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Abstract - We study how 2nd order statistics (SOS) can be 
exploited in two signal processing problems, blind separation 
of binary sources and trained-based multi-user channel iden­
tification, in a Bayesian context where a prior on the mixing 
channel matrix is available. It is well known that the SOS 
of the received data permit to resolve the unknown mixing 
matrix, up to an orthogonal factor. In a Bayesian framework, 
this residual orthogonal mixing matrix becomes a random ob­
ject in its own right, with an associated distribution over the 
group of orthogonal matrices. This distribution is induced by 
the prior on the mixing matrix, and must be known for opti­
mum statistical processing. \Ve rely on a previous theoretical 
work to provide these answers, and discuss applications for 
this induced probability density function (pdf) over the or­
thogonal group, in the two aforementioned signal processing 
problems. Preliminary results, obtained through computer 
simulations, demonstrate the effectiveness of incorporating 
this induced distribution associated with the residual orthog­
onal matrix into the design of several estimators. 

Keywords: Second-Order Statistics, Bayesian Frameworks, 
Blind Source Separation, Random Matrix Theory, Blind 
Channel Identification 

Resumo - Estudamos a forma como estatisticas de segun­
da ordem podem ser exploradas em dois problemas de pro­
cessamento de sinal, separacao cega de fontes binarias e 
identificacao de canal multi-utilizador baseada em treino 
previo, num contexto Bayesiano em que se tern acesso a 
urn modelo probabilistico da matriz de mistura do canal. E 
sabido que as estatisticas de segunda ordem dos dados re­
cebidos permitern resolver a matriz de mistura inc6gnita a 
menos de urn factor ortogonal. Num cenario Bayesiano, es­
ta matriz ortogonal residual de mistura torna-se urn objec­
to aleat6rio em si mesmo, com uma distribuicao associada 
sobre 0 grupo das matrizes ortogonais. Esta distribuicao e 
induzida pelo modelo probabilistico da matriz de mistura, 
e tern de ser conhecida para efeitos de processamento es­
tatistico optimo. Baseamo-nos em trabalho teorico previo 
para fornecer estas respostas, e discutimos aplicacoes para 
esta funcao densidade de probabilidade (pdf) sobre 0 grupo 
ortogonal, nos dois problemas de processamento de sinal 
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anteriormente mencionados. Resultados preliminares, obti­
dos atraves de simulacoes em computador, demonstram a 
relevancia da incorporacao desta distribuicao induzida asso­
ciada com a matriz ortogonal residual na concepcao de diver­
sos estimadores. 

Palavras-chave: Estatisticas de Segunda Ordem, Contextos 
Bayesianos, Separacao Cega de Fontes. Teoria das Matrizes 
Aleatorias, Identificacao Cega de Canal 

1. INTRODUCTION 

Blind source separation (BSS) has been an active area of 
research over the past few years [1]. It finds direct applica­
tion in the exploding field of wireless multi-user communica­
tions with spatial diversity, e.g., Space Division Multiple Ac­
cess (SDMA) networks. In these wireless systems, unknown 
space-time channels mix the co-channel user signals prior to 
base station reception. Blind signal separation techniques are 
needed at the receiver to reconstruct the source signals from 
the antenna array observations [2, 3,4. 5, 6]. 

A common first step in BSS techniques consists in exploit­
ing the 2nd order statistics (SOS) of the observations to par­
tially resolve the unknown mixing matrix [1,7,8,9,10,11]. 
Usually, the SOS of the received data are used to tum the un­
known mixing matrix into an unknown rotation mixing ma­
trix. This simplifies the remaining processing as the alge­
braic constraints of the orthogonal group can be efficiently 
exploited for algorithmic purposes. Notice that the origi­
nal (nonwhitened) mixing matrix often lacks any interest­
ing structure. The residual unknown rotation matrix can be 
solved under several identification strategies depending on 
the source characteristics, number of available data samples, 
etc. Some options include: iterative joint diagonalization of 
several cumulant matrices for non-Gaussian signals [7], iter­
ative joint diagonalization of several covariance matrices for 
instantaneously mixed stationary sources with sufficiently di­
verse but unknown 2nd order spectra [8], closed-form isom­
etry fitting for convolutively mixed stationary sources with 
sufficiently diverse and known 2nd order spectra [6], analyt­
ical signal separation for constant-modulus sources [2], it­
erative demodulation of finite-alphabet sources [3], globally 
convergent iterative separation of independent and identically 
distributed sources by kurtosis-based criteria [11]. 

In many scenarios, the mixing matrix can be modeled as 
a random object with given prior probability density func­
tion (pdf). In [12], we studied how a given pdf on the set 
of non-whitened mixing matrices contracts to a pdf on the 
lower-dimensional orthogonal group containing the whitened 
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rmxmg matrices. The contribution of this paper consists in 
providing signal processing applications for the theoretical 
framework developed in [12]. We show how the derived pri­
ors over the orthogonal group can be exploited for improv­
ing performance in two problems: blind separation of co­
channel binary sources and trained-based channel identifica­
tion in multi-antenna systems. Further applications can be 
found in [13]. 

Our paper is organized as follows. In section 2, we in­
troduce our data model and briefly review the work in [12]. 
We assume that the non-whitened random mixing matrix has 
a zero-mean matrix variate normal distribution with given 
dispersion matrix. A particular case of this prior is com­
monplace in works with multiple-antenna systems where it is 
known as the independent Rayleigh fading assumption [14]. 
We handle a more general model allowing correlation be­
tween the entries of the mixing matrix. We present the re­
sults of [12] in which we examined how this prior on the 
non-whitened matrices contracts to a pdf over the group of or­
thogonal matrices, under the action of two distinct prewhiten­
ing methods. 111e two prewhitening methods considered are 
based on the polar and the LU decomposition of the non­
whitened mixing matrix, respectively. In section 3, we ad­
dress the problem of blind source separation when the mix­
ing matrix is drawn from a known zero-mean Gaussian prior. 
We apply the results in [12] to find educated guesses for ini­
tializing a locally convergent source separation algorithm. In 
section 4, we address the problem of channel identification 
in the context of multi-antenna systems. We show how the 
pdfs derived in [12] can be exploited to improve the accuracy 
of trained-based channel estimators. Section 5 contains the 
main conclusions of our work. 

Throughout the paper, we use the following notation. 
The set of 71 x 71 matrices with real entries is denoted by 
rn;,n x ". Matrices are written in bold uppercase. The sym­
bols (.)T, det(·), ® and In denote the transpose operator, 
the determinant, the Kronecker product and the 71 x 71 iden­
tity matrix, respectively. The notation GlL(n, lR), 0(71) = 

{Q : QTQ = In} and lL(71), stand forthe groups of n x 71 
non-singular, orthogonal and lower triangular matrices with 
positive diagonal entries, respectively. The cone of positive 
definite matrices of size 71 x 71 is represented by 1P'(n). Addi­
tional notation is introduced as needed. 

2. DATA MODEL AND PREVIOUS WORK 

We adopt the standard lie ·..rete-time instantaneous linear 
mixture data model, e.g., see [1, 8], 

x[n] = A8[n] + w[n], (1) 

where x[n] (xI[n], ... ,xl\1[n])T represents the M­
dimensional vector of observations, A E rn;, l\1 x AI stands for 
the mixing matrix, 8[71] = (sl[n], .. . , sAI[n])T contains the 

M source signals, and w[n] = (WI [71], ... ,Wl\1 [n])T models 
observation noise. Here, for simplicity, all data objects take 
values in the field of real numbers. As usual, the sources are 
assumed to be zero-mean, 2nd order stationary and uncorre­
lated, R s = E {8[n]8[n]T} = 11\1, and the mixing matrix is 

non-singular, A E GlL(1II, rn;,). We assume that the process 
w [71] is zero-mean and wide-sense stationary with known cor­
relation matrix Rw[O] = E {w[n]w[nY}. It is well known 
that the 2nd order statistics of the observations can be ex­
ploited to partially solve for the unknown mixing matrix A. 
Here, we consider two alternative methods based on the polar 
and the LU decomposition of A, respectively. Both methods 
act on the so-called denoised correlation matrix of x [71], 

(2) 

where Rx[O] = E {x[n]x[njT}. In practice, Rx[O] can be 
replaced by its sample-mean estimator 

(3) 

where N denotes the number of available data samples. i) 
Focusing first on the polar decomposition, write A = PQ 
where P E 1P'(M) and Q E 0(111). This factorization exists 
and it is unique for any A E GlL(M, ITt) [16]. Substituting 
in (2) yields R = p 2

. Thus, P can be obtained from the 
2available R as its square-root, P = R 1

/ • Thus, the SOS of 
the data permit the receiver to recover the factor P of the mix­
ing matrix A = PQ. The factor Q is not resolved. ii) Using 
the LU decomposition, we can write also uniquely A = LV, 
where L E lL(AI) and V E O(M). Thus, R = LLT

, mean­
ing that L may be obtained from R as its unique Cholesky 
factor. Again, the mixing matrix A = LV is partially re­
solved. The factor L is revealed by the correlation matrix of 
the observations, but V remains unknown. 

After either the PQ or LU pre-processing step is per­
formed, our original data model (1) switches to 

x[n] = PQ8[n] + w[n] (4) 

or 
x[n] = LV8[71] + w[n], (5) 

with P or L known, respectively. If the original mixing 
matrix has a prior, A rv p(A), then the unknown resid­
ual orthogonal matrices Q and V in (4) and (5), respec­
tively, denote random objects. In [12], we investigated the 
distributions of Q or V for a given prior on A. The re­
sults derived in [12] are expressed in the setting of Rieman­
nian geometry [17, 18]. This viewpoint is natural and almost 
mandatory since we are dealing with distributions over lower­
dimensional submanifolds of Euclidean spaces, e.g., the or­
thogonal group 0(1\1), the cone of positive definite matri­
ces 1P'(AI) , etc. In the sequel, we assume the reader to be 
acquainted with such differential-geometric concepts. We 
try to use notation compatible with [17]. We regard 0(1\1), 
1P'(M) and lL(1\1) as differentiable manifolds taking their Rie­
mannian structure from the corresponding embedding, e.g., 
L : O(M) --+ GlL(M, rn;,), L(X) = X. Here, GlL(AI,rn;,) 
is identified with an open subset of the Euclidean space rn;, l\12 
by interpreting an 1\1x AI matrix as an i\I 2-dimensional vec­
tor. All these manifolds are orientable and we let OGIL(MJ~.), 

O(\JI(M) , 01P'(M) and OIL(l\1) denote the corresponding volume 
elements (the particular choice of orientation is not impor­
tant to us) derived from their Riemannian metrics. Moreover, 
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when taking the Cartesian product of manifolds, we implic­
itly assume the canonical construction for the product met­
ric, hence, for the volume element of the product manifold. 
In this Riemannian context, a mass distribution or pdf over 
any of these manifolds is a non-negatively oriented exterior 
form. As an example, a mass distribution n, say, over the 
orthogonal group, belongs to the bundle of alternating ten­
sors Am (O(M)), where m = dimO(M) = MU"l - 1)/2. 
Since for any given distribution novel' 0(",1), we have 
n = f niDJ(M) for an unique nonnegative smooth function 
f : 0(1'1) ----+ R we use the terminology mass distribution 
for either n or f. This also applies to the other manifolds 
considered in this paper. 

In the sequel, we shall make use of the following results 
from [12]. Let p(A) denote the pdf (prior) on the mixing 
matrix A E GlL(M, lR). Then, the factorization A = PQ 
induces the pdf on JP'(M) x 0(111) given, up to a normalizing 
constant, by 

p(P, Q) = p(PQ)g(P), (6) 

where the function 9 : JP'(M) ~ lR satisfies 9 (Iv(P)) = 

g(P), where Iv : JP'(n) ----+ JP'(n) denotes conjugation by 
V E O(n), Iv(P) = VPVT

. Likewise, the factorization 
A = LU induces a pdf on lL(M) x O(M) given, up to a 
normalizing constant, by 

p(L, U) = p(LU)h(L). (7) 

where h : lL(M) ----+ lR is given by h(L) = pm(L)/det(L). 
Here, the function pm : lR n x n ----t lR is defined, for X E 

lRn x n • as 

XU X12 Xlm )
~'~1 X22 X2m 

pm(X) = rr~=ldet: .' 
( 

X m1 X m2 X m m 

In this paper, we restrict ourselves to the scenario where A 
has a zero-mean matrix variate normal distribution with co­
variance matrix E @ '11, denoted A rv N (O,:E @ '11), where 

cl 1/,' 1/0
:E,'IJ E JP'(M), see [15]. This means that A =:E -Z'IJ ­
(equality in distribution), where Z denotes an M x M ran­
dom matrix whose entries are independent and identically 
distributed as zero-mean unit-variance Gaussian random vari­
ables. The assumption A N (O,:E 0 'IJ) means that A isrv 

distributed over GlL(M, lR) according to 

ptA) = Q etr { _~:E-1 A 'IJ- l AT} , 

1 2 _-,--\1
where Q = (21T)-"M det (:Ew) 2 and etr {X} 
exp {tr (X)} for a generic matrix X, see [15]. Using (6) 
and (7) for this particular choice of the prior on A, we have, 
up to a constant. the joint distributions on the pairs (P, Q) 
and (L, U), 

p(P, Q) = etr ( _~:E-1 PQW-1QTp) g(P) (8) 

and 

p(L, U) = etr (_~:E-1LUW-1UT L T ) h(L), (9) 

respectively. 
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3. BLIND SEPARATION OF BINARY 
SOURCES 

In this section, we present a possible application for the re­
sults in [12], more specifically, for the induced pdfs in (8) 
and (9). We take the data model (1) along with the al­
ready discussed prior on the unknown mixing matrix A rv 

N (0, :E @ 'IJ), where the dispersion matrices :E and 'IJ are 
assumed known at the receiver. Moreover. we let w[n] de­
note zero-mean, spatio-temporal white Gaussian distributed 
noise with known power (J2, i.e., 

where 5[·] denotes the discrete-time Kronecker delta (5[0] = 

1 and 5[k] = 0 for nonzero k). We consider that s[n] = 

(SI [n], . . . ,sM[n])T denotes a vector of _U independent bi­
nary sources. We assume that each source emits independent 
and identically distributed symbols, Prob{sm[n] = I} = 

Prob {Sm[n] = -I} = 1/2, for m = 1,2, ... ,1\1. See [2, 3, 
4,5,9] for closely related, although non-Bayesian (no prior is 
assumed on A), wireless communication scenarios. Assum­
ing that N data samples are available, we have the matricial 
data model 

X = AS + "1, (11) 

where X = [x[l] x[2] ... x[iV]] denotes the data ma­
trix containing the observations, S = [s[l] s[2] ... s[N]] 
contains the information sequences sent by the sources 
(the mth row corresponds to the mth source) and W = 
[w[l] w[2] ... w[N]] stands for the additive noise matrix. 
Figure 1 illustrates a block diagram which corresponds to the 
matricial model in (11). We are interested in estimating the 

w 

Figure 1. Block diagram corresponding to de data model (11) 

binary matrix S in (11) from the available data matrix X, 
without knowing the mixing channel matrix A. A natural ap­
proach in this Bayesian setting is to look for the maximum a 
posterior (MAP) estimates of the transmitted bits, 

SMAP = argmax p (S I X), (12) 

S E l3i\IxN 

where BMxN stands for the discrete set of M x N binary 
matrices. With the prior A rv N(O, :E 0 'IJ), it is easily seen 
(after some straightforward computations) that problem (12) 
is equivalent to 

SMAP = argmin log dett C) + X T C - l x (13) 

S E l3MXN 

where 
C = STW S 0 :E + (J2 1 M N (14) 
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and x = vec( X) corresponds to the columns of X stacked 
into the vector x. Problem (13) is an integer optimization 
problem over a set with cardinality #8 = 2 iiIN. Thus, solv­
ing (13) is infeasible due to the required high-dimensional 
exhaustive search. An alternative approach, which leads to 
a feasible computational scheme, consists in estimating the 
most probable realization of the joint channel-source matrix 
pair given the available data, i.e., 

-­(A,S)IvIAP= argmax p(A,SIX). 
A E iGIL(M,JR), S E BMxN 

(15) 
Problem (15) can be solved by the following locally­
convergent iterative algorithm: given an initial estimate A (0) 

for the channel matrix, let 

arg max p(A(k), S I X) 
S E BM x N 

argmax n(A, S(k+l) IX)jJ 

A E iGIL(M,R) 

for l: = 0, L 2, ... until a fixed-point is attained. Given 
our statistical assumptions, and having defined a (1'+1) 

vec(A (k+l)), we have, after some calculus, the iterates 

2 

argmin IIX -A(k)SI1 (16) 

S E B.\!XN 

E-1vec(F ), (17) 

where 

and 

Solving problem (16) does not require a search over B MxN. 

In fact, since 

? N	 ?Ilx -A(k) -l = L Ilx[n] - A(k)s[nJII-, 
n=l 

the optimization problem decouples in ]V independent sub­
problems. The nth subproblem only involves the nth column 
of S. Thus, the nth column of S(k+l), written s(k+1)[n] can 
be found by solving 

s(k+1)[n] =	 argmin Ilx[n] - A(k)sI12 (I8) 

s E BM 

where BM denotes the set of 1'1-dimensional binary vec­
tors. Problem (18) requires a search over a much smaller 
set,#BM = 2M , and is easily implemented with parallel pro­
cessors. The main drawback of the iterative algorithm in (16) 
and (17) is its lack of global convergence. Accurate initial 
points A (0) are required to obtain a good performance in 
practice. In the sequel, we delineate a method which exploits 
the SOS of the received data and the results in (8) and (9) to 
find educated guesses for starting the iterations. We present 
our method only for the PQ factorization. The extension to 

the LU factorization is straightforward. We start by partially 
solving for A as explained in section 2. Namely, consider 
the sample-mean estimate of the correlation matrix of the ob­
served data x[n] given in (3). The denoised correlation matrix 
R in (2) is estimated as 

(19) 

where (3 denotes the maximum number III 

{a, 0.1, 0.2, ... , 0.9, I' hich makes the right-hand 
side of (19) positive-uennne. We do not simply subtract 

tt; [0] = a 21 M from R x [0] as equation (2) suggests, 
because, for finite data sets (N < DO), that method does not 
guarantee a positive-definite matrix R (which is essential for 
the remaining processing). Let 

R= VAV T	 (20) 

denote an eigenvalue decomposition of R. That is, V E 

O(JI) and A = diag(.>I1, /\2,"" AM) denotes a diago­
nal matrix with positive diagonal entries. In (20), we as­
sume that the diagonal of A is sorted in increasing order, 
Al :::; A2 :::; ... :::; AM. From (20), the P factor of A = PQ 
is estimated as P = V A1/2VT

. We propose to initialize the 
aforementioned iterative algorithm with 

(21 ) 

where 

Q = arg max p(Q I P = Pl. :2) 
Q E O(M) 

That is, Q denotes the most probable realization of the (} 
factor of the mixing matrix A, given that its P factor is P. 
Given the joint (P, Q) pdf in (8), we have 

Q= arg min tr ( Qq,-lQTp~-l p) . (23) 

Q E OeM) 

A closed-form solution for (23) is available [16], and can 
be computed as follows. Let q,-1 = ZDZT denote an 
eigendecomposition of q,-1, where Z E O(M) and D = 

diag(d1,d2 , ... ,dM ) denotes a diagonal matrix with its di­
agonal entries sorted in decreasing order, d 1 ::: d2 ::: ..• ::: 

- 1- T 
d!lI. Also, let P~- P = Yof>Y denote an eigende­
composition of p~-l P, where Y E O(M) and of> = 
diag (91, ¢2, ... , 0AI) denotes a diagonal matrix with its di­
agonal entries sorted in increasing order, 01 :::; 92 :::; ... :::; 
01vI. Then, Q = Y ZT. Notice that the determination of Q 
does not involve any significative extra computational burden 
since Z can be computed off-line (it does not depend on the 
received data, only on q,). As a final remark, perhaps a more 
defensible choice for A (0) would be 

A(O) = arg max p(A I X), 
A E iGJL(1I1, R) 

or A (0) = PO, where 

Q = arg max p(Q I X). 
Q E OUI,J) 
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Certainly, both these approaches incorporate more informa­
tion, in fact, all the available data X, than our simple method 
in (21), which makes use of only the SOS of the observations. 
However, it is easily checked that both these alternative ap­
proaches lead to computationally untractable problems. 

We conducted some computer simulations to assess the ef­
fectiveness of our initialization scheme. We considered a sce­
nario with AI = 2 binary users. The prior on the mixing 
matrix A is J'./ (0, :E 0 'lI), where 

0 
'lI = C [~ ] C

T (24)
1 

with 
G = [ cos(n/6) - sin(n16) ].sin(if16) cos(n/6) 

and 

:E=H[ ~ ~] HT (25) 

with 
H = [ cos (tt /8 ) -sin('if/S) ] 

sin('if IS) cos('ifIS) . 

We varied the signal-to-noise ratio (SNR) from SNR m in 

5 dB to SNRm a x = 15 dB, in steps of 6. = 2.5 dB. 
2 2

The SNR is defined as SNR = E IIAs[nlll IE \llw[n]II = 
tr(:E)tr('lI)IMcr2 . For each SNR, 5000 statistically inde­
pendent Monte-Carlo runs were performed. Each Monte­
Carlo run consists in generating a realization of A, Sand 
W, see (11), for a data packet length of N = 200. Next, 
I = 1 iteration of the iterative algorithm in (16) and (17) is 
performed starting from the educated guess A (0) in (21). For 
comparison, we also performed I = 1 iteration starting from 
a random initialization A (0) ~ N (0, :E 0 'lI), that is, an in­
dependent realization of the channel modeL Figures 2 and 3 
present the bit error rate (BER), averaged over the Monte­
Carlos, for user 1 and user 2, respectively, as a function of 
the SNR. The solid line with stars denotes a bound (max­

10 12 13 14 15'1 
I 

SNR 

Figure 2. BER of user 1 versus SNR (! = 1 iteration) 

imum likelihood bit decoding with the channel A known). 
The solid line with squares refers to our proposed initializa­
tion using the LU factorization and the solid line with circles 

14131210 11 
SNR 

Figure 3. BER of user 2 versus SNR (I = 1 iteration) 

refers to our proposed initialization using the PQ factoriza­
tion (these two curves coincide). The solid line with dia­
monds corresponds to the random initialization. As can be 
seen, our educated guess permits to outperform the random 
initialization. Figure 4 presents the mean square en-or (MSE) 
of the channel estimate, averaged over the Monte Carlos, as 
a function of the SNR. The lines follow the same definitions, 

10 11 12 13 14 15 
SNR 

Figure 4. MSE of channel estimate versus SNR (I = 1 iter­
ation) 

except that the bound corresponds to the stochastic Cramer­
Rao bound for the MSE of the channel matrix. This bound 
is obtained as follows. We suppose that S is known. If we 
apply the vecj-) operator to the data model (11), we have 

vee (X) vee (AS) +vee (W) 

(ST 0 hI) vee (A) + vee (W) . 

Let x = vee (X), a = vee (A) and r = ST 01M . The 
pdf p(x Ia) will follow the same distribution as the noise, 
but with mean ra. We then have: 

p(x Ia) = 8 exp (-~ (x - raf (x - raj)2cr­
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with .6 = ((211") M2i \ (J"MN) -1. We also know that a denotes 
a zero-mean Gaussian vector with covariance matrix R a = 
lJI (0:E. This means that the pdf p(a) can be expressed in the 
following way: 

p(a) = pexp ( _~aT (lJI- l 0 :E- l
) a) . (26) 

.112	 1 

with p = (211")-" (det (lJI (9 :E))-". From [19], we can 
see that the Fisher information matrix J T ( a) of the parame­
ter to be estimated (in this case, a = veer A)) can be obtained 
in the following way: 

JT(a) = J D(a) + J p(a). 

The matrix J D(a) represents the information obtained from 
the observations and is given by: 

Ida) -E [Va ({Va [logp(x I a)l} T)] 
1 (T @IM )(J"2 55 . 

The matrix J p (a) represents the information contained in the 
prior for A. This matrix is given by 

J p(a)	 -E [V a 
2 log p (a )] 

(lJI- l (9 :E-1
) . 

Thus, we know the matrix J T(a). As is known, the Cramer­
Rao inequality is given by 

(27) 

where 8 corresponds to the vector of parameters to be 

estimated, 0 represents an unbiased estimator for 8 and 

Cov (0) = E { (0 -~) (0 - 8) T} denotes the covari­

ance matrix of the error 8 - 8. From (27), we have 

tr ( E { (0 - 8) (0 - 8) T}) 2 tr p yl (8)) 

9 E{tr((O-8) (O-8)T)}2tr(Jyl(8)) 

9 E {IIO - 811 2 } 2 tr (J yl (8)). 

This expression gives us a minimum bound for the MSE of 
any unbiased estimator of 8. In our case, 8 = a and given 
the Fisher information matrix J T (a), we have 

and 
E{IIA - A11 2 } 2 tr pI-l (a )) , (28) 

which is the expression for the bound for the MSE used in the 
simulations. 

In figures 5, 6 and 7 we plot the results of similar simula­
tions, but allow for I = 2 loops of the iterative algorithm (16) 
and (17). As expected, allowing for more flops improves the 

10° I 
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SNR 

Figure 5. BER of user 1 versus SNR (I = 2 iterations) 
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Figure 6. BER of user 2 versus SNR (I = 2 iterations) 

BER for both users, irrespective of the initialization method. 
However, the random initialization is still outperformed by 
our approach over the entire range of SNRs simulated. Fig­
ures 8, 9 and 10 show the results corresponding to I = 3 
iterations of the algorithm in (16) and (17). We can draw 
conclusions similar to the previous ones. We stress that in 
terms of performance, the LV factorization was identical to 
the PQ factorization. 

4. TRAINED-BASED CHANNEL IDENTIFI­
CATION 

In this section, we discuss another application for the re­
sults in [12], namely the pdfs in (8) and (9). The data model 
is as in (11), and we assume the additive observation noise to 
have the same statistics as in section 3, see (10). Although 
not necessary for the method to be discussed, we also let 
the sources be binary and follow' the same statistical char­
acterization detailed in section 3. Moreover, we maintain the 
prior on the mixing matrix, A ~ N (0, :E ® lJI). We con­
sider a trained-based channel identification scenario. We as­
sume that P of the N emitted symbols by the M sources, 
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Figure 7. MSE of channel estimate versus SNR (l = 2 iter­
ations) 
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Figure 8. BER of user 1 versus SNR (l = 3 iterations) 

say, the sources' packet header S = [s[l] s[2] ... s[P]]' 
is known by the receiver. This preamble is included by the 
sources in order to assist the receiver in acquiring or esti­
mating the channel. Once the channel A is estimated, it 
can be used to decode the remaining information symbols 
in s[P+ 1], s[P+ 2], ... , s[N] from the observations x[P + 
1], x [P + 2], ... , x [N]. A possible channel identification 
strategy is 

AMAP = argmax p(A I X), (29) 
A E GJL(2Vl,lR) 

where X = [x[l]x[2] .,. x[P]] denotes the observed 

packet header. That is, AM A P denotes the most probable 
channel realization given the available header of data obser­
vations. Notice that this approach does not take into account 
all the received data, only the header. It can be verified that 
processing all observations would lead to a computationally 
infeasible solution, for basically the same reasons exposed in 
section 3 (beyond the time instant n = P, the transmitted 
data is unknown, representing 2 M (N - P ) bits, and the prior 
must be integrated against all possible source sequences). 

SNR 

Figure 9. BER of user 2 versus SNR (l = 3 iterations) 
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Figure 10. MSE of channel estimate versus SNR (l
 
iterations)
 

This estimate of the channel matrix is obtained as follows, 
From Bayes' rule, we know that 

A lvIA P arg max p(A i X) 
A E GJL(M,JR) 

argmax p(X' A)p(A) 
A E GJL(M,JR) 

We base ourselves on the data model 

X=AS+W, (30) 

where A ~ N (O,:E c>9 'lJ) and W ~ N (0, 172 I Af P ) . This 
means that a = vec (A) and w = vec (W) are zero-mean 
Gaussian vectors with correlation matrices R a = 'lJ 0 :E e 

2R w = 17 IMP, respectively. The pdf p(a) can then be ex­
- pressed as in (26). We now need to find the expression for 
p(x IA), where x = vec (X). Since the header of the data 
sent is known, that is, the matrix S, and that the channel ma­
trix is given, the random vector x I A has a Gaussian distri­
bution with mean J-t = vec (AS) and covariance equal to the 

3 
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noise's, that is, R x = R w = (J2 IMP. We have 

12 ( IA) - 1 . (--~ II _ )P x - HPt' exp ')., X /-t,l'(271)' ~ (JMP ~(J-

1 

Using these two pdfs and further straightforward calculations 
we come to the conclusion 

A II1A P = argmax o(a) 
A E GlL(M,IRi.) 

where 

Since this function is concave, its maximum is attained at the 
stationary point \7 d> (a) = O. It can be easily verified that 
this stationary point corresponds to 

aIlIAP = ('ItSST 0 1 M + 1 M (21 (J2 h -l)-1 vee (XST 'It ) 

and this is the solution of (29). 
We propose an alternative channel identification strategy, 

exploiting the SOS of the received data. Again, we present 
our results based only on the PQ factorization (the extension 
to the LU factorization is similar). Let P denote the estimate 
of the P factor of A = PQ, computed from the received 
data X as explained in section 3. We propose to estimate the 
channel as 

A=PQ, (31) 

where 
Q = argmax p(Q I X,P = Pl· 

Q E O(M) 

Thus, Q denotes the most probable realization of the Q factor 
of the mixing matrix A, given that its P factor is P and the 
available packet header X. This strategy makes the totality of 
the received data participate in the channel estimate, through 
its 2nd-order statistics. Using the Bayes rule and the identity 
in (8) yields 

argmin f (Q), (32) 
Q E 0(1)1) 

with 

f (Q) = tr ( QT AQ15) +(J2 t r ( QT CQD) - 2 tr ( e'Q) , 

where 

~2 

A P, 

15 SST, 

C Ph- 1p, 
'It-ID 1 

e PXST
. 

Problem (32) does not afford, in general, a closed-form solu­
tion. However, due to the special structure of the constraints, 
it allows for efficient low-complexity solvers exploiting the 
curvature of the Lie group O(M). 

We now present a locally convergent iterative algorithm 
which allows to solve (32). This algorithm is based on the 

first order geodesic descent method. Tne -:::-..:..::-..::" :: -::'. _.' 
gorithm for a generic optimization problem is tne =: ~~. 

Consider the constrained optimization problem 

min f(x) 

x E lVi, 

where ivl is a manifold in the Euclidean space JR.'" (a sphere, 
for example). If we are at a point x k E .J'vl, the usual gra­
dient descent solution (for unconstrained problems) consists 
in searching for x k+1 along the line starting at x k with di­
rection - V f (x k ). This means that in the traditional so­
lution, we have Xk+l = ,(t*), for some t* :2: 0, where 
,(t) = Xk - tV f(Xk). However, in the presence of con­
straints, such a solution is not, in general, feasible since 
Xk+l tf- /1,,11. We can, however, move along a curve ,(t) 
which has the same direction as the negative gradient (pro­
jected onto the tangent plane to /1,,11 at the point x k) but stays 
on the manifold M. This curve ,(t) which we move along 
is a geodesic. A geodesic constitutes a generalization of 
straight lines to surfaces with curvature. It is a regular curve 
which (locally) minimizes the distance between two points 
belonging to one surface. In this algorithm, we calculate the 
geodesic curve which starts at x k with an initial direction 
identical to the negative gradient projected onto the tangent 
plane to M at the point Xk,. We move along this geodesic to 
a new point which corresponds to a lower cost of f. Given 
a feasible point Xk we can then resume the algorithm in the 
following steps: 

i) Calculate the projection d k of - V f (x k) onto the tan­
gent plane to M at x k; 

ii) Determine the geodesic, ,(t), t :2: 0, of the constraint 
surface which has ,(0) = Xk and ft,(O) = d k; 

iii)	 Minimize f(T(t)) with respect to t :2: 0, obtaining t* 
and Xk+l = ,(t*). 

Figure II presents a geometric interpretation of the algo­
rithm. More details about it can be found in [20]. 

-V'f(xiJ 

Figure 11. First order geodesic descent method. 

We carried out some computer simulations to assess the 
accuracy of both channel identification strategies, i.e., (29) 
and (31). The prior on the channel is unchanged. see (24) 
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and (25). We varied the SNR between SNRmin = 0 dB 
and SNR max = 20 dB in steps ot .~\ = 2.5 dB. For each 
SNR, 5000 statistically independent Monte-Carlo runs were 
performed. Each Monte-Carlo involves realizing A, Sand 
W (II). The packet length is IV = 200, and we assume 
that the traiEing header has 15::ngth P = 8. Both channel 
estimators AI\IAP (29) and A (31) are implemented. and 

the respective squared channel errors II AI\IAP - AII-
') 

and 

IIA - AI1 2 

are computed. Figure 12 shows the mean-square 

errors (MSE) obtained for both channel estimates. The solid 

10 12 14 16 18 20 
SNR 

Figure 12. MSE of channel estimate versus SNR 

line with plus signs corresponds to the non-SOS based esti­
mator. This line is coincidental with the solid line with stars 
which conesponds to a bound calculated considering that we 
know the header S. The expression for this bound is obtained 
using the same theory behind (28), only now we have 

The two curves coincide because (29) is precisely the estima­
tor that attains this bound. The solid line with circles corre­
sponds to the SOS-based iterative algorithm initialized near 
the optimum. The dashed line with circles corresponds to 
the SOS-based iterative algorithm for estimating A initial­
ized under the assumption that the SNR is not low. If this is 
so, then (32) can be reduced to 

~ (0)	 ( T ~ 2 T) (T ~ )Q = arg min tr Q P QSS -2tr SA' PQ . 
Q E 0(111) 

(33) 
Supposing the headers used by each transmitter are orthogo­
nal to each other, we have SST = I u . This reduces (33) 

to 
Q(O)	 = argmax tr (QTPXST) , (34) 

Q E OUvI) 

which has a closed form solution. Let PA'ST = U SVT 

be a singular value decomposition of PA'ST. The solution 
to (34) is Q(O) = UVT . We can see that the SOS-based 
estimator achieves the best performance over all the SNRs 

considered. The initialization proposed in (34) is also close 
to the optimum. Figure I3 shows the same results but for 
Jf 3 users. The computer simulations were conducted 

18 201614 

, , 
10 12 

SNR 

Figure 13. MSE of channel estimate versus SNR 

under the same conditions except that the matrices 'l' and :E 
were taken to be 

4	 
o l

GTw~G	 [~ 
0 

0	 ~ J 

and 
0r 4	 o l 

H T:E=H 2 
0l ~	 ~ J 

with G and H E O(lH) randomly generated. We can make 
the same conclusion as before, although the MSE increases 
for all estimates. This is due to the fact that we are estimating 
more variables based on the same amount of samples. 

5. CONCLUSION 

Two distinct problems were discussed in which the use of 
2nd order statistics (SOS) was applied: blind source separa­
tion and trained-based channel identification. In the first case, 
the emphasis was set upon the initialization of a locally con­
vergent iterative algorithm. The solution proposed by us out­
performs a standard solution, the comparison being made by 
running computer simulations. In the second case, we created 
a locally convergent iterative algorithm which when initial­
ized with the application of SOS also outperforms a non-SOS 
based solution. Thus, in both cases, by solving the channel 
matrix up to an unknown orthogonal factor, the devised meth­
ods improve the performance of non-SOS based estimation 
schemes. In future work, we expect to study cases in which 
the channel matrix is not square and it bears complex entries. 
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