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Abstract - This article describes a Vocal Tract Length Nor­
malization (VTLN) procedure through frequency warping 
based on pitch estimates. This procedure aims to reduce the 
inter-speaker variability of speech signals in order to obtain a 
robust automatic speech recognition system. 
Two additional methods are also described: one for reducing 
the environment variability and another for compensating the 
coarticulation effects on connected word pronunciation. En­
vironment variability is compensated by explicitly modeling 
some frequent noise phenomena. Coarticulation phenomena 
compensation reduces speech signal variability by modeling 
events that result from coarticulation between adjacent mod­
els. 
Inter-speaker variability removal is performed by a traditional 
speaker normalization method, which consists in expanding 
or compressing the Mel filterbank bandwidths, in order to 
normalize the Vocal Tract Length (VTL) of each speaker. 
Most of the existing methods for VTL estimation are based on 
formant estimation, but the difficulty of formant estimation is 
a known performance limitation. The proposed method over­
comes such a problem since it estimates the warping factor 
through pitch. The recognition results, obtained for a tele­
phone digit recognition task (with phones and sub words as 
units), prove that this procedure leads to similar improve­
ments to those obtained with traditional methods based on 
formant estimates, actually outperforming them in some sit­
uations. 

Keywords: Connected Digit Recognition, Coarticulation 
Models, Speaker Normalization, VTLN. 

Resumo - Este artigo descreve um metodo de normalizacao 
de locutor atraves do tom que visa a reducao da variabilidade 
de interlocutor presente nos sinais de fala de forma a con­
duzir a urn robusto reconhecimento automatico de fala. Sao 
adicionalmente descritos metodos para a reducao dos efeitos 
de coarticulacao e da variabilidade imposta pelo ambiente 
acustico envolvente ao reconhecedor. 
A variabilidade ambiental e compensada modelando-se ex­
plicitamente fenomenos de rufdo. A reducao dos efeitos de 
coarticulacao e conseguida atuando quer ao nfvel fonetico, 
criando modelos aciisticos que resultam da coarticulacao en­
tre modelos adjacentes, quer ao nfvel Iingiifstico, ja que es­
tas unidades obrigam a construcao de urn dicionario com 
prornincias altemativas para algumas das palavras a reconhe­
cer. A variabilidade interlocutor e compensada atraves de 
urn metodo tradicional de normalizacao de locutor, que ao 
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variar a largura de banda do banco de filtros em escala Mel 
(na obtencao dos coeficientes MFCC) pretende compensar 
a variacao do tamanho do tracto vocal de cada locutor. Os 
metodos referidos em trabalhos anteriores que utilizam esta 
tecnica baseiam-se nos formantes para obter indicadores do 
tamanho do tracto vocal. No entanto, estes metodos apon­
tam como obstaculo a uma melhoria de resultados 0 fato de 
os fonnantes serem diffceis de estimar. 0 metodo proposto 
no presente trabalho ultrapassa este problema, na medida em 
que estima 0 fator de distorcao, nao a partir dos formantes, 
mas a partir do tom. Os resultados de reconhecimento apre­
sentados, para uma tarefa de reconhecimento de cadeias de 9 
digitos, com um vocabulario de fones e subpalavras, mostram 
que 0 procedimento considerado nao s6 alcanca os resulta­
dos dos metodos tradicionais baseados em formantes como 
tambem os supera. 

Palavras-chave: Reconhecimento de Dtgitos Ligados, 
Coarticulacao, Normalizacao de Locutor. 

1. INTRODUCTION 

The task of efficiently recognize spoken credit card num­
bers, telephone numbers or any other identification number is 
extremely important and requires an almost ideal recognition 
rate. Otherwise, it is not interesting and perhaps useless to 
potential users. The present work addresses the problem of 
an efficient recognition of nine connected digit strings, such 
as a telephone number. The process of speaker independent 
recognition of connected digits through the telephone is a 
special and an interesting case for Automatic Speech Recog­
nition (ASR). It is a relatively simple task since the vocabu­
lary involved is small but on the other hand, it must be ex­
tremely accurate since it needs only one wrong digit to result 
in an invalid string. 
Despite the good performance of the presently available ASR 
systems, the recognition robustness which allow the system 
to operate with an unlimited vocabulary, has not been fully 
achieved yet; particularly, if speaker independency and en­
vironment changes are taken into account. Amongst other 
factors ASR systems limitations are related to speech signal 
variability. In addition to the adverse conditions of the envi­
ronment, the effects of this variability represent the greatest 
challenge for present speaker independent ASR systems. In 
general, the sources of variability related to the speakers can­
not be fully eliminated. Therefore, it is necessary that the 
ASR technology efficiently model this kind of obstacle. This 
work looks out for a valid contribution for solving the cen­
tral problem of ASR system robustness. This is achieved by 
modulating some variability agents present on speech signals, 
namely inter-speaker variability, environment variability and 
the variability imposed by an overwhelming number of coar­
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ticulation effects that appear in spontaneous speech. 
By explicitly modeling the most frequent noise phenom­
ena, such as background noise, clicks, labial noise and other 
speech production artifacts, a more robust ASR system can 
be achieved. 
In order to improve further the system accuracy and the dis­
tinction between recognition models, other models were cre­
ated to include explicitly the coarticulation present between 
some digits. This means that alternative pronunciations must 
exist for some digits in the recognition vocabulary. 
In order to reduce the variances of the spectral distribution 
models due to speaker physiological differences, a speaker 
nonnalization method was implemented. Speaker normaliza­
tion aims to reduce the speech variability resulting from dif­
ferences between speakers - the so-called inter-speaker vari­
ability. These differences are essentially related to vocal and 
nasal tract shape and length, vocal chord physiology and also 
to gender and age. Speaker normalization is achieved by ma­
nipulating the acoustic parameters of the incoming speech 
signal in order to produce parameters similar to those of a 
reference speaker. If this is achieved, then the incoming 
speech features of distinct speakers will be similar, and the 
constructed recognition models will certainly be more robust. 
The main effect produced by speaker normalization is a shift 
of the speakers' formant frequencies, which are different ac­
cording to their vocal tract lengths. 
This paper is organized as follows. In Section 2 some speaker 
variability agents are presented. Section 3 characterizes the 
speech database used in the experiments and describes fea­
ture extraction, the model topology and the units used for 
recognition. 
Section 4 and 5 describe the procedure for environment vari­
ability reduction and the method for coarticulation phenom­
ena compensation, respectively. In this work it is also investi­
gated the advantage of separating the models by speaker gen­
der. In Section 6 the results from a gender dependent system 
are presented. Section 7 gives an outline of the traditional 
methods for speaker normalization. The pitch-based fre­
quency warping normalization method implemented in this 
work is described in Section 8. Finally, Section 9 discusses 
the results obtained with the proposed normalization method 
and Section 10 concludes the paper. 

2. SPEAKER VARIABILITY AGENTS 

In the major speaker independent ASR systems, speech 
models are trained by making use of a great deal of speech, 
which are pronounced by a large variety of speakers. Each 
speaker has specific features, which are not only related to 
physiological characteristics like length and shape of vocal 
tract, but also to linguistic differences such as accent, dialect, 
stress and environment. Due to these speaker specific fea­
tures, and to differences among all speakers, the speech sig­
nals arrive at the system with different acoustic properties. 
TIllS usually originates spectral distributions with great vari­
ances and therefore with great overlapping among distinct 
models. These specific features severely limit the ASR sys­
tems performance. 
In acoustic-phonetic context, the production of phonemes is 

highly dependent on the context where they appear. More­

over, they are affected by the impact that perturbations of the
 
environment have on the speech production mechanism, and
 
also by the physical and emotional condition of the speaker.
 
As previously pointed out [6], the speech of different speak­

ers may be distinguished by changes in five classes of vari­

ability: intra-speaker variability: inter- speaker variability;
 
environment variability; linguistic variability and context
 
variability.
 
The intra-speaker variability reflects variations in the speech
 
produced by a speaker. caused by physiological and psycho­

logical factors such as speech style, speaking rate, voice qual­

ity, environment context and stress. These factors are ex­

tremely important, since a little variation on an articulator
 
may lead to important acoustic changes.
 
Inter-speaker variability is due to differences among individ­

uals. These differences introduce specific characteristics of
 
each person in the speech features, and are related to phys­

ical, behavioral and geographical aspects. The differences
 
between speakers are related to intrinsic factors, essentially
 
to the anatomy of the vocal apparatus. The variability arises
 
due to factors related to length and shape of the vocal and
 
nasal tract components. These factors give rise to vocal tract
 
resonances formation, which are specific for each speaker.
 
The formants are the peaks of the spectral signature and cor­

respond to these resonances. Therefore, the formants will be
 
affected by these intrinsic factors. The vocal tract length is
 
also a function of age and gender. It increases with age up
 
to a stationary level on adult age. Concerning gender, female
 
speakers have shorter vocal tracts, on average, leading to for­

mant frequencies higher then those of male speakers.
 
Noise is a well-known characteristic of all environments, and
 
obviously affects the performance of ASR systems. A sig­

nificant number of typical noises not only disturb the signal
 
features but also affect the way the speech is produced, giv­

ing rise to the so-called Lombard effect. The appearance of
 
a noise event in an utterance usually leads to an error, since
 
the recognizer tends to detect an event by identifying it as the
 
most probable alternative. Other extraneous speech events
 
appear associated with speech pronunciation. These noises
 
are labial noise, audible breathing noise, initial aspiration
 
noise, coughs, hesitations and lip smacks, among others.
 
Linguistic variability is usually related to accent and dialect.
 
In the former, variability is essentially linked to differences
 
of pronunciation, while in the latter the differences are more
 
scattered: it may result in syntax and vocabulary differences
 
or differences in word morphology.
 
The contextual variability can be related to phonetic context,
 
linguistic context (like syntax, semantics or pragmatics) or
 
simply with social interaction.
 
These five classes of variability have a severe influence in the
 
ASR system performance. Therefore, it is necessary to re­

duce the influence of some of these factors in such a way that
 
allow the creation of speech models as robust as possible.
 
The proposed system attempts to reduce the speaker variabil­
ity in three different ways. Firstly, by modeling coarticula­
tion events, the intra-speaker variability is reduced. Secondly, 
the environment variability is reduced by explicitly modeling 
some frequent noise phenomena. Finally pitch based speaker 
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normalization is used to reduce inter-speaker variability and 
reduce the variances of the spectral distributions of the recog­
nition models. 

3.	 SPEECH DATA 

In this work the recogrunon tests were performed us­
ing strings of nine connected digits from the TELEFALA 
database [11], a Portuguese speech database collected 
through the telephone network. The speech signals were 
recorded at a sampling frequency of 8kHz, with 8 bitsl sam­
ple, formatted with PCM-j1 law. The training set has 1012 
digit strings and the test set has 847. The number of female 
and male speakers is about 50% in both sets. The speakers 
are more or less uniformly distributed through all age ranges 
(including children) and all geographical areas of the country. 
Since each speaker utters a reduced number of utterances, 
there is a high inter-speaker variability, not only related to 
physiological differences but to geographic origins, rhythm 
and style of production. Both sets were labeled manually, 
based on phones and sub word units and all files were ortho­
graphically transcribed, In order to allow an initial estima­
tion of the recognition units, 150 utterances were carefully 
segmented and labeled with these units. 

3.1	 FEATURE EXTRACTION AND MODEL 
TOPOLOGY 

The speech signals were pre-emphasized with a pre- em­
phasis factor of 0.97. A 32ms Hamming analysis window 
with a frame rate of 10ms was used to calculate 26 filter­
bank energy values, for each frame. The 26 triangular shaped 
filters were uniformly distributed on a Mel-frequency scale, 
covering the range from 300 to 3400Hz. Finally, 12 Mel Fre­
quency Cepstral Coefficients (MFCCs) were derived, from 
each frame. In addition to the 12 MFCCs, their first time 
derivatives (delta MFCCs), the log-energy (log E) and its first 
time derivative (delta log E) were also used. Each parameter 
vector is then composed with 26 features. Feature extraction 
was implemented by using the HTK toolkit [17]. 
The digit set of the Portuguese language was described using 
phones and sub word units. Furthermore, additional models 
were used to describe silence, general background noise and 
pauses between digits. 
Continuous density Hidden Markov Models (HMMs), with 
a left-to-right topology were used to model the recognition 
units. On the HMMs used, only self-loops and transitions to 
next state are allowed except in the silence and noise models, 
where the last state may connect to the first one. The number 
of states for each recognition model was determined based on 
the average length of the examples in the hand-labeled set. 
The number of states ranges from 5 to 9 including the non­
emitting states. A more detailed description of the recogni­
tion system can be found in [9]. 
The emission probability density functions are described as 
a mixture of 26-dimensional Gaussian probability density 
functions (with diagonal covariance matrices). In order to be 
able to study the recognition performance as a function of the 
acoustic resolution, mixtures containing from 1 to 20 Gaus­

88 

sians for the emission probability density function of each 
state were used. 
Regarding the training, the recognition models were initial­
ized starting from the hand-labeled set. Afterwards a Baum­
Welch re-estimation was used to train further the models. 
Then the rest of the training set was realigned in order to 
choose the correct pronunciation of the digits. Starting with 
a single Gaussian emission probability density function for 
each state, several embedded Baum- Welch iterations were 
conducted. The increase of one more Gaussian mixture was 
made by duplicating the weightiest component followed by 
three embedded Baum-Welch iterations. This process was 
repeated until models with 20 Gaussians per state were ob­
tained. It was observed that with more than 20 mixture com­
ponents the performance of the system did not increase fur­
ther significantly. 
The recognition syntax allows either the existence or absence 
of one or more of non-digit models, before and after the digit 
string. Each digit may appear in any order but the string 
length is known. Nine digits compose each sentence and only 
pauses are allowed between digits. Both train and recognition 
were performed using HTK 2.1 software, [17]. 

3.2	 RECOGNITION UNITS 

Most of the current continuous speech recognition systems 
use phones as recognition units, usually with left and right 
context (triphones). In these systems, appending any new 
word to the dictionary is a simple task, but a large and pho­
netically balanced database is required in order to train the 
phones with context. Word- based models usually lead to 
more robust systems but only make sense when the recogni­
tion vocabulary is small because every new word model has 
to be trained from the scratch. Besides, these systems per­
form better in isolated fonn than in a connected word task 
due to coarticulation between words. 
The recoznition units used in this work were sub- words and 
phones of the digits. The choice of these units was based on 
an acoustic-phonetic study of Portuguese digits. The units 
used are acoustically well characterized, most ofthem corre-. 
sponding to syllables or phones of the digits [9]. 
A set of 18 units (14 sub words and 4 phones) was defined 
to describe the 10 digits. It was found that a digit is not al­
ways pronounced in the same way; it is common that a vowel 
fall come out on the occurrence of some consonants (elision 
phenomenon). By using these recognition units, it is possible 
to build a dictionary with alternative pronunciations. Table 1 
shows the system dictionary using the SAMPA notation for 
the units, [18]. Each digit model is composed of a concate­
nation of the selected units, with some of them shared. This 
is the case of the phone lSI that is shared by the digits IdojS/, 
ItreSI and Is6jS/. This sharing of units corresponds to an ef­
fective increase of the available training data. 

.4.	 ENVIRONMENT VARIABILITY REDUC­
TION 

A speech recognizer interprets each speech segment as a 
sequence of items of the recognition vocabulary. Even as­
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Digits System DictionaryI	 I 

/u rv/ Urv 

/dojS/ doj S 
/treS/ tre S 

Ikwatru/ kwa tnt 
/SirvKlI/ s i-ik ku 

s irvk 
/s6jS/ s 6j S 
/sEt/ s Et @ 

s Et 
/ojtu/ ojt tu 

ojt 
/nOv/ nOv v@ 

nOv 

I hEru/ :::Er 1I 

Table 1. System dictionary with the sequence of models for 
recognition. 

suming that no errors occur due to other causes, the recog­
nizer will experience one word error if an out of vocabulary 
word (OOV) is produced [14]. Since this OOV does not ex­
ist in the recognition vocabulary, it will be replaced by the 
most probable alternative. If the expected number of words 
in the utterance is fixed, then for each insertion there is a cor­
responding word deletion. Therefore for each non-linguistic 
event present in the sentence, two errors may occur: an inser­
tion and a deletion. 
Analyzing the database it was found that beyond the dig­
its there is silence, pauses and other occurrences of non­
linguistic events that affect the recognition performance. 
These events come from the application environment and 
are caused by the speaker, most of the times before and 
after the speech production. These occurrences are labial 
noise, breathing noise, initial aspiration noise, speech from 
other persons, clicks, coughs, hesitations, background mu­
sic and typical telephone line noises (frequently these line 
noises have vertical and horizontal bars on their spectro­
grams). Only 8% of the utterances do not have non-linguistic 
models before the digits. 
Environment variability is then compensated by explicitly 
modeling some frequent noise phenomena. Its presence on 
the utterance cannot be ignored; otherwise the recognizer 
confuses it with other dictionary models. The non-linguistic 
models were specifically included in the recognition vocab­
ulary. However, some of these occurrences do not exist in 
a sufficient number to allow an efficient estimation. These 
cases were not considered and hence they were not modeled. 
Table 2 lists the non- linguistic events used in the proposed 
recognizer and their associated labels. By using these new 
models, each utterance may have none, one or more of these 
events at the beginning and at the end. Nevertheless, there are 
three models for which this rule does not make sense. That is 
the case of the asp, labial and resp models. The first two sit­
uations only occur in the period that precedes pronunciation. 
so their existence at the end is not considered. The third sit­
uation (resp model) usually occurs after pronunciation of the 
last digit (usually in speech produced with a high speaking 

Model Description Adopted Labels 

Silence sil 
Initial Aspiration asp 
Labial noise labial 
Respiration noise resp 
Short noises click 
Background talks fala 
Constant noise ruido 
Transient noises bars ruidov 
Narrow band noises bars ruidoh 

Table 2. Adopted labels for non-linguistic events. 

Mix WRR 
('Yo) 

SRR 
(%) 

WER 
(%) 

SER 
(%J 

Improv.(%) 
WER SER 

Baseline 2 90.8 52.1 9.2 47.9 - -

Baseline 8 95.0 70.1 5.0 29.9 - -

N/Ling Events 2 92.9 61.0 7.1 39.0 29.4 23.0 
N/Ling Events 8 95.6 72.1 4.5 27.9 12.4 7.4 

Table 3. Recognition rates and error rates for non-linguistic
 
modeling. Vv'RR - Word (digit) Recognition Rate: SRR - Sen­

tence (string) Recognition Rate; WER - Word Error Rate:
 
SER - Sentence Error Rate.
 

rate) so its instance is not considered at the beginning.
 
The recognition granunar considers the existence of any num­

ber of these events occurring more than once, before and after
 
the digits. Additionally, it is assumed that only pauses may
 
exist between adjacent digits. Speakers with a high speaking
 
rate usually do not make pauses: on the contrary, they coar­

ticulate between the end of one digit and the beginning of the
 
next one. Those who make pauses, usually make short ones,
 
not giving rise to any non-linguistic phenomenon.
 
The inclusion of these units requires annotation (segmenta­

tion and labeling) of the database utterances with the non­

linguistic labels. As reported in [9], after this process 57% of
 
all the labels in the entire database are non-linguistic events,
 
36% are silence and 21% are related to the other events de­

fined in Table 2.
 
The process of explicitly modeling noise phenomena results
 
in a significant increase of the system performance. The ex­

perimental results are presented in the next section.
 

4.1	 ENVIRONMENT VARIABILITY REDUC­
TION EXPERIMENTS 

The recognition results shown in Table 3 are gender inde­
pendent and correspond to models with 2 and 8 components 
of the Gaussian mixture for each HMM state. 
The experiments defined as N/Ling Events are those, which 
contain non-linguistic models. The performance is evaluated 
by comparing WER (Word Error Rate) and SER (Sentence 
Error Rate) of this system to the baseline system. The recog­
nition results are only concerned with the recognition of the 
digits in the strings, not considering the non-linguistic events. 
The results shown in the table prove that the insertion of non­
linguistic units leads to a significant improvement on WER 
and SER. When the number of mixtures varies between 2 
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N 
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LL 
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0'-----"'------'------'-------'-------'----' 
0.2	 0.4 0.6 0.8 

Time [5] 

Figure 1. FFT sonogram of IdojS dojSI when there is no 
coarticulation between the two digits. 

and 20, for WER there is an improvement between 29% and 
3% while for SER this is 23% and 2%. The higher improve­
ment occurs in models with 2 Gaussian mixtures. Although 
not shown in Table 3, the best results were obtained with 19 
Gaussian mixtures. In this case the digit recognition rate was 
96.7% and the sentence recognition rate (correct digit strings) 
was 77.7%. 

5. COARTICULATION MODELING 

During speech production, a spatial and temporal con­
trol as well as coordination of different articulators results 
in the sequence of phonemes. Sometimes for consecutive 
phonemes, these actions overlap, leading to coarticulation. In 
this case, the vocal tract is articulating a phoneme at the same 
time as it is preparing the articulation of the next one. There­
fore, the degree of coarticulation is highly dependent on the 
pronunciation rate. The acoustic realization of a set of sounds 
is greatly related to the fact that our articulators cannot move 
instantaneously from one position to another, giving rise to 
phonemes that are only partially articulated. 
The coarticulation is defined by Kirchhoff and Bilmes, [10] 
as "a change in the acoustic-phonetic content of a speech 
segment due to the anticipation or preservation of adjacent 
segments". According to these authors the degree of coar­
ticulation varies with several factors: the speaking rate; the 
degree of syllabic stress and the quality of the vowel (cen­
tral/peripheral and strong/weak). The authors conclude that 
a highly speaking rate associated with a low degree of stress 
leads to a strong coarticulation. 
In this work, a study on sentence sonograms was performed 
to define the most frequent coarticulation phenomena. It was 
considered the existence of coarticulation when there is a 
change of a phone due to the presence of a neighbor one. 
Figures 1 and 2 show an example of this case. Figure 1 shows 
a sonogram of an utterance of IdojS dojSI ("two two"in Por­
tuguese) pronounced with no coarticulation. In this case the 
sequence that better models the acoustic events is a sequence 
of the four following models: doj, S, doj, S. In the production 
of the diphthong lojl there is a decrease of the second formant 

3500 

3000 

N 
~ 2500 
c-, 

~ 2000 
::::> 

~ 1500 
LL 

1000 

500 

o'"----'------'--~'-----'----'---'-----'-------

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 
Time [5] 

Figure 2. FFT sonogram of IdojS dojSI when the end of the 
first Idojsl coarticulates with the beginning of the second. 

followed by an increase. The phoneme lSI is characterized 
by an energy cloud. Since lSI is unvoiced there is no trajec­
tory for the second formant (F2) in this period. The second 
digit is articulated in a similar way. When IdojS dojSI is pro­
nounced with coarticulation (Figure 2), the first lSI coarticu­
lates with the beginning of the adjacent IdojS/. The trajectory 
of F2 for the first lojl remains but there is a perturbation in 
the lSI of the first IdojS/. In this period it is clear a continuity 
of F2 from de first lojl to the second one, which leads to the 
conclusion that the pronunciation of lSI changed. The fact 
that following a lSI there is a voiced consonant makes lSI to 
sound like a IZI [8], [9]. 
In this study on sonograms, many coarticulation phenomena 
similar to those of figure 1 and 2 were found. Other example 
appears in the presence of two adjacent vowels, what result 
in the fall of one of them (elision). 
When the speech production has an absence of a clear separa­
tion between the acoustic specific features of each phoneme 
or sub word, coarticulation is probably present. This situation 
leads to a poor estimation of the corresponding models and 
the performance of the system degrades. By explicitly mod­
eling these pronunciation variations, some errors induced by 
speaker production variability could be corrected. It was de­
cided to add four units of coarticulation to the models set. 
These units are not the only ones that appear in the database; 
however, the others do not occur often enough to obtain an 
accurate estimation. The most common coarticulation units 
were selected and presented in Table 4. 
The phoneme Izi appears when lSI is followed by a vowel, 
while IZI appears when lSI is followed by a voiced conso­
nant. Other cases of common coarticulations are lu -u I and lu­
ojt/ which correspond to two adjacent vowels. Coarticulation 
phenomena compensation reduce speech signal variability 
due to phonetic context. This mechanism is two fold: on the 
one hand, it operates at the phonetic level because coarticu­
lation models were introduced; on the other hand, it operates 
at the phonological level because these new models originate 
alternative rules of pronunciation. The vocabulary becomes 
larger and there are some digits with more pronunciation al­
ternatives. Regarding Table 1, the digit IdojSI comprises the 
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Coarticulated Phones Resulting Models 

IS u-v/ 
IS ojt/ 
IS zEr/ z 
IS doj/ z 
lu ii->! u-u"-' 

lu ojtl u-oit 

Table 4. Selected coarticulation units. 

Mix WRR 
(%) 

SRR 
(%) 

WER 
(%) 

SER 
(%) 

1mprov.(%) 
\VER SER 

NILing Events 2 92.9 61,0 7.1 39,0 - -

NILing Events 8 95.6 72.1 4.5 27.9 - -

Coart, Events 2 93.3 62.3 6.7 37.7 6.9 3.5 
Coart. Events 8 96.1 75.9 3.9 24.1 13.8 15.6 

Table 5. Recognition rates for coarticulation modeling. 

sequence of models doj, S. After inserting the coarticulation
 
models, this digit has three alternative compositions: doj S,
 
doj Z or doj ::;.
 
Despite the fact that the process of explicitly modeling coar­

ticulation phenomena increases the number of models and
 
alternative pronunciations, a significant improvement in the
 
system performance is achieved. The experimental results
 
are presented in the next section.
 

5.1	 COARTICULATION MODELING EXPERI­
MENTS 

In Table 5 the results obtained with N/Ling Events experi­
ences are compared with the system with the coarticulation 
models, labeled as Coart. Events. Both experiments refer to 
models with 2 and 8 components of the Gaussian mixture for 
each HMM state. 
The Table shows that better results are achieved by modeling 
coarticulation events, which validates the proposed approach. 
In the case of 2 Gaussian mixtures the improvement is 6.9% 
in WER and 3.5% in SER, while for 8 mixtures it is 13.8% in 
WER and 15.6% in SER. 
Although it is not shown in the table, the best results were ob­
tained with 20 Gaussian mixtures reaching 96.9% and 80.1% 
for word (digit) and sentence recognition rate, respectively. 

6.	 GENDER DEPENDENT SYSTEM 

One of the most important causes of variability in speech 
production is due to gender differences, especially VTL dif­
ferences. Therefore, the automatic use of different acoustic 
models according to either speaker type or gender might help 
to increase the robustness of the ASR system. 
Speaker dependent automatic systems are known to outper­
form speaker independent systems and nowadays gender de­
pendent models are standard in speaker independent speech 
recognition systems. In these systems there is a pair of mod­
els for each unit. Each element of a pair corresponds to a 
different gender and is trained with male and female speech. 
In the decoding phase the model with higher likelihood is 

~ WRR (%) ISRR (e:r) [~l~iBJ SER ('Ie) I 

Coart. Events 2 93.3 62.3 6.7 37.7 
Coait, Events 8 96.1 75.9 3.9 24.1 
Female Models 2 96.4 76.2 3.6 I 23.8 
Female Models 8 97.9 85.9 2.1 14.1 
Male Models 2 96.4 I 79.6 3.6 20.4 

I 

Male Models 8 97.6 85.6 2.4 14.4 
Female & Male 2 96.3 76.4 3.7 23.6 
Female & Male 8 98.0 86.0 2.0 14.1 

Table 6. Gender-dependent recognition results. 

chosen. 
In order to introduce the gender dependent models. each 
model was duplicated and labeled accordingly. Regarding the 
train, the database was split up in two sets, according to gen­
der. The models are separately estimated, with the male set 
estimating male models and the female set estimating female 
models. The noise models are generic in the sense that they 
are gender independent, because the speaker gender does not 
affect these models. 
In this kind of systems, the available data for each set is less 
than in generic systems, where the models are independent 
of the gender. A total of 708 and 836 train utterances were 
obtained for female and male sets, respectively. In the 
set only half of the data is available, i.e., 382 female ano 
male utterances. 
The number of models increases, since the system uses two 
HMMs for each model: a female and male model. In the 
gender independent system, 18 recognition units and 4 coar­
ticulation units describe the 10 digits, while in gender depen­
dent system the recognition models are 36 and 8 coarticula­
tion models. 
The recognition grammar for the gender dependent system 
has the same format as the one for the gender independent 
system. However, in the former the number of possible words 
to recognize doubled because there is a male and a female 
version for each digit. Note that in this case the number of 
models to estimate is higher, which increases the computa­
tional cost. 
Table 6 shows the experimental results obtained for three dif­
ferent recognizers: a female, a male and a gender dependent. 
Coart. Events label refers to the previous results obtained 
with non-linguistic and coarticulation models, while Female 
models and Male models refer to the training and testing sets 
separated by gender. Female & Male refers to the imple­
mented system, which makes use of both gender models in 
the recognition process. As it can be seen in Table 6, the 
results show a significant improvement on the recognition 
rate of the gender dependent system. With 2 mixtures, the 
digit recognition rate (WRR) increases from 93.3% (Coart. 
Events) to 96.3% (Female & Male) while with 8 mixtures 
the same rate increases from 96.1 % to 98%. This rising in 
recognition rate corresponds to an improvement of 81% and 
95 % on WER for models with 2 and 8 mixtures, respectively. 
In regard to the sentence recognition rate (SRR) the results 
are also significantly better. In the Coart. Events the rate is 
62.3% and 75,9% for 2 and 8 mixtures, respectively. It rises 
to 76.4% and 86% if Female & Male models are used, cor­
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responding to an improvement of 60% and 72% on SER for 
models with 2 and 8 mixtures, respectively. 
The performance of female models in respect to a male test 
set was also tested. By analyzing the results one can realize 
that when data becomes more robust from the point of view of 
one set it conducts to a decay in the recognition performance 
of the opposite gender set TIns demonstrates the differences 
between genders, and motivates normalization. 

7.	 SPEAKER NORMALIZATION PROCE­
DURE 

In the past, different techniques have been investigated 
to normalize the parametric representation of speech signals 
through manipulation of its acoustic parameters. By reducing 
the speech signal variability due to inter-speaker differences, 
the ASR performance might be improved. 
One of the techniques widely used in speaker normalization 
is the frequency warping technique. This technique attempts 
to normalize the vocal tract length of different speakers by re­
ducing their influence on the spectral parameters. Using this 
method, the acoustic parameters are transformed by warping 
the speech signal in the frequency domain. This warping can 
be performed in two distinct ways. In the first one, warping is 
obtained by either compressing or expanding the speech sig­
nal in the spectral Fourier domain [I ], [3], [13]. In the second 
one, warping is obtained either compressing or expanding the 
filter bank responses, used in the MFCCs estimation, [2], [7], 
[16]. Whether the warping is applied on the spectral signal 
or directly on the filter bank, the goal is the same: both of 
them attempt to map the spectrum of a phoneme pronounced 
by distinct speakers into a standard one. 
Figure 3 illustrates this mapping process supposing that a fe­
male and a male speaker pronounce the same vowel. In the 
case of the female speaker all formants are above the refer­
ence vowels. In order to enable the filter bank to capture the 
same spectral information, this has to be expanded. In case of 
the male speaker the situation is almost the opposite. In or­
der to capture the same information, the filter bank responses 
have to be compressed. 
The mapping process of a speech signal spectrum pro­
nounced by distinct speakers into a standard one is performed 
by a warping function that depends on a single warping fac­
tor. The warping function establishes the relationship be­
tween the frequency axis used to represent the speech pro­
duced by a reference speaker and the same axis in the case of 
a given speaker. 
Both the selection of the warping factor and the shape of the 
function are vital for the success of the application. In re­
gard to the shape, a wide variety of functions were proposed: 
linear as in Lee and Rose's work, [7]; piecewise linear as by 
Wegmann et all, [13]; non linear by Eide and Gish, [I], or bi­
linear as by Zhan and Waibel, [16] and Fukada and Sagisaka, 
[2]. Regarding the selection of the warping factor there are 
two main procedures: the selection based on maximization 
of likelihood (ML), [7],[13],[16] and the selection based on 
speaker specific acoustic parameters, [1],[4]. The first one 
uses a predefined set of warping factors and selects the best 
one for a specific speaker by following an iterative procedure 
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Figure 3. Mapping of a vowel spectrum into a standard spec­

trum.
 

based on ML. The warping factor is selected such that the
 
probability of a set of acoustic features (of a given speaker)
 
is maximized in regard to a reference acoustic model. The
 
second one selects the warping factor by using an approach
 
based on the measurement of the formant frequencies of the
 
speaker. According to the authors, the position of these re­

flects the VTL.
 
Several authors obtained better results by using the maxi­

mization of likelihood criterion. However, the method based
 
on speaker specific parameters has the important advantage
 
of being computationally less expensive. Nevertheless, for­

mants estimation is liable to errors, especially when the sys­

tem works in adverse conditions. In the present work the
 
warping factor was selected from pitch (FO) in order to over­

come such problems.
 
Gouvea, [3], in his work, uses the median of the three for­

mants. He pointed out that the system performance only
 
stabilizes when each speaker data reaches 12 seconds. On
 
the proposed system, a reasonable estimation of pitch after a
 
small set of voiced frames can be obtained.
 

8.	 PITCH BASED FREQUENCY WARPING 

It is somehow intuitive that VTL estimation is based on 
acoustic studies. However, as already mentioned, this direct 
estimation from the speech signal is difficult because the re­
lationship between formants and VTL is not simple. 
In order to deal with this situation Eide and Gish, [1] pro­
posed a method, which conducted to significant improve­
ments in performance. Their method is based on the warping 
function given by the equation (1) and sketched in Figure 4, 
where k; is the ratio between the median third formant (F3) 
of a given speaker and the median of F3 of all speakers of 
the train set 

3f

t' = ks8000 X f (1) 

- The preference on F3 is due to the fact that this formant is the 
most stable, i.e., it is less dependent of linguistic information 
and therefore, from the statistic point of view, it is the most 
robust In [15] Zhan and Westphal also use this criterion. 
They expand the work of Eide and Gish, [1] and make the 
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Figure 4. Warping function shape used for determining the 
low and high frequencies of the Mel scale filter bank given by 
('l ). 

normalization with the same warping function but estimating 
the warping factor also from the first and second formants. 
They did not achieve better results with this method. The 
proposed method makes use of each speaker's pitch to esti­
mate his VTL and to perform normalization. This procedure 
seems worthwhile since pitch is more stable than F3 and its 
estimation is more reliable. Pitch determination obliges to a 
voiced/unvoiced separation, but this is also necessary on for­
mant determination since it does not make sense to estimate 
formants in unvoiced frames. The motivation for choosing 
pitch comes from the fact that female speakers have shorter 
vocal tracts, higher formants and higher pitch frequencies, so 
pitch and vocal tract length are probably correlated. 
As mentioned before, by doing normalization using F3 as 
an indicator leads to good results and, since the proposed 
method intends to perform normalization from FO, it is nec­
essary to analyze if there is any relationship between these 
two features. FO and F3 were calculated for each sentence 
frame. The pitch and the formants were estimated through 
the algorithms AMPEX [5] and SFS [12], respectively. 
By observing a scatter plot of FO and F3 means and medians 
a correlation factor of 0.45 and 0.3, respectively, were found. 
Since this last value is significantly below the first one, it was 
decided to use the means, FO and F3, instead of medians, as 
a main factor for normalization. 
The proposed method still uses Eide and Gish's function but 
k; was defined using FO instead of F3. Since the ratios 
F3/ F3 and FO/ FO are different, k ; will be affected by a 
value according to expression (2), where FO is the mean of 
FO among all speakers. 

FO 
k =0:= (2) 

S FO 

Each speaker has his own warping factor, which is indepen­
dent of the speaker gender. However, since one of the major 
factors of variability is associated with gender differences, it 
was decided to analyze two sets of speakers, one of each gen­
der, separately. 
The warping factors (WF) for both sets were computed in two 
distinct ways. In the first case, WF was obtained as the ratio 
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Figure 5. Warping factor distributions based on F:3 and sep­
arated by gender. 
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Figure 6. Warping factor distribution based on pitch. 

between the mean of the third formant (F3) of a speaker and 
the mean of F3 of all speakers in the train set (F3=2300Hz). 
In the second case, WF was defined as the ratio between the 
mean pitch of the voiced set of a given speaker and the mean 
pitch of all speakers (FO=160Hz). All means were estimated 
only by using voiced frames, detected by a pitch detector. The 
resulting warping factor distributions are depicted in Figures 
5 and 6. In both Figures 5 and 6 the distributions of the warp­
ing factors for the female set are above those of the male one. 
This leads to the conclusion that the 3 rd formant frequencies 
of male speakers are under the female frequencies and ob­
viously the same happens with the pitch. However, this last 
distance is greater. It was found that the mean pitch of the 
female set is about 80Hz (=::0 1 Bark) above the mean pitch of 
the male set. 
By comparing both distributions, it can be seen that they 
have similar shapes and this was the motivation to find a 
mapping function between the two distributions. In order to 
obtain such a function, it was assumed that below the stan­
dard speaker's pitch (l60Hz) the mapping function normal­

2 
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Figure 7. Third order parabolic function used for establish­
ing a in equation (2). 

izes male speakers and above this value it normalizes female 
speakers. Between 150Hz and 170Hz the warping factor dis­
tributions from female and male speakers overlap, hence no 
normalization was considered. After defining several map­
ping points, a third order fitting was done on them, result­
ing in the mapping function drawn in Figure 7. The ordinate 
g(FO) establishes the value by which the pitch (FO) should 
be warped to agree with the third formant (F3) value. This 
function establishes a in equation (2), which becomes a func­
tion of FO, i.e., a = g(FO). The warping function is then 
given by: 

FO) 8~{,O
l' = ( g(FO) FO x f (3) 

The normalization method proposed in this work is imple­
mented in three distinct steps. First, the mean pitch in voiced 
frames is determined. Then the warping factor is calculated 
through the equation (3). Finally, the upper and lower fre­
quencies of the Mel scale filter bank are changed accordingly 
to this equation. 
In order not to exceed the Nyquist frequency, the warping fac­
tor was restricted to an interval ranging from 0.9 to 1.1. Val­
ues below 0.9 generate a signal with too much compression, 
which probably gives rise to a significant loss of informa­
tion. This warping factor restriction makes equation (3) only 
a coarse estimation of F3. 

8.1	 PITCH BASED FREQUENCY WARPING 
EXPERIMENTS 

The recognition results based on normalization with F3 
(Normaliz. wi F3) and FO (Normali.; wi FO) are presented 
in Table 7. All experiments used training and testing sets 
with male and female speakers. The performance was de­
tennined by comparing the normalization experiences results 
with the non-linguistic events modulation method (NILing 
Events). Taking into account the normalization procedure, 
the proposed method not only reaches the results achieved by 
Eide and Gish [1] tNormalis. wi F3) as it outperforms them. 
The results of complete utterance with 2 mixtures show an 
improvement of 23.1 % for the Normali; wi FO method and 
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Improv.(%)WRR WER SERMix SRR 
(%)(%) ('Yo) (%) SERWER 

- -NILillg Events 39,02 92.9 61.0 7.1 
- -NILing Events 8 95.6 72.1 4.5 27.9 

Coart. Models 2 93.3 62.3 6.7 37.7 6.9 3.5 
Coart. Models 96.1 13.8 15.68 75.9 3.9 24.1 

6,1N0I711ali:::. wi F3 93,5 63,3 6,5 36,7 9,92 1 

18,7 20,4Normali; wi F3 76,98 96.3 23.13.8 
94,4 68,4 31,6 28,1 23,1N0I711ali:::. 11'1 FO 2 5,6 

77,9 22,1 26,2N0I711ali:::. wi FO 8 96,3 19.93.7 

Table 7. Pitch based frequency warping recognition results.
 

6.1% in the Eide's method when compared to the baseline.
 
With 8 mixtures the results are even better, 26.2% and 20.4%
 
for normalization based on FO and F3, respectively. How­

ever, the results with an increased number of mixtures did
 
not accomplish the previous ones, leading to the conclusion
 
that a fewer number of Gaussian mixtures will be necessary
 
to model each sub word unit. Since the results of recognition
 
were superior, it is expected that the sub words models be­

come more compact.
 
The best results were obtained with 17 Gaussian mixtures,
 
with normalization based on pitch. The digit recognition 
result was 96.9% and the sentence recognition result was 
81.6%. 
Another method was tested by considering models of entire 
word digits. The word recognition rate and sentence recogni­
tion rate obtained were 99.2% and 93.4%, with 20 mixtures. 
The normalization method applied to models of entire word 
digits does not evidence great improvements. It was obtained 
over 0.8% WER and 6.6% SER with 20 mixtures. 
Although the recognition results of the normalization method 
are encouraging, they did not reach the same rate as entire 
word models. Nevertheless, taking into account the system 
versatility, where the vocabulary is based on sub words and 
phones, this method can be very useful in applications with 
large vocabularies. 

9. CONCLUSIONS 

The goal of the work described in this paper was to ob­
tain a robust digit string recognizer for the Portuguese lan­
guage. The most notorious and influent sources of variability 
related with the speaker were identified and studied. From 
this process it was concluded that some robustness improve­
ment might be achieved by reducing environment variabil­
ity and compensating coarticulation phenomena. Moreover, 
by removing inter-speaker variability through a normaliza­
tion procedure, one can also obtain a more robust recognition 
system. 
It was found that, by modeling noise and coarticulation events 
the system performance is significantly increased, hence val­
idating the proposed method. The results prove that non­
linguistic unit insertion leads to an improvement of 29% in 
WER and 23% in SER. By modeling coarticulation events 
the improvements were 13.8% in WER and 15.6% in SER. 
A speaker normalization method based on pitch has been pro­
posed. The method proved to be very useful and the recog­
nition rate of a 9 connected digit string was increased. The 
method also overcomes the dependency of the system perfor­
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mance on the reliability of formant estimation and a reason­
able estimation of pitch can be achieved with only a small set 
of voiced frames. 
The normalization based on pitch reached the same results as 
those obtained with formants. An improvement of about 26% 
on SER was achieved compared with the baseline perfor­
mance, using 8 mixtures. These results stress the fact that a 
good correlation between pitch and vocal tract length should 
exist. 
The proposed method did not reach the recognition results 
of the gender dependent system, presented on Table 6. The 
method that uses gender dependent models with 2 mixtures 
achieves recognition rates of 96% on digit recognition and 
76% on complete utterance recognition, while the normaliza­
tion based on pitch only reaches 94% and 68% for the same 
rates. Nevertheless, the proposed normalization method does 
not require model duplication and therefore its computational 
cost is about half. 
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