivative regarding the shift b of the blur signal
at the scale a. The blur derivative coincide with the wavelet
transform CWT (a, b) at the corresponding scale. Details
(high-frequency) are provided by the derivative of the low-
pass (blur) version of the original signal.

A. Revisiting Central Limit Theorems

There are essentially three kinds of central limit theorems:
for unbounded distributions, for causal distributions and for
compactly supported distributions [9]. The random variable
corresponding to the sum of N independent and identically
distributed (i.i.d.) variables converges to: a Gaussian distribu-
tion, a Chi-square distribution or a Beta distribution (see Table
I). The Gaussian pulse always has been playing a very central
role in Engineering and it is associated with Morlet’s wavelet,
which is known to be of unbounded support. This is the only
wavelet that meets the lower bound of Gabor’s uncertainty
inequality [10]. The Gabor concept of logon naturally leads to
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the Gaussian waveforms as an efficient signalling in the time-
frequency plan. Nevertheless, in the cases where a constraint
in signal duration is imposed, it can be expected that beta
waveforms will be the most efficient signalling in the time-
frequency plan. The concept of wavelet entropy was recently
introduced and Morlet wavelet also revealed to be a special
wavelet [2,11]. Among all wavelets of compact support, it can
be expected that the one linked to the beta distribution could
also play a valuable practical and theoretical role.

TABLE I
DIFFERENT VERSIONS OF THE CENTRAL LIMIT THEOREM:

UNBOUNDED DISTRIBUTIONS, CAUSAL DISTRIBUTIONS AND
COMPACTLY SUPPORTED PROBABILITY DISTRIBUTIONS.

Marginal Distribution Central Limit Distribution as N →∞

Unbounded Support G(t|m, σ2) = 1
sqrt2πσ2 · e

−(t−m)2

2σ2

Causal Distribution χ2(t|m, σ2) = tα·β−t�β

βα+1Γ(α+1)

Compact Support beta(t|α, β) = K · tα · (1− t)β , 0 < t < 1

Let pi(t) be a probability density of the random variable
ti,where i = 1, 2, 3..N i.e. pi(t) > 0 , (∀t) and∫ +∞

−∞
pi(t)dt = 1. (10)

If pi(t) ↔ Pi(ω) , then Pi(0) = 1 and (∀ω)|Pi(ω)| ≤ 1 .
Suppose that all variables are independent. The density p(t)
of the random variable corresponding to the sum

t =
N∑
i=1

ti (11)

is given by the iterate convolution [12]

p(t) = p1(t) ∗ p2(t) ∗ p3(t) ∗ ...pN (t). (12)

If pi(t) ↔ Pi(ω) = |Pi(ω)|ejΘi(ω), i = 1, 2, 3..N and
p(t) ↔ P (ω) = |P (ω)|ejΘ(ω) , then

|P (ω)| =
N∏
i=1

|Pi(ω)|, Θ(ω) =
N∑
i=1

Θi(ω). (13)

The mean and the variance of a given random variable ti
are, respectively

mi =
∫ +∞

−∞
τ · pi(τ)dτ, (14)

σ2
i =

∫ +∞

−∞
(τ −mi)2 · pi(τ)dτ. (15)

The following theorems can be proved [9].
Theorem 1: Central Limit Theorem for distributions of un-

bounded support
If the distributions {pi(t)} are not a lattice (a Dirac comb)
and E(t3i ) <∞, and

lim
N→∞

σ2 = +∞

then t =
∑N
i=1 ti holds, as N →∞,

P (ω) ∼ e−
σ2ω2

2 −jmω, (16)

p(t) ∼ 1√
2πσ2

e−
(t−m)2

2σ2 (17)

�
According to Gnedenko and Kolmogorov, if all marginal

probability densities have bounded support, then the corre-
sponding theorem is [9]:

Theorem 2: Central Limit Theorem for distributions of
compact support. Let {pi(t)} be distributions such that
Supp{(pi(t))} = (ai, bi)(∀i). Let

a =
N∑
i=1

ai < +∞, (18)

b =
N∑
i=1

bi < +∞. (19)

It is assumed without loss of generality that a = 0 and
b = 1. The random variable defined by (11) holds as N →∞,

p(t) ∼

{
k · tα(1− t)β , 0 ≤ t ≤ 1

0, otherwise (20)

where

α =
m(m−m2 − σ2)

σ2
, (21)

and
β =

(1−m)(α+ 1)
m

. (22)

�
In spite of the fact that a general theory of deriving wavelets
from probability distributions is well known, the particular
application discussed in this paper search for discovering a
link between the most noteworthy compact support distribution
and wavelets.

II. β-WAVELETS: NEW COMPACTLY SUPPORTED
WAVELETS

The beta distribution is a continuous probability distribution
defined over the interval 0 ≤ t ≤ 1 [13]. It is characterized
by a couple of parameters, namely α and β, according to:

P (t) =
1

B(α, β)
tα−1 · (1− t)β−1, 1 ≤ α, β ≤ +∞. (23)

The normalizing factor is B(α, β) = Γ(α)·Γ(β)
Γ(α+β) , where Γ(·)

is the generalized factorial function of Euler and B(·, ·) is the
Beta function [13].

The following parameters can be computed:

Supp(P ) = [0, 1] (24)
mean = α

α+β (25)

mode = α−1
α+β−2 (26)

variance = σ2 = αβ
(α+β)2(α+β+1) (27)

characteristicfunction = M(α, α+ β, jν), (28)
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where M(·, ·, ·) is the Kummer confluent hypergeometric
function [14], [15]. The N th moment of P (·) can be found
using

moment(N) =
∫ 1

0

tN · pi(t)dt =
B(α+N, β)
B(α, β)

=
B(α+ β,N)
B(α,N)

. (29)

The derivative of the beta distribution can easily be found.

P ′(t) =
(α− 1

t
− β − 1

1− t

)
P (t). (30)

A random variable transform can be made by an affine
transform in order to generate a new distribution with zero-
mean and unity variance [12], which implies a non-normalized
support T = 1

σ = T (α, β).
Let a new random variable be defined by T · (t − m). This
variable has zero-mean and unity variance. Its corresponding
probability density is given by

P (t|α, β) =
1

B(α, β)T (α, β)

( t+m(α, β)T (α, β)
T (α, β)

)α−1

·(
1− t+m(α, β)T (α, β)

T (α, β)

)β−1

. (31)

The β-wavelets can now be derived from these modified
distributions by using the concept of ”blur”derivative. The
(unimodal) scale function associated with the wavelets is given
by

φbeta(t|α, β) =
1

B(α, β)Tα+β−1
·(t−a)α−1·(b−t)β−1, (32)

a ≤ t ≤ b. Since P (·|α, β) is unimodal, the wavelet generated
by

ψbeta(t|α, β) = (−1)
dP (t|α, β)

dt
(33)

has only one-cycle (a negative half-cycle and a positive half-
cycle).
A close expression for first-order beta wavelets can easily be
derived. Within the support of ψ(t|α, β), a ≤ t ≤ b,

ψbeta(t|α, β) =
−1

B(α, β)Tα+β−1
·
[α− 1
t− a

− β − 1
b− t

]
·

(t− a)α−1 · (b− t)β−1 (34)

As a particular case, symmetric beta wavelets are given by

ψbeta(t|α, α) = K(α) · t · [t2 − (2α+ 1)]α−2, (35)

where

K(α) = (−1)α · 2(α− 1)
(2
√

2α+ 1)2α−1
· Γ(2α)
[Γ(α)]2

. (36)

The main features of beta wavelets of parameters α and β
are:

Supp(ψ) =
[ −1√

β�α

√
α+ β + 1,

√
β

α

√
α+ β + 1

]
= [a, b] (37)

lengthSupp(ψ) = T (α, β) = (α+ β)

√
α+ β + 1

αβ
. (38)

The parameter R = b�|a| = β�α is referred to as ”cyclic
balance”, and is defined as the ratio between the lengths of the
causal and non-causal piece of the wavelet. It can be easily
shown that the instant of transition tzerocross from the first to
the second half cycle is given by

tzerocross =
(α− β)

(α+ β − 2)

√
α+ β + 1

αβ
. (39)

Although scale and wavelets can be found for any α, β > 1,
the behavior of the wavelet at the extreme points of the support
can be discontinuous (e.g. see Table Ia). However, it is a simple
matter to guarantee the continuity of the wavelet according to:

Proposition 1: Beta one-cycle wavelets of parameters α >
2 and β > 2 are smooth, continuous wavelets of compact
support.
Proof: Clearly, ψbeta(t|α, β) = 0 ∀t < a and ∀t > b. The
only concerns are therefore with the extreme points of the
support, but ψbeta(a|α, β) = ψbeta(b|α, β) = 0 provided that
α > 2 and β > 2.

Remember that 1 ≤ α, β ≤ +∞ and a < 0 < b.
The beta wavelet spectrum can be derived in terms of the
Kummer hypergeometric function [14], which is solution of
the equation

z
d2ω

dz
+ (β − z)

dω

dz
− αω = 0. (40)

Let ψbeta(t|α, β) ↔ ΨBETA(ω|α, β) denote the Fourier
transform pair associated with the wavelet. This spectrum is
also denoted by ΨBETA(ω) for short. It can be proved by
applying properties of the Fourier transform that

ΨBETA(ω) = −jω ·M
(
α, α+ β,−jω(α+ β)

√
α+β+1
αβ

)
·

exp(jω
√

α(α+β+1)
β ). (41)

The spectrum of a number of unicyclic beta wavelets is
presented in Figure 1. The spectrum evaluation was carried
out using the relationship:

M(α, α+ β, jν) =
Γ(α+ β)

Γ(α) · Γ(β)
·
∫ 1

0

ejνttα−1(1− t)β−1dt

(42)
Only symmetrical (α = β) cases have zeroes in the spec-

trum (Fig. 1a). A few asymmetric (α 6= β) beta wavelets are
shown in Fig. 1b. Inquisitively, they are parameter-symmetrical
in the sense that they hold

|ΨBETA(ω|α, β)| = |ΨBETA(ω|β, α)|. (43)
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The spectrum of symmetric beta wavelets has been compared
to that of Haar wavelets of same support, just to check on the
reliability of spectral computations. The first spectral null of a
Haar wavelet of support T (α, β) occurs at a frequency ω0 =

2π
T (α,β)�2 or ν0 = 4π, then at 6π, 8π etc. For α = 3, the first
spectral null occurred at a frequency ν = 11.526918406...,
which is close to ν0 = 4π as expected. As α increases, the
wavelet half-cycle tends to be shrunk (e.g. fig.2 b and e),
thereby increasing the frequency of the first spectral notch
(Fig.1a).

Fig. 1. Magnitude of the spectrum ΨBETA(ω) of a few beta wavelets,
|ΨBETA(ν|α, β)| × ν for: a) symmetric beta wavelets α = β = 3 (solid),
α = β = 4(dot) and α = β = 5 (dash); b) asymmetric beta wavelets α = 3,
β = 4 (solid) and α = 3, β = 5 (dot). In both plots the frequency axis is a
normalized spectral frequency ν = ωT (α, β).

III. HIGH-ORDER BETA WAVELETS

Due to the unimodal feature of the beta distribution, its
first derivative has just one cycle. Higher derivatives may also
generate further beta wavelets. Higher order beta wavelets are
defined by

ψbeta(t|α, β) = (−1)N
dNP (t|α, β)

dtN
. (44)

This is henceforth referred to as an N -order beta wavelet.
They exist for order N ≤Min(α, β)−1. After some algebraic
handling, their close expression can be found:

Fig. 2. Unicycle-beta scale function and wavelet for different parameters:a)
α = 2, β = 3 b) α = β = 3 c) α = 3, β = 4 d) α = 4, β = 3 e)
α = β = 5 f) α = 3, β = 7 g) α = 5, β = 17.

Ψbeta(t|α, β) =
(−1)N

B(α, β) · Tα+β−1

N∑
n=0

sgn(2n−N) ·

Γ(α)
Γ(α− (N − n))

(t− a)α−1−(N−n) ·

Γ(β)
Γ(β − n)

(b− t)β−1−n. (45)
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The choice of the order N plays some role in the regularity
of the beta wavelets, and might be related with the Hölder
and Sobolev regularity. This topic, however, is not addressed
in this paper.
A couple of high beta wavelets are shown in Fig.3. With the
aim of allowing the investigation of some potential applica-
tions of such wavelets, routines to compute them should be
written.

Fig. 3. High-order beta wavelets for different parameters: a) N = 3, α =
5, β = 7; b) N = 5, α = 8, β = 11.

As it happens with any wavelet that has compact support,
beta wavelets share the ability of providing good estimate for
short transient, because no matter how short the interval is,
there is a scaled wavelet version whose support is limited
within this time. They can thus model local features efficiently
as they are not concerned with the data behavior far way from
the focused location. The main drawback of Haar wavelets is
their discontinuities, which engender a broadband spectrum. In
contrast, beta wavelets can provide a better balance between
time and frequency resolution due to their soft shape. For a
given support length (time resolution), a beta wavelet provides
narrow spectrum (frequency resolution) than the corresponding
Haar wavelet of the same support. Nowadays one of the
most powerful software supporting wavelet analysis is the
MatlabTM [16], especially when the wavelet graphic interface
is available. In the MatlabTM wavelet toolbox, there exist
five kinds of wavelets (type the command waveinfo on the
prompt): (i) crude wavelets, (ii) infinitely regular wavelets, (iii)
orthogonal and compactly supported wavelets, (iv) biorthog-
onal and compactly supported wavelet pairs, (v) complex
wavelets. Figure 4 illustrates the beta wavelet implementation

Fig. 4. Beta wavelets displayed over MatlabTM using the wavemenu com-
mand. The analyzed signal is a binary FSK signal. This wavelet decomposition
can be used to implement an efficient frequency discriminator.

over MatlabTM. The m-files that allow the computation of the
beta wavelet transform are currently (freeware) available at
the URL: http://www2.ee.ufpe.br/codec/WEBLET.html (new
wavelets).

IV. CONCLUDING REMARKS

Compactly supported wavelets are among the most func-
tional and useful wavelets. This correspondence introduces a
new family of wavelets of this class. These wavelets can be
viewed as some kind of soft-Haar wavelets. This new family
of wavelets looks like a sort of soft-Haar wavelets, since both
are unicycle wavelets. Besides the fact that beta wavelets are
smoother, they have extra flexibility since the balance between
the two half-cycles can be fine-tuned. However, it should be
kept on mind that such a comparison is rather loose, since
completeness and orthogonality properties that Haar wavelet
holds were not addressed for beta wavelets. It remains to be
investigated how beta wavelets can be approximated using FIR
or IIR filters. In comparison with other wavelets of compact
support (e.g. dBN, coiflets etc.), the beta wavelets derived in
this work have idiosyncrasies and advantages: i) They are
regular and smooth, ii) have only one cycle, iii) have an
analytical formulation (close formulae), iv) Their importance
rely on the Central Limit Theorem. Many practical signals
have a cyclic true nature, that is, they are composed by
uninterrupted cycles, as it occurs with power line signals, some
biomedical signals or FSK signals. Since many waveforms are
inborn-generated by successive cycles, their local properties
can probably better investigated via a wavelet able to cope the
changes from one cycle to another. It is often crucial to detect
a small discrepancy within a cycle. This behavior can be useful
for analyzing signals from certain modulation schemes or from
power systems disturbances. Particularly, Beta-wavelet-based
FSK modulation schemes are currently on investigation.
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and Central Limit Theorems.

APPENDIX

Lemma 1: The square of a normalized beta density

P (t) = φ(t|α, β) =
1

B(α, β)
· tα−1(1− t)β−1 (46)

is proportional to another beta density.
Proof: A straightforward algebraic handling yields

φ2(t|α, β) = λ0 · φ(t|2α− 1, 2β − 1), where

λ0 = λ0(α, β) =
B(2α− 1, 2β − 1)

B2(α, β)
(47)

Let Dbeta = {φbeta(t|α, β)}α,β∈R be the set of all possible
signals of the kind beta probability density (possibly non-
normalized).

Lemma 2: The square of any beta density is proportional
to another beta-shaped density of same support.

Proof: The support of φbeta(t|α, β) remains unchanged
and furthermore, φ2

beta(t|α, β) = λφ(t|2α− 1, 2β − 1), t ∈
[a, b], where

λ0 = λ0(α, β) =
T (2α− 1, 2β − 1)2(α+β−1)

T 2(α, β) · T (2α− 1, 2β − 1)
. (48)

Corollary 1: Dbeta is a closed class of signals regard-
ing the following operations: rising to a power (pair expo-
nent) and repeated convolution (a number pair of times),
i.e. φbeta(t|α, β) ∈ Dbeta ⇒ φ2

beta(t|α, β) ∈ Dbeta and
φbeta(t|α, β) ∗ φbeta(t|α, β) ∈ Dbeta.

A similar property is shared with the other densities con-
cerned with versions of the Central Limit Theorem.

Lemma 3: 1
2π

∫∞
−∞ |M(α, α+ β, jν)|2dν = λ0(α, β).

Proof: Parseval’s identity furnishes

1
2π

∫ ∞

−∞
|M(α, α+ β, jν)|2dν =

∫ 1

0

φ2
beta(t|α, β)dt (49)

and the proof follows by applying lemma 1.
Lemma 4: The second moment of the square of the Kum-

mer hypergeometric function M(α, α+ β, jν) is given by

1
2π

∫ ∞

−∞
ν2|M(α, α+ β, jν)|2dν = χ(α, β), (50)

where

χ(α, β) =
( 1
B2(α, β)

)[
(α− 1)2B(2α− 3, 2β − 3)

−2(α− 1)(α+ β − 2)B(2α− 3, 2β − 3)

+(α+ β − 2)2B(2α− 3, 2β − 3)
]
. (51)

Proof: It follows from Parseval’s identity that

1
2π

∫ ∞

−∞
|νM(α, α+ β, jν)|2dν =

∫ 1

0

[dφ(t|α, β)
dt

]2

dt.

(52)
Now
dφ(t|α, β)

dt
=

1
B(α, β)

·
[α− 1

t
− β − 1

1− t

]
·tα−1 · (1− t)β−1

(53)

and therefore the evaluation of the integral

∫ 1

0

[ (α− 1)− (α+ β − 2) · t
t(1− t)

]2

·t2α−2 · (1− t)2β−2dt (54)

completes the proof.
The energy of the beta scale φbeta(t|α, β) and wavelet

function ψbeta(t|α, β) can be computed according to the
following proposition.

Proposition 2: The energies of the beta scale and wavelet
function are, respectively,

Eφbeta
=

∫ ∞

−∞
φ2
beta(t|α, β)dt =

λ0(α, β)
T (α, β)

(55)

and

Eψbeta
=

∫ ∞

−∞
ψ2
beta(t|α, β)dt =

χ(α, β)
T 3(α, β)

. (56)

Proof: A simple variable change gives

Eφbeta
=

∫ b

a

φ2
beta(t|α, β)dt =

1
T (α, β)

∫ b

a

φ2(t|α, β)dt

(57)
and the proof of the first part follows by applying lemma 1.
Let F denote the Fourier transform operator. Parseval’s identity
can be used in order to evaluate Eψbeta

:∫ b

a

ψ2
beta(t|α, β)dt =

1
2π

∫ ∞

−∞

∣∣∣F(dP (t|α, β)
dt

)∣∣∣2dω, (58)

so that

Eψbeta
=

1
2π

∫ ∞

−∞

∣∣∣ω ·M(α, α+β,−jω ·T (α, β))
∣∣∣2dω. (59)

By a suitable variable change ν = ω · T (α, β),

Eψbeta
=

1
2πT 3(α, β)

∫ ∞

−∞
ν2

∣∣∣M(α, α+ β, jν)
∣∣∣2dν (60)

and the proof follows from lemma 4.
Proposition 3: Let α > 1 and β > 1. The admissibility

constant cΨ of a unicyclic beta wavelet is

cψ(α, β) =
2πλ0(α, β)
T (α, β)

< +∞ (61)

Proof: Since that

cψ =
∫ ∞

−∞

|ΨBETA(ω)|2

|ω|
dω, (62)

then

cΨ(α, β) =
∫ ∞

−∞

∣∣∣ωM(α, α+ β,−jω · T (α, β))
∣∣∣2dω (63)

the proof is completed using the lemma 3.
Further interesting properties of beta distributions can be found
in [17].
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the B.S.E.E. degree from Universidade Federal da
Paraı́ba, Campina Grande,PB, Brazil, in 1994. She
is presently a M.S. student in electrical and elec-
tronics engineering at the Universidade Federal de
Pernambuco. Her research interests include wavelets,
fractals, and statistical signal and image processing.

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 20, NO. 3, 2005                                                                                                    111


