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Abstract - In this paper, we present mean-squared conver
gence analysis for the partial-update normalized least-mean 
square (PU-NLMS) algorithm with closed-form expressions 
for the case of white input signals. The analysis uses order 
statistics and the formulas presented here are more accurate 
than the ones found in the literature for the PU-NLMS algo
rithm. Simulation results show excellent agreement with the 
the results predicted by the analysis. 

Key~ords: Adaption algorithms, efficient algorithms, par
tial update, MSE analysis, order statistics, NLMS algorithm. 

Resumo - Neste artigo apresentamos a analise da con
vergencia na media quadratica do algoritmo least-mean
square normalizado com utilizacao parcial dos dados (PU
NLMS) para 0 caso de sinais de entrada brancos. A analise 
usa conceitos de estatistica de variaveis ordenadas e as 
f6rmulas apresentadas mostraram-se mais precisas que ou
tros resultados encontrados na literatura para 0 algoritmo 
PU-NLMS. Resultados de simulacoes mostram 6tima con
cordancia com aqueles previstos pela teoria. 

Palavras-chave: Algoritmos adaptativos, algoritmos effi
cientes, algoritmos com atualizacao parcial de dados, es
tatftica de variaveis ordenadas, algoritmo LMS normalizado. 

1. INTRODUCTION 

When implementing an adaptive-filtering algorithm, the 
affordable number of coefficients that can be used will de
pend on the application in question, the adaptation algo
rithm, and the hardware chosen for implementation. With 
the choice of algorithms ranging from the simple least-mean 
square (LMS) algorithm to the more complex recursive least 
squares (RLS) algorithm, tradeoffs between performance cri
teria such as, e.g., computational complexity and conver
gence rate, have to be made. In certain applications, the use 
of the RLS algorithm is prohibitive due to the high compu
tational complexity and in such cases we must resort to sim
pler algorithms. As an example, consider the acoustic echo 
cancellation application where the adaptive filter may require 
thousands of coefficients [l]. This large number of filter co
efficients may impair even the implementation of low compu
tational complexity algorithms, such as the normalized least-
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mean square (NLMS) algorithm [I]. 
As an alternative, instead of reducing filter order, one may 

choose to update only part of the filter coefficient vector at 
each time instant. Such algorithms, referred to as partial
update (PU) algorithms, can reduce computational complex
ity while performing close to their full-update counterparts 
in terms of convergence rate and final mean-squared error 
(MSE). In the literature one can find several variants of the 
LMS and the NLMS algorithms with partial updates [2]-[10], 
as well as more computationally complex variants based on 
the affine projection algorithm [10, 11]. 

The objective of this paper is to analyze the partial-update 
NLMS (PU-NLMS) algorithm introduced in [l0, 11]. The 
results from our analysis, which is based on order statistics, 
yield more accurate bounds on step size and on the prediction 
of excess MSE when compared to the results presented in [I 0, 

11]. We also clarify the relationship between the PU-NLMS 
and M-Max NLMS [5,6] algorithms, whereby we show that 
the M-Max NLMS algorithm uses an instantaneous estimrv 
of the step size that achieves the fastest convergence in u. 

MSE. 
The organization of the paper is as follows. Section 2 re

views and discusses the PU-NLMS algorithm. Section 3 pro
vides an analysis in the mean-squared sense that is n-vel for 
this algorithm and allows new insights to its behavior. In Sec
tion 4 we validate our analysis of the PU-NLMS algorithm 
and compare our results with those available in the literature. 
Conclusions are given in Section 5. 

2. THE PU-NLMS ALGORITHM 

This section reviews and discusses the partial-update 
NLMS (PU-NLMS) algorithm proposed in [10, 11]. 

The objective in PU adaptation is to derive an algorithm 
that only updates a fraction of coefficients of the adaptive fil
ter in each iteration. Let us start by partitioning the input
signal vector x(k) E lliC N and the adaptive filter vector 
w(k) E lliC N into B blocks of L = NIB coefficients each, 

x(k) = [x(k) x(k -1) x(k - N + lW 
(1) 

= [xi(k) x1(k) x1(kW 

w("~) = [WI (k) W2(k) WN(kW 
(2) 

= [wi(k) w1(k) w1(kW 

Assuming a sequence of desired signals {d (k)} ~ I' we can 
write the sequence of output errors {e( k)} ~I as 

e(k) = d(k) - wTx(k) 

Our goal is to find an adaptation algorithm which updates 
N B blocks out of the B available blocks. Partitioning the 
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filter into blocks of coefficients, L > 1, rather than single 
coefficients. L = 1, may at first sight seem to lack any moti
vation but it has been shown that choosing L > 1 can reduce 
the computational load and amount of memory required for 
the implementation [8]. However, for a given number of co
efficients to be updated, choosing L = 1 will result in the 
fastest convergence rate for white input signals. The reason 
why a slowdown in convergence speed occurs for L > 1 is 
explained at the end of this section. 

Let the N B blocks of coefficients to be updated at 
time instant k: be specified by an index set INp (k) = 
{i 1(k), , ... , iNp(k)} with {ij(k)}j~l taken from the set 
{1, ... , B}. Note that T»p (k) depends on the time instant 
k. As a consequence, the N B blocks of coefficients to be 
updated can change between consecutive time instants. A 
question that naturally arises is "Which N B blocks should be 
updated?" The answer to this question can be related to the 
optimization criterion chosen for the algorithm derivation. 

In the conventional NLMS algorithm, the new coefficient 
vector can be obtained as the vector w (k + 1) that minimizes 
the Euclidean distance Ilw(k + 1) - w(l;)11 2 subject to the 
constraint of zero a posteriori error. Applying the same idea 
for the partial update of vector w(k), we take the updated 
vector w(k + 1) as the vector minimizing the Euclidean dis
tance Ilw(k + 1) - w(k) 11 2 subject to the constraint of zero 
a posteriori error with the additional constraint of updating 
only N B blocks of coefficients, where each block contains 
L coefficients. For this purpose, we introduce the N x N 
block-selection matrix A'hi

p 
Ckl having N B identity matri

ces I L x L on its diagonal and zeroes elsewhere. The ma
trix multiplication AYNp(k) w(k) now removes all the blocks 
that do not belong to the adaptive filter update. Defining the 
complementary matrix AYNp(kl = I - AYNp(l,) will give 

AYNP(kl w(k + 1) = AYNP(k.) w(k), which means that only 
N B blocks are updated. 

With this notation the optimization criterion for the partial 
update can be formulated as 

w(k + 1) = min Ilw - w(k) 11 2 subject to 
w 

X(k )TW = d(k) (3) 

{ AYNp(l) (w - w(k)) = 0 

Applying the method of Lagrange multipliers (see Ap
pendix I) gives 

. e(k)AYN (k)x(k) 
w(k + 1) = w(l;) + IIA p (') 11 2 . (4)

YNpCk)X k 

We see from (4) that only the blocks of coefficients ofw(k) 
indicated by the index set I Np (k) are updated, whereas the 
remaining blocks are not changed from iteration k to iteration 
k + 1. 

We now concentrate on the choice of the index set INp (k). 
Substituting the recursions in (4) into (3) we get the Eu
clidean distance as 

For a given value of e 2 (k), we can conclude that E(k) 
achieves its minimum when IIAYNp(klx(k)11 is maximized. 

Table 1. The PU-NLMS Algorithm 
PU-NLMS ALGORITH.M
 

for each k
 
{
 

e(k) = d(~') - xT(k)w(k) 
z = [llx1(~')f, "', IlxB(k)11 2]
 

[y, i] = sort [z] % y, i: sorted vector and index vector
 
i = i(B : -1 : B - Ni, + 1) % Nb largest norm blocks
 

IIAxl1 2 = L~~l y(B - j + 1)
 

for i = 1 to Nb 
{
 

I temp = [(Hi) - I)L + 1 : i(i)L]
 
w(Itemp) = w(Iremp) + fle(k)x(Itemp)/IIAxH2
 

}
 
}
 

In other words, we should update the N B blocks of co
efficients of w(~,) with the largest norm Ilx;(k)11 2 

, i = 

0,1, ... , B. 
In order to control stability, convergence speed, and error 

in the mean-squared sense a step size is required, leading to 
the following final recursion for the PU-NLMS algorithm 

The pseudo-code for the PU-NLMS algorithm is shown in 
Table 1. Note that in a practical implementation, the sorting 
algorithm and calculation of the largest norm blocks need to 
be implemented with care, see [10]. 

It was mentioned in the beginning of this section that a 
slowdown in convergence rate will occur for L > 1 in case 
of white input signals. The reason is that deviation from the 
optimal input-signal direction x( k) is increasing with L. A 
geometrical interpretation of the PU-NLMS algorithm update 
is given in Figure 1 for the case of N = 3 filter coefficients 
and N B = 1 block to be updated, where each block contains 
L = 1 coefficient. In the figure, the component x (k - 2) 
is the element of largest magnitude in x( k ), therefore the 
matrix AY1(k), which specifies the coefficients to update in 

w(k), is equal to AY1(k) = diag(O 01). The solution w ! 

in Figure 1 is the solution obtained by the NLMS algorithm 
abiding the orthogonality principle. The angle B shown in 
Figure 1 denotes the angle between the direction of update 
AY1(k)X(k) = [0 0 x(k - 2)jT and the input vector x(k), 
and is given from standard vector algebra by the relation 
cos B = Ix(k-2) I . In the general case,

Vlx (kW + lx (k - 1)12+ lx (k - 2W ~ 

with N B blocks of L coefficients in the update, the angle Bin 
"i' . IIAYNp(klx(k)11

R 1S given by cosB = II (k)11x 

Finally we note that for a step size p.(k) 
piIAYNp(klx(k) 11 2 /llx(k) 11 2 

, the PU-NLMS in (5) with L = 

1 becomes identical to the M-Max NLMS algorithm of [5]. 
For 11 = 1, the solution is the projection of the solution of 
the NLMS algorithm with unity step size onto the direction 
of Ar»:p(klx(k), as illustrated in Figure 2. In next section, 
where the PU-NLMS algorithm is analyzed, it will be clear 

that the choice fl = IIAr<:p(klx(k) 11 2/llx(k)11 2 corresponds 
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wi!;1 k i !; ) OIW 

i0.r(l,-1)W 

Xi!;) = [.t(kl.r(l; - 1) .r(l, 

dl!;) - wTx(k\ 

-

/ 

= n 

Figure 1. Geometric illustration of an update in JE. 3 using 
N B = 1 block with L = 1 coefficient in the partial update, 
and with I.r(k - 2)1 > Ix(k - 1)1 > Ix(k)l, the direction 
of the update is along the vector [0 0 x(k - 2)]T forming an 
angle ewith the input vector x (1;; ). 

to the instantaneous estimate ofthe step size giving the fastest 
convergence. 

d(k:) - w T x(k') = ° 
w(!; +- 1) 

.':..- 

Figure 2. The solution w(k + 1) is the PU-NLMS 
algorithm update obtained with a time-varying step size 
jJ(k) = IIAI NB(k)x(k)11 

2/llx(1,~)112, or equivalently, the M
Max NLMS algorithm [5] with unity step size. 

3. CONVERGENCE ANALYSIS 

In this section, the PU-NLMS algorithm [10, 11] is ana
lyzed in the mean-squared sense. New and more accurate 
bounds on the step size are provided together with closed
form formulas for the prediction of the excess MSE. For the 
analysis we adopt a simplified model for the signals x( k) and 
A (k)x(k). The model described in detail in Appendix II 

I N b 

uses a simplified distribution for the input-signal vector by 
employing reduced and countable angular orientations for the 
excitation which are consistent with the first- and the second
order statistics of the actual input-signal vector. The model 
was used for analyzing the NLMS algorithm [12], and was 
shown to yield accurate results. The model was also success
fully used to analyze the quasi-Newton (QN) [14] and the bi
normalized data-reusing LMS (BNDRLMS) [15] algorithms. 

It is shown in Appendix II that for the PU-NLMS algorithm 
to be stable in the mean-squared sense, the step size jJ should 

be bounded as follows: 

'J 2E[f2(k)] 
21jT 0 < jJ < E [;~i~l];::::: N <J'i 

where ,2 (k) has the same probability distribution as II x( k) 11 2
, 

which in this particular case is a sample of an independent 

process with chi-square distribution with N degrees of free
dom, E [,2 (k)] = N <J;, and 7,2 (k) has the same probability 

distribution as IIAI"Bik)x(k)f, 

f2(k) = E [IIAT\'BikjX(k)li2] 

(6) 
= E I ~ IIX;(k)11 2l 

liEIXB(k) J 
where {llxi(k)iI2}~=1 is a sample of a process with a chi
square distribution with L degrees of freedom. Because only 
the j'y'B blocks with largest norm are considered in the calcu
lation of f2 (k) we need to evaluate the expression in Equa
tion (6) using order-statistics. From Appendix III we get the 
following formula 

B BI 
E [.2(kJ] ~ . 

r . ". ~ . (j _ 1)!(B + 1 _ jl! X 
]=B+1-NB . (7)

lcc y2Pl - 1(y) (1 - F~(y))B-j fz(y)dy 

where F; (y) and i, (y) are the cumulative distribution func
tion and the density function, respectively, of a chi-squared 
variable with L degrees of freedom. For given Band N B, 

Equation (7) can be evaluated numerically. 
In general the expectation in Equation (6) needs to be eval

uated numerically. For the special case of L = 2, L _ chi
square distribution is equal to the exponential distribution, 
and a closed-form solution can be found (see Lemma 1 in 
Appendix III) 

E[rI=2(k)] = 
B . 1 

J- 2(-1)k B ! 

. L L (B - j)!k!(j - 1 - k)!(B + 1 + k - j)2
]=B-hB+l k=O ' , 

(8) 

It can also be shown that <J;NBL :::; E [f2 (k)] :::; N <J~ 
for i.i.d input signals (see Lemma 2 in Appendix III). A more 
pessimistic bound on the step size, 0 :::; jJ :::; 2NB L / N = 
2NB / B, was given in [10] as a consequence of the crude ap
proximation E [p2 (k)] ;::::: N BL<J~. For L = 1 an easily cal
culated bound that does not require the evaluation of Equa
tion (6) is the one combining the pessimistic bound above 
with the results for L = 2. In general E [f2 (1;;)] can also be 
estimated recursively during the adaptation. 

If the step size is chosen within its stability bounds, the 
final excess MSE after convergence is given by (see Ap
pendix II) 

(9)
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Table 2. Summary PU-NLMS Algorithm Analysis 

Stability range:
 

o< fl < 2E.~:~k)], where E[7'2 (k)] is given by Eq. (6)
 

Excess MSE:
 

Maximum convergence speed: 

E[r 2(k)] 

fl -
_ 

N"c; 

Recursive estimation of E [1'2 (k)]: 

2(,2(1,:) = a('2(k) + (1 - a)IIAI NB(k)X(k)I,1 , 0.9 < a < 1 

Easily calculated bounds: 

L = 1: 0 < fl < max[Nb/B, Eq. (8)]
 
L = 2: 0 < fl < Eq. (8)
 
L > 3: 0 < fl < Nb/ B
 

When N BL = N (full update), Equation (9) is consistent 
with the results obtained for the conventional NLMS algo
rithmin [12]. 

By observing the time evolution of the excess MSE 
in Equation (16) in Appendix II one can conclude that 
the maximum convergence speed is obtained for fl = 
E[r2(k)jr2(k)]-1 :::::0 E[('2(k)/NLT;]. Use of larger step 
sizes will neither increase the convergence rate nor decrease 
the misadjustment. In other words, in practice step sizes 
above flmax.l2 will not be used. The same can be said about 
the NLMS algorithm, for which the maximum value for the 
step size is 2 to guarantee stability but only values smaller 
than or equal to 1 are used. 

Table 2 summarizes the results of the analysis of the PU
NLMS algorithm. 

4. SIMULATION RESULTS 

In this subsection, our analysis ofthe PU-NLMS algorithm 
is validated using a system-identification setup. The number 
of coefficients in the plant chosen was N = 64, and the in
put signal was zero-mean Gaussian noise with LT; = 1. The 
signal-to-noise ratio (SN R) was set to 30 dB. 

Figure 3 shows the learning curves for the case of block 
size L = I using Ni, = 4, Ns, = 8, Ni; = 16, and Ni, = 64 
coefficients in the partial update. The curves were obtained 
through averaging 500 trials. The step size for each value 
of Ni, was chosen such that convergence to the same level 
of misadjustment was achieved. The corresponding theoreti
cal learning curves obtained from evaluating Equation (16) in 
Appendix II were also plotted. As can be seen from the fig
ure, the theoretical curves are very close to the simulations. 
In Figure 4, the number of coefficients in the partial update 
is kept fixed, NbL = 8, and the number of coefficients in 

Simulation 
- - Theory 

-30 

-350':---~500=------==----~---::':-::-------='
1000 1500 2000 2500 

Figure 3. Learning curves for the PU-NLMS algorithm for 
N = 64, L = 1 coefficient in each block Ni, = 4, Ni, = 8, 
I'v-b = 16 and Nb = 64, SNR = 30 dB. 

the 1'v-b blocks are varied. As can be seen from the figure, 
for a given number ]\hL coefficients in the update, the con
vergence speed is decreasing with increasing L. Figure 5 re
peats the previous experiment using the recursive estimation 
ofE[('2(k)] in Table 2. The resulting curves are very close 
to the theoretical, validating use of the recursive formula in a 
practical scenario when a limited knowledge ofE[1'2(k)] can 
be assumed. 

Figure 6 shows the excess MSE as a function of fl rang
ing from 0.05flmax to 0.8flmax for different values of Ns; 
where flnwx is given by Equation (18) in Appendix II. Note 
that the axis is normalized with respect to the maximum step 
size flmax, which is different for each value N b. The quantity 
E [('2(k)] needed for the calculation of flmax was obtained 
through numerical integration. For N b = 4, Ni, = 8, and 
IVb = 16 the corresponding values were E [('2(k)] = 20.04, 
E [('2(k)] = 31.484, and E [i::2(k)] = 45.794, respectively. 
As can be seen from Figure 6, the theoretical results are very 
close to the simulations within the range of step sizes consid
ered. Using step sizes larger than 0.8flmax resulted in poor 
accuracy or caused divergence. This is expected due to the 
approximations made in the analysis. However, only step 
sizes in the range fl :.:; 0.5flmax are of practical interest be
cause larger values will neither increase convergence speed 
nor decrease misadjustment. This fact is illustrated in Fig
ure 7, where the theoretical convergence curves were plotted 
for different values of u using N b = 8 and N = 64. There
fore, we may state that our theoretical analysis is able to pre
dict very accurately the excess MSE for the whole range of 
practical step sizes. 

In Figure 8 we compare our results (solid lines) with those 
provided by [10] (dashed lines). As seen from Figure 8, the 
results presented in [10] are not accurate even for reasonably 
high values of N b , whereas Figure 6 shows that our analysis 
is accurate for a large range of N b. This comes from the fact 
that in [10] order statistics was not applied in the analysis, 
resulting in poor estimates of E[lIAINBik)X(k)112] for most 
values of N b < B. 

80 



51 

Revista da Sociedade Brasileira de Telecomunicacoes 
Volume 18, Numero 1, Junho de 2003 

·1 ..... Simulation l
- - Theory 

o . 

-30 

N
b=1.l=8 

Nb=4.L=2 
-25 

-15 

-10 

-20 

_35'------~---~---~---~-------.J 

o 500 1000 1500 2000 2500 

Figure 4. Learning curves for the PU-NLMS algorithm for 
N ;= 64 and NbL = 8 in the partial update, Ni, = 1, Ni, = 2, 
Ni; = 4, and Ni, = 8, SNR = 30 dB. 

N-30 b=8.L=1 

_35'----__--:c' ----'- ---L -,-'- ,-,J 
o 500 1000 1500 2000 2500 

Figure 5. Learning curves for the PU-NLMS algorithm for 
N = 64 and NbL = 8 in the partial update using recursive 
estimation of E[P2(k)] (see Table 2) with Q = 0.95, N; = I, 
P'h = 2, Ni, = 4, and Nb = 8, SNR = 30 dB. 

5. CONCLUSIONS 

This paper studied normalized partial-update adaptation al
gorithms. Convergence analysis for the conventional partial
update NLMS (PU-NLMS) algorithm was presented, which 
gave further insight to the algorithm in terms of stability, 
transient and steady-state performances. The analysis was 
validated through simulations showing excellent agreement. 
New stability bounds were given for the step size that controls 
the stability, convergence speed, and final excess MSE of the 
PU-NLMS algorithm. It was shown that the step size giving 
the fastest convergence could be related to the time-varying 
step size of the M-Max NLMS algorithm. These results ex
tend and improve in accuracy previous results reported in the 
literature. The excellent agreement between the theory and 
the simulations presented here for the PU-NLMS algorithm 
has advanced significantly the study of order-statistic-based 
adaptive filtering algorithms. 

-151~-~--~--~--;:::::=;::::;=':;::::::::;:;-'--1 
--e- Simulation (L=32) 
--- Theory (l=32) 
--lIl-- Simulation (L=8) 
-0- Theory (L=8) 

-20 <: Simulation (l=4) 
-:: Theory (L=4) 

-25 

3 
~ 
:::2 -30 

-35 

-45 '-----,L-_~,----_---'---__'----_~___'____----'-__~ 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

x~ 

Figure 6. Excess MSE for the PU-NLMS algorithm versus 
the step size f1 for N = 64, L = 1 coefficient in each block, 
N b = 4, IVb = 8 and Ni, = 32 blocks, SNR = 30 dB. 

- O.5 flmax 

O.4,llmax 

0.6 ~lmax 

_ 0.8 ~lmax 

-5 

~-10 

~ 
:2 

-15 

-20 

-25 

-30O'-----,-----'-------'------~------'----'--------.J 
500 1000 1500 2000 2500 3000 

k 

Figure 7. Theoretical learning curves for different choice of 
step size in the PU-NLMS algorithm for N = 64, L = 1 and 
N b = 4, SNR = 30dB. 

APPENDIX I 

The optimization problem in (3) can be solved by the 
method of Lagrange multipliers having the following objec
tive function 

where )\1 is a scalar and >'2 is an N x 1 vector. Setting the 
derivative of (10) with respect to the elements of w equal to 
zero and solving for the new coefficient vector gives us 

In order to solve for the constraints, multiply Equation (11) 
by A (k) and subtract A (k)w(k) from both sides, i.e., I N P I N P 

- Al - - A~ 
A y y p (k) (w - w(k)) = 0 = + 2 A I N p (k)x(k) - A I N B (k) 2 
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-20,---~-~-~--r----~-~-~-~ Therefore, from Equations (5) and (14) we have 

12 14 1.6 

Figure 8. Comparison of Equation (9) (solid lines) with the 
excess MSE formula obtained from [10] (dashed lines) for 
L = 1, Ni, = 4, Ni, = 8, Ni; = 16 and Ni, = 64, SNR = 

30 dB. 

where we have used AI" (k)Ah (k) = Ah (k). There
-' B -' B . B . 

fore, 

(12) 

If we substitute (12) in (11) we get 

(13) 

where we used A I NB(k) = (I - A I NB(k))' Finally, >'1 
is obtained by pre-multiplying (13) by xT(k), which gives 
>'1/2 = e(k)/IIAI NB(k)X(k)11 

2 forxT(k)w(k) = d(k). Our 
final update is then given by 

e(k )AI xB(k)x(k) 
w(k+l)=w(k)+ II (')112'AINB(k)X k 

APPENDIX II 

In this appendix, the PU-NLMS algorithm is analyzed in 
the mean-squared sense. 

COEFFICIENT ERROR VECTOR 

In order to derive expressions for the second-order statis
tics of the PU-NLMS algorithm we will first derive an expres
sion for the evolution of the coefficient-error vector. Assum
ing that the desired signal is given by d(k) = XT(k)wopt + 
n(k) and defining the coefficient-error vector as !::::.w(k) 
w(k) ~ wopt> we can express the error as 

e(h') = n(k) - x T (k)!::::.w(k) (14) 

EXCESS MSE FOR WHITE INPUT SIGNALS 

For the MSE analysis, we assume that the vectors are ex
cited in a discrete number of directions [12, 14, 15]. 

The following assumptions are made: 

•	 Independence between x(k) and !::::.w(k). 

•	 The vectors x(k) and A I sBU,)x(k) are modeled 
by x(k) s(k)1'(h~)v(k) and AINB(k)X(k) 
s(k)f(k)v(k), respectively, where: 

*	 s (k) and s(k) take on values ± 1 with probability 
1/2. 

* 1'(h') and f(k) are positive real-valued stochastic 
variables such that 1'2 (k) and f2 (k) have the same 
probability distribution functions as II x(k) 11 2 and 
IIAh (k)x(k) 11 2 

, respectively.B 

* v( k) is equal to one of the N orthonor
mal eigenvectors of R E [x(k)xT(k)] 
denoted as V(k), and v(k) is equal to 

one of the N orthonormal eigenvectors of 

:Ii = E [AINB(k)X(k)xT(k)A~NB(k)] denoted 

as V(k). For white Gaussian input signals v(k) 
and v( k) are uniformly distributed, and R and :Ii 
share the same eigenvectors, i.e., V(k) = V(k). 
Therefore, 

P (v(k) = V(k)) = P (v(k) = V(k)) = ~ 
N 

(15) 

Notice that for any value of Ni; we have s(k) = s(k) since 
the inner product of x(k) and A I v B (k)x(k) is always posi
tive. 

For white input signals, the excess MSE is given by 
!::::.';(k + 1) = J;tr [cov (!::::.w(k + 1))] [1], where 
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= E [~w(k)~wT (k)] 

-E [p ~W(k)~WT(k)X(k)XT(k)AiNB(k)] 

IIAI NB (k)x(k) 11 
2 

_ E [p A I NB(k)X(k)XT(k)~W(J.,~)~WT(k)] 

II,AI\B (k)x(k) 11

2 A I NB(k)x(k)xT(k)~w(k)~wT(k)x(k)xT(k)Ai~B(k)] 

+ E [ P '1IAI\s (k)x(k) IleI 

2 2 AINS(k)X(k)XT(k)AL'B Ck)] 
+E ~ln(k) IIA '1')ll eI[ INB (k)X("; 

Let us analyze each term separately: 

VI = cr;tr {E [ilw(k)ilwT(k)]} = il~(l~) 

i, _ 2 { [~W(k)~WT(k)X(k)XT(k)AiNB(k)]} 
1;;2 - O'J,tr E P 'lA, ")11 2 

I INBU;'X("; 

, _ 2 { [ ~W(k)~WT(k)S(k)r(k)S(k)i'(k)V(k)VT(k)]}
tr 

- O'x E P iP(k)I~2(k) 

= O';E [p~wT(k)v(k)VT(k)~w(k)] E [s(k)r~l(~~)k)I'(k)] 

= P,E [~(k)] ~f;(k) 
N r(k) 

where we used Equation (15). Since tr {AB} = tr {BA} we 
will have 'lJJ2 = '/173· 

E [AINB (k)x(k)XT(k)~w(k)~WT(k)x(k)xT(k)AIvB(k)] } 
{tr IIAI~B (k)X(k) I,lel 

2 :2
=O'IP X 

~ WT (k)x(khT (k)Ai (k)A I NB(k)x(k)xT
(k)~W(k)]

v B 
4E [ IIAI NB(k)x(k) 11 

2 2 [~WT(k)X(k)XT(k)~W(k)] 
= O'IP E II~IIAI NB (k)X(k) 

= 0';p2 
E [~WT(k)V(k)vT(k)~W(k) ;:~~i] 

=2~E [r 2

(k) ] ~f;(k) 
P N 1'2(k) 

, _ 2 2 { [2 , AY'~'B(k)X(k)XT(k)AiNB(k)]} 
?f!s - crxfl tr E n (k) IIAYNB(k)X(k) 114 

= cr;cr;fl
2E [f2 ~ k)] 

Finally we obtain the expression for the excess MSE 

il~(k + 1) ::::: lL'l - V'2 - + 'l['..j + '11'5 

= {I _ !l, (2E [~(k)] _ flE [~2(k)])} il~(k) 
N r(k) r2 (k ) 

+ p2 cr; cr; E [r2~k)] 
which can be approximated as 

il~(k + 1)::::: {1- 1~' (2 - pE [~:~~;]) } il~(k) 
(16) 

') ') ') [ 1 ]+ fl-cr;cr;'E i'2(k) 

where the conservative approximation E [;iZi] ::::: 1 was 

used. The stability region in the mean-squared sense for !l 
is 

? 
0< fl < : (J7) 

,'- Ck)]
E [ rOCk;) 

and the Step size p = liE [;~iZi] yields maximum reduction 

of il~ (7,') in (16). Further simplifications with E [;:~ i~:n ::::: 
E[r 2(kl] .
 
E[r2 (kl] give us
 

2E [p2(k)] 
(18)o< fl < r:cri 

where E [r2 (k)] = Ncr.; and E [r2 (k)] can be calculated us
ing order statistics (see also Appendix III) and knowledge of 
Ni, and N. A more pessimistic bound can be obtained by 
using the relation E [p2 (7,-)] 2: NbLcri (see Appendix III) 
giving 

21\-bL 2P'h 
o < fl < ------;v- = B (19) 

which corresponds to the bound given in [10]. We stress that 
the analysis presented in this appendix shows that step sizes 
larger than the ones indicated by Equation (19) may be used 
according to Equation (18). 

For k: -" CXJ we have 

APPENDIX III 

In this Appendix it is shown how to obtain numerically 
E [1'2 (k)] used in the step size bound derived in Appendix II. 
An exact formula is given for the case of L = 2 coefficients in 
each block. Finally, a lower bound on E [f2 (k)] is provided. 
This parameter was also required in the analysis of the M
Max NLMS algorithm [6] with L = 1, which used a similar 
approach as presented here. 

The basic problem here is to calculate kth moment of or
dered statistics. This problem has received much attention in 
the past, see, e.g., [16]-[18], where recursion formulas and 
tables were produced for expected values and moments of or
dered statistics for various different distributions. 

Let y = [Yl Y2 ... YB]T be a vector containing the ele
ments of vector z = [ZI ;::2 ." ;::B]T ordered in value, i.e, 
u, ::.:; .1)2 ::.:; , •. ::.:; Yj ::.:; ." ::.:; YB· The probability density 
function fj (y) of the jth element in y is given by [19] 

' . ', ) = B!FZ- 1 (y) [1 - Fz(y)]B-j 10(Y)
j 
J(Y (j _ l)!(B _ j)! 

where 1:: (.:;) is the density of the unsorted random variables 
in vector z and F1-1 (c) is their cumulative distribution to the 
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power of j - 1. The kth moment of the jth element is given 
by 

E [y;] = I: Y]"fj(y)dy
 

B!
 
= x	 (20)

(j - 1)!(B - j)!I: ykF;~I(y) [1 - Fz(y)(-j f,.(y)dy 

The PU-NLMS algorithm chooses the Ni, blocks of ele
ments in x(k) that have the largest magnitude Ilx'("~)112, 
i = 1, .... B. For the case of Gaussian input signals, 
Zi = II Xi (k ) 11 2 is chi-distributed with L degrees of freedom. 
Therefore, if we order the values in {II Xi (k) 11 2 }f=1 in magni
tude, E[r 2(k)] can be found by calculating the first moment, 
k = l,in(20)forj = B+I-Nb' ... , Busingthecu
mulative distribution and density function of a chi-squared 
variable with L degrees of freedom, i.e., 

which for given B and I\h in general needs to be evaluated 
numerically. An exception is for L = 2 where for Gaussian 
input-signals. the chi-square distribution with L = 2 degrees 
of freedom becomes equal to the exponential distribution. 

Lemma 1 If the input signal :r(k) ~ N(O, 1), then if L = 2 
we have 

£[7'2(k)] = 

B j-1 2(-1)kB! 

L L (B - j)!k!(j - 1 - k)!(B + 1 + k - jJ2
F cB-NB+1 k=O 

Proal 

B!
E[y,]-	 x 

J - (j _ 1)!(B _ j)! 

100 ( -(B-i)y 1 -:y-y) j-l
y	 1 - e 2 e 2 -e 2 dy 

o	 2 
B! 

=	 x
(j - 1)!(B - j)!

1) 1
00 j-l (.J - k -key -(B+'-j)y
Y (-1) e 2 - e dy21 L k 2 o k=O 

B! j-l 2(-I)k 

= (B - j)! L k! (j - 1 - k)! (B + 1 + k - j) 2
k=O 

fooo
where we have used ye-aYdy = a12' Evaluation of 

E[r 2(k)] = Z~=B-ND+l E[Yj], concludes the proof. 0 

As was mentioned above, L = 2 is a special case and in 
general we need to evaluate E[r 2(k)] numerically. However, 
with the aid of the previous results we are able to calculate 
bounds for E[r 2 (k)], as stated in the following lemma. 

Lemma 2 If the input signal x(k) is i.i.d with zero mean 
and variance O'~ then, for Nb < B, E[I02(k)] 

Z:=B+I- N b E[Yj] is bounded asfollows: 

j\hO'; < E[p2(k)] :::; NO'; 

Proof: In the proof we need the following relations 

B

NE[x2(k)]L E[y(k)] = (22) 
h=1 

Relation (21) holds true by definition, and (22) holds true for 
an arbitrary distribution for which the integral in (20) con
verges [18], as shown below 

B B BI 

LE[Yj] = L (. -1)!(~ _ ')! x 
j=1 j=1 J JI: yFl- 1(y) [1 - Fz(y)]B+l

j fz(.y)dy 

_100 

{ 

- -00 

B B!f; (j -1)!(B 
j-l 

j)!Fz (y) 

[1 - F, (y)1"- j } yJ,(y)dy 

100 {B-1 (B - I)! " 
= -00 B {; "'!(B -1- k)!F;(y)x 

[1- F,(y)]B-H } yfc(y)dy 

= I: Byfz(y)dy 

co NIB L 

= [: B~8x(k-l+l-[i-l]L)2fx(X)dY 

= NE[x2(k)] 

where we used zf':ol (B'k l )pkqB-l-k = (p + q)N. From 
relations (21) and (22) it follows that N bO'; :::; E[f2(1<1] < 
N O'~ holds true for Nb < B. 0 

The lower bound given by Lemma 2 should be considered 
loose and is unlikely to be attained, and for Gaussian input 
signals and using L = 1, it can easily be shown that the lower 
bound is never attained unless L = N [20]. 
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