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Abstract - A generalisation of the Shannon complex 
wavelet is introduced, which is related to raised cosine 
filters. This approach is then used to derive a new family of 
orthogonal complex wavelets based on the Nyquist criterion 
for Inter-symbolic Interference (lSI) elimination. An 
orthogonal Multiresolution Analysis (MRA) is presented, 
showing that the roll-off parameter should be kept below 
1/3. The pass-band behaviour of the wavelet Fourier 
spectrum is examined. The left and right roll-off regions are 
asymmetric; nevertheless the Q-constant analysis 
philosophy is maintained. A generalisation of the (square 
root) raised cosine wavelets is proposed. Finally, a 
computational implementation of such wavelets on 
Matlab™ is presented as well as a few applications. 

Keywords: Multiresolution analysis, Wavelets, Nyquist 
Criterion, de Oliveira wavelet. Inter-symbolic interference. 

Resumo - Uma generalizacao da wavelet complexa de 
Shannon e apresentada a qual relaciona-se com filtros do 
tipo cosseno elevado. Esta abordagem entao empregada 
para criar uma nova familia de wavelets ortogonais 
complexas baseadas no criterio de Nyquist para eliminacao 
de interferencia intersimb6lica. Apresenta-se uma nova 
analise de multirresolucao ortogonal (MRA), mostrando 
que 0 parametro de rolamento deve ser mantido inferior a 
)/3. 0 comportamento passa-faixa do espectro da wavelet e 
examinado. As regioes de rolamento aesquerda e a direita 
sao assimetricas, mantendo no entanto a filosofia da analise 
com filtros de fator de qualidade constante. Uma 
generalizacao para as wavelets cosseno elevado e 
apresentada. Finalmente, descreve-se uma implementacao 
computacional sobre Matlah! para tais wavelets, bern como 
algumas aplicacoes. 

Palavras-chave: Analise de multirresolucao, Wavelets, 
Criterio de Nyquist, wavelet de "de Oliveira", lnterferencia 
intersimb6lica. 
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1.	 INTRODUCTION 

Wavelet analysis has matured rapidly over the past years 
and has been proved to be valuable for both scientists and 
engineers [1, 2]. Wavelet transforms have lately gained 
prolific applications throughout an amazing number of 
areas [3, 4]. Another strongly related tool is the 
multiresolution analysis (MRA). Since its introduction in 
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1989 [5], MRA representation has emerged as a very 
attractive approach in signal processing, providing a local 
emphasis of features of importance to a signal [2, 6, 7]. The 
purpose of this paper is twofold: first, to introduce a new 
family of wavelets and then to provide a new and complete 
orthogonal multiresolution analysis. Within the broad 
spectrum of wavelet application in Telecommunications, 
two among them have special motivation: (i) Wavelets in 
Multiplex and coding division multiple access CDMA [8 ­
11], (ii) Wavelets in orthogonal multicarrier systems (type 
orthogonal frequency division multiplex OFDM) [12 - 20]. 
It has been shown that wavelet-based OFDM system is 
superior regarding classical OFDM multicarrier systems in 
many aspects [15]. Orthogonal wavelets have also been 
used as spreading spectrum sequences [21, 22]. 

We adopt the symbol := to denote "equals by definition". 
As usual, Sa(t):=sin(t)/t is adopted in all mathematical 
development. Nevertheless, the MRA area is accustomed to 
Sinc(t):=sin(nt)/TCt notation (S:inc-MRA). The gate function 
of length T is denoted by ITI.!--J and ~t) denotes the Dirac 

\T 

distribution. Wavelets are denoted by W(t) and scaling 
functions by ¢i...t). The paper is organised as follows. Section 
2 generalises the Sinc-MRA. A new orthogonal MRA based 
on the raised cosine is introduced in section 3. A new 
family of orthogonal wavelet is also given. These new 
orthogonal wavelets seem to be particularly suitable to 
replace Sinc(.) pulses in OFDM systems. Further 
generalisations are carried out in section 4. A computational 
implementation for analysing signals by Matlab ' wavelet 
toolbox is described in section 5 and an example is given. 
Finally, Section 6 presents conclusions and perspectives. 

2.	 A GENERALISED SHANNON 
WAVELET (THE RAISED-COSINE 
WAVELET) 

The scaling function for the Shannon MRA (or Sine­
MRA) is given by the "sample function": ¢ISlw)(I) = Sinctt ) . 

A naive and interesting generalisation of the complex 
Shannon wavelet can be done by using spectral properties 
of the raised-cosine filter [23]. The most common filter in 
Digital Communication Systems. the raised cosine spectrum 
pew) with a roll-off factor a, was conceived to eliminate the 
Inter-symbolic Interference (lSI). Its transfer function is 
given by 

r 2~ o si "1< (l - a IJr (1)
PIJl')=I~jl + wS~(1 \1'1 -JrIl-a))l, a )17 S:i 11" i< (1 + a )rr (1 ­

4/7 L 'la /r 
\\'j2(1+a)7[,o 

l 
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The "raised cosine" frequency characteristic therefore 
consists of a flat spectrum portion followed by a roll-off 
portion with a sinusoidal format. Such spectral shape is very 
often used in the design of base-band digital systems. It is 
derived from the pulse shaping design criterion that would 
yield zero lSI, the so-called Nyquist Criterion. Note that 
pelt") is a real and non-negative function [23], and in 
addition 

Ip(1I+12,T) =+. (2) 
feZ _,T 

Furthermore, the following normalisation condition holds: 

2~ [PI" id" = 1 . It is proposed at this point the replacement 

of the Shannon scaling function on the frequency domain 
by a raised cosine, with parameter ex (Fig. I). Assume then 
that cP(w)=P(lt"). In the time domain this corresponds 
exactly to the impulse response of a Nyquist raised-cosine 
filter. 

Piwl 

-( I+ ex) JT -( l-ex)JT (l-a)JT (I +ex) JT 

Figure 1. Fourier Spectrum of the raised cosine scaling 
function: a flat spectrum portion followed by two roll-off 
symmetrical portions with a sinusoidal format. 

The generalised Shannon scaling function is therefore: 

,,((iSha),' ) cos ant 5' ( (3)'I' ( t := , tnc I)· 
1-(2exIF 

In the particular case a=0, the scaling function simplifies to 
the classical Shannon scaling function. As a consequence of 
the Nyquist criterion, the scaling function presents zero 
crossing points on the unidimensional grid of integers, 
n=±I,±2,±3,... .This scaling function ¢ defines a non­
orthogonal MRA. Figure 2 shows the scaling function 
corresponding to a generalised Shannon MRA for a few 
values of ex. 

"GShn 
'I' (I) 

- 6lphfl."'Ol 
~-~~. :'11pha=O.5 
.. ,.. SlIlC 

Figure 2. Scaling function for the raised cosine wavelet 
(generalised Shannon scaling function for ex = 0.1 and 0.5. 
The Sine function is also plotted for comparison purposes). 

3.	 MULTIRESOLUTION ANALYSIS 
BASED ON NYQUIST FILTERS 

A very simple way to build an orthogonal MRA via the 
raised cosine spectrum [23] can be accomplished by 
invoking Meyer's central condition [6]: 

~ , 1 (4)L.,I <D(w+ Znn) 1-=-' 
nEZ 2;r 

Comparing eqn(2) to eqnt-l), we choose <D(H)=~P(H) (i.e. 

a square root of the raised cosine spectrum). Let then 
1 

E O$wl<(\-aJ:r (5) 
1	 1 

<P(w) =,Jr:;- C05-(I H'I-(\ -a):r) (1- a tn $i H (\ +a i:r 
I ,,2:r 4al 0 \I ;:;. (\ + a );c 

Clearly, II <D(w+2ml) I'=~' so the square root of the 
2,T 

n 

raised cosine shape allows an orthogonal MRA. The scaling 
function 1f. t) is plotted in the spectral domain (Fig. 3). 

[/-	 \ j 
-(1 +a),T -(1-a),T (I-a)/T (I +a)Jr 

Figure 3. Spectral Characteristic of the "de Oliveira" 
scaling function for an orthogonal MRA: Despite the slight 
shape difference as compared to Fig.l , the former can just 
perform an non-orthogonal MRA while this scaling 
function achieves an orthogonal MRA. 

The cosine pulse function pcas defined below plays an 
important role on the raised cosine MRA. 
Definition 1. The cosine pulse function of parameters (to, 

eo, It"o) and B is defined by 

pcos(w;to.Bo,wo,B):= eos(wto + Bo)n w~;j'o J' to,eo,Wo,BE ~H, 

O<B<wo.O 
It corresponds to a cosine pulse (in the frequency 

domain), with frequency to and phase eo, with duration 2B 
rad/s, centred at Wo rad/s. Some interesting particular cases 
include: 

I) The Gate function: n(~ \J = pcos(lt'"O 0 0 B)'
l,28 ' , , , 

2) A Gate shifted by Wo n( 1\~ 1\0 I= PCOS(ll'O.O.wo,B)' 
', _B , 

3) An infinite cosine pulse: 
cos(wto + eo) = PCOS(w; to .eo.0.B ~ +(0). 

Denoting the inverse Fourier transform of PCOS by 
peos(t.to.eo. wo.BL= 3-1p COS (w:to.Bo. wo.B), the following
 

result can be proved.
 
Proposition 1. Given to, eo,Wo and B parameters of a PCOS,
 
the inverse spectrum pcos is given by:
 
pcosit :lo.Bo.wo.B) = 

(6) 
: ~,i(",,t+,,,,r,,+B,, '-Sa! BO + ( ) ) + ejiHor-""r"-B,, '-Sa! B(I- ( )] )

0	 0 
~i7 

Proof. Follows applying the convolution property for the 
following couple oftransfonn pairs: 
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and 

B i' I ( ) III \1'- \\'0 I ~u 
-e "c' .Sa BI f-' l-- I' 
-:	 2B ) 

It is interesting to check some particular cases: 

:.os(lI,O,O,o,s)<-> pcos(lI;OO,o,s) ~ ~Sa(BI)H TIl ~I 
If \ 2B ) 

."'LOS(I:IO,0,0, B --'> +CD)f-' PCOS(}\'; lo,O,O,B ----> +y:) 

~+[0(1+lo)+(5(1-lo)]f-'COS(H'lo)' which follows from the 

property of the sequence 
lim I I . 

-.Sa(-) = MI)' (7) 
[; ----> 0 nc 6' 

Property 1. (Time shift): A shift T in time is equivalent to 
the following change of parameters: 

pCOS(I- T;lo,Oo, '1'o,B)= pCOS(I;IO - T,Oo,H'o,B).O 

3.1	 SCALING FUNCTION DERIVED FROM 
NYQUIST FILTERS 

In order to find out the scaling function of the new 
orthogonal MRA introduced in this section, let us take the 
inverse Fourier transform of <D(w). 

The spectrum <D(w) can be rewritten as a sum of 
contributions from three different sections (a central flat 
section and two cosine-shaped ends):

.j2;¢(H) =rrr--H-J + eos(n-Io + eo )rr(W -1[ J+ (8)\21[-2B \ 2B 

COS(-\l'l +eoJrr( -lI'-lfj.o
\ 2B	 i 

with parameters B:= tta , 1 := _1_ and e _ II - a Jlf o 4u Ij 4a 

It follows from Definition I that 
"r:;;<!J(w) = pCOS(w;0.0.02Jr - 2B)+' ,1 (1- u)tr _ I (" 1 (1- u)Jr '\
PCOS tt,-'----.i<,JrUj+Pcos -tt,-,----,Jr.Jru ! 

4a	 4u 4a 4a )l 
and therefore 
.j2;d/'kO'(I) ~ pcos(I;O,O.O,2lf - 2S)+ 

I II - a ),7 I ( I (] - a )If )
f,'-.----,JTJra I + pros - t:-,----,Jr,;ra ..
 

4a 4a } \ 4a 4a
 

After a somewhat tedious algebraic manipulation, we derive 

odeO)(t) = ~ ,(l-a ).Sinc[(I-a)tJ + 
v27i (9) 

~. 4a. 1, {cos7i(l+a)t+4at,sin7i(l-a)t}. 
v27i 7i 1- ( 4atF 

A sketch of the above orthogonal MRA scaling function 
is shown in figure 4, assuming a few roll-off values, 

deO 
U II) 

alr'ha=O.l 
alph.:..=02
 
alr,h8.=1/3
 

\~,~,~"-...>/ 
_----'----__...L-__~_ 

Figure 4. "de Oliveira" Scaling Function for an Orthogonal 
Multiresolution Analysis (a=0.1, 0,2 and 1/3). 

The scaling function (1/ deD i (I) can be expressed in a more 

elegant and compact representation with the help of the 

M,JI).- [ .]' COS7iv/+2(VI-V,)I,SInlH 2I J 

following special functions: 
Definition 2. (Special functions); v IS a real number, 

HI'(t):= vSinC(l1), Osvs l, and 

" '_ I 2 I \'1 - v, I { . ,) 

-	 7r1-2t(v
l-v,) 

o 
It follows that: 

Er/J,Shai(l) = HI(t), 

5¢/deOJ (I) = H1- a ( I ) + M;=~ (I). 

lim ¢(deD J(I) = ¢( Sha t(I)
Clearly,	 . 

0----,).0 

The low-pass H(.) filter of the MRA can be found by using 
the so-called two-scale relationship for the scaling function 
[7]: 

<!J(w)= ~H(~I<!Jr~I' (10)
...;2 2; ,\2; 

How should H be chosen to make eqn(IO) hold? Initially, 
let us sketch the spectrum of <D(w) and <D(w/2) as shown in 
figure 5. 

The main idea is to not allow overlapping between the 
roll-off portions of these spectra. Imposing that 
2;rr( I-a»(l+a)7i, it follows that a« 1/3 (remember that 
O<a<I). This is a simplifying hypothesis. It is quite usual 
the use of small roll-off factors in Digital Communication 
Systems. 

<D(w) 

\l
 
-(I +a)Jr -(l-a)Jr (I-aliT (I +a)Jr 

<D(w/2) 

-( 1+a)2Jr -(l-a)2Jr (I-a)2Jr (I +a)2;r 

Figure 5. Draft of <D(w) and <D( w/2). 

It is suggested to assume that H( '2 = j; <D(\I'). Substituting 

this transfer function into the refinement equation (eqn( I0)), 
results in 

(r)(lI)= ~ };¢(\I}¢(fJ· (11) 

The above equation is actually an identity for Iwl > (I +a)7i. 

Into the region Iwl < (I +a)7i, it can be seen that <!Jr~1=,,[2; , 
,.2) 

under the constraint a« 1/3. 
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3.2	 THE ORTHOGONAL "DE OLIVEIRA" 
WAVELET 

The orthogonal "de Oliveira" wavelet can be found by 
the following procedure [7]: 

'-1'(\\)= 2_ 
1 H'(~-iTj\<1>I~lj' (12)

.J2. 2 \2 

Inserting the shape of the filter H in the above equation. it 
follows that: 

, 0	 I ( ). l11''I (1,)'f'(w)=e-jll/- r,::-<!\\\'-21l".<1> -j' ~ 
-.;2iT 2 

In order to evaluate the spectrum of the mother wavelet. we 

plot both <1>(>I-2iT) and <If.~~J' again under the constraint 
\ 2 

a<I/3 (Fig. 6). In this case, (1+a)Jr«I-a)21l" and 
(1+a)2Jr<(1-a/3)3 Jr. 

Defining a shaping pulse 
] (,,\ (14)

Sld'O)(ll)/~ r:;-<!>(11'-2x).<Df-:;-I' ' 
"Dr < : , 

the wavelet specified by eqn(12) can be rewritten as 
'f'ldeO/(w) = 2SideO) (II'). . The term e-jm 2 accounts for the 

wave, while the tenn S(tv) accounts for let, 

<ll(>I!2) 

a) ~ r:r:-\\. 
j .L/ · 
j 
i 

._-----"-----'-----'--- ­

-(1 +a)2Jr -( I -a)2 IT (I-a)2iT (1+a)2iT vr 

r----\
b) 

I \, 
r \ 

(l-a)iT (l+a)iT (1-a/3)3iT (I+a/3)3ir 

/'­ \ ......\c) I	 
\ 

/ 
j
f	 

\ 
\ 

w-(l+a)2Jr -(1-a)2IT (I -a)2iT (1+a)2iT 

Figure 6. Sketch of the scaling function spectrum: 

(a) scaled version, <1>( ~J (b) translated version <D(]1·-2iT). 

(c) simultaneous plot of (a) and (b). 

From the figure 6 above, it follows by inspection that: 

ifll'<Il"(l-a)
 

if Il"( I -a) S II' < 1l"(I + a)
 
(15)

if ,'[(1 + a) S 11' < 21l"(1- a) 

if 2Il"(l-a)sw<2ll(l+a) 

if 11':2:21l"(I+a). 

Inserting the (square root) raised cosine format of <D(.), 
results in: 

o 
1	 I 

r::;- cos-(w - IT(l + a») if iT( 1- a) s: 11' < iT(1 + a)
-vL7 4a 

1 
if iT(1 + a) s: 1\' < 2iT( 1- a)

& 
I	 1 ( . ) . )r::;- cos- ,>I - 211'(1-a) If 2iT(1- a) s: '" < 2IT( I + a 

v2Jr	 8a 
o if \1' 2: 2iT(1 + a). 

(16) 
The complex "de Oliveira" wavelet is given by 

'-1'1 <!cO)(11') = 2SldeO I (11'). and its modulo 

I'1'( JcO j! ".! 1= Sf <!cO)( \1) is depicted in figure 7. Observe 

furthermore that making a----+O, the wavelet reduces to the 
complex Shannon wavelet. 

It is quite apparent from Fig. 7 the band-pass behaviour 
of the wavelet 'PIc/eO) (w). Observe that the left and right 

roll-oil is not exactly symmetrical. Instead. despite their 
similar shape, they occur at different scales, a typical 
behaviour of wavelets. 

S(deO)(w) 

I 

.[2; 

w 

(1-0.)11 (1+0.)11 (1-0.)211 (1+0.)211 

1011-off=D.1 
1011-off=D.2 
1011-0ff=Ii] 

f: 

Figure 7. Shaping pulse of the "de Oliveira" Wavelet 
(frequency domain,( l-a)Jr:':: Iwl :'::(1 +a)2Jr). The magnitude 

of the flat central portion is 1/..j2;; . 

Taking the inverse Fourier transform can derive the time 
domain representation of the wavelet: 
w(deO)(I) = J-1,¥ldeO)(11'). 
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Denoting by s' deO) (t ) H s' .uo,( H') the corresponding 

transform pair, it follows that v/ d,O 1(1) = s' a.o1(1 _ ~) . 

2 
The shaping pulse can be rewritten as: 

{;;-S,ddl, C JS( 1 Jr(1 -t- 0) 1,,2Jr (ll')=P C w:-.----.Jr.JrO 1+ 
40 4a ) 

PCGSIw:O,O.-(l- -).-(1- .la) + PCGS 11';-, ' 3Jr a IT 'J l' 1
 
\ 2 3 2 8a
 

Figure 8. Modulo of "de Oliveira" Wavelet on frequency 
domain varying the roll-off parameter (depth axis). 

Finally, applying the inverse transform, we have 
{;;- ,d<", (1 Jr(1 + a)) ('17),,2JrO' (I) = peas 1:-,----,Jr,Jra +
 

\ 4a 4a
 

..('. 3;1' a Jr ,) 'l( ,1 2Jr(l-a) '.1peas 1,0,0,-(1--).-(l-,a) + peas 1.-,- ,2Jr,2Jra 
2 3 2 8a 8a J 

The peos(.) signal is a complex signal when there are no 
symmetries in PCOS(.). The real and imaginary parts of the 
peos function can be handled separately, according to 

pcos(t; to, Bo' wa.B) = rpcos(t) + i. ipcos(t) , where 

rpcos(t):= 9te(pcos(t; to, Bo' 11'0' B)) and 

ipcos(t):= 'J1I7(pcos(t: to, Bo· wo,B)) . 

Aiming to investigate the wavelet behaviour, we propose to 
separate the Real and Imaginary parts of S(deO)(t) , 

introducing new functions Ipe(.) and ipe(.) 
r 1 1 f 1 ( 18)'R Id'OI(I) - 'R'~ IdlO'(I _ -;l ''I I IdeO, U'j- ~ Idd)I(1 _ 1),.

,e'l/ -.'( 2] ~1I1'11' (-~'mls '2j 

Proposition 2. Let 6."i+ I J := 1t·o + B and 6.,,!'li·=w - B; o

6.01
+

11 :=Blo+wolo+Oo and 6.01- 1) :=Blo-Wolo-Oo be auxiliary 

parameters. Then 
-to Isen 118 111 

(0'> .0..U(lit +f If! )UJS I:1g(l) jcn.1u{l)t 

1lP((t)= 1 Ji"'-I+ll 1 ~'=- _1+1
 

2n '--f5
 

-If). 
A ~(' (II"" L..Jse}}f..j,,0(I) 

Scnult'
t t t 

f+l. L -1)C051,),-0(11 
COSl,),)'j' f 0 

ipe(I)= 1 ie,'-I."I.' 'EI-I.+1/
 

2lf (2 -Ii .
 
Proof. Follows from trigonometry identities. 

At this point, an alternative notation 
11)rpct t ) = rpc&'- 6.1-l+1) , 6.\1'1-1),6.0 1+1' ,6.0 1- and 

ipct t ) = iPC~; 6.\1'1+ 1;,6.\\,(-1),6.0(+11, 6.B
,- 1i) can be introduced 

to explicit the dependence on these new parameters. 
Handling apart the real and imaginary parts of s'deO' (1), we 

arrive at 

5~He(sl ,kU II t J)= 1Pel1,;1'([ + a ),17(1 - a ),0,%) + (19) 

Ipc(t;2Jr(1 - a), H(l + a },o,o) + rpei'I:2Jr(1 + a },2H(1 - a),'::' ,0~ 
\ 2 ) 

Applying now proposition 2, after many algebraic 
manipulations: 
5~He(s'deol (t))== 

I{H () H (' M I - " ( ') M 2' I H .'l ( 1 (20)='2 2i1-u) t - II+a) t)+, I-a t + 211-al t)J' 

and ~1te(\fI'd'O' (I»)= ~1te(s'ddJ) (t -11 2)). 

The analysis of the imaginary part can be done in a 
similar way. 
Definition 3. (Special functions); v is a real number. 
- cost vm ) 
H,.(t !:=v O:<::;v:<::;l, and 

vm 
""'(1)" __ ] 21 vl - v21 I }O
,VI ',sinJrlV-2(vI -v2)I.eosJrv21


,', . iT 1- [21(V1-1'2 )]2
 

The imaginary part of the wavelet can be found mutatus 
mutandi: 
.j2;:r,m(sr dd) I (I)) = 

1 ,b -1-1 -I-a -2il-a I ) (21)='2\H211-Q/ t)- II~Q/I)+Ml,(i(t)+M211_(i/t)J' 

and 3111(\fI"h'UI(t))== 3111(s'<l'[)'(I-1I2)). 

The real part (as well as the imaginary part) of the 
complex wavelet Wi deO) (I) are plotted in figure 9, for 

a==O.l, 0.2 and 1/3. 

:Re(lj/ deO) (t ) ) 

elpheeu.l 
02 elpha-Il Z 

alpha=1l3 

OJ 

-OJ 

-O,2_e.,lr.'----.L-------'-----'---------' t
-5 

lIJ (a) 

elpheefl.I 
,;]ph.=02 
alph6.=lf3 

-0,1 

-0.2 

-us ,-:1----.l.,------"----....L---..-I t 
'-lIJ 10 (b) 

Figure 9. Wavelet \fIldcOi(I): (a) real part of the wavelet 

and (b) imaginary part of the wavelet. (Sketches for a = 0.1. 
0.2 and 1/3). The effective support of such wavelets is thO' 
interval [-12,12]. 
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4.	 FURTHER GENERALISATIONS 

Generally, the approach presented in the last section is 
not restricted to raised cosine filters. 
Algorithm of MRA Construction. Let P( w) be a real 
band-limited function, P(w)=O }v>2Jr, which satisfies the 
vestigial side band symmetry condition, i.e., 

I I I . I ' 
tP(1I')+P(1\'-27r)J~:;- for IIVI<Jr, 

~7r (22) 
then the scaling function (!l( 1\ J~~ defines an orthogonal 

MRA. 0 
Proposition 3, If P(w;a) is a Nyquist filter of roll-off a, 
and .,1,( a) is an arbitrary probability density 
function, O<a< 1, then the scaling function 

<1>1 w) = ~ !A(a )P( w;a ida defines an orthogonal MRA. 

Proof. 11 is enough to show that :2):\J( \\ + 2m1) 1 
2 = ')I~ . Given 

lIEZ "-;/. 

an integer 11, then <1>(w+2m1}= i;Ja)p!11'+2;rn;a)da. 

Taking the square of both members and adding equations 
for each integer 11, 

11)Nw+ 2md I = 1l ( a )L P l i v + 2m1; a Jd a . Since P(w;a) 
Il~Z	 IIEZ 

'L. PI w + 2m1,"(X) =+andis a Nyquist filter, the proof 
riEL _/T 

follows.O 
The most interesting case of such generalisation 

corresponds to a "weighting" of square-root-raise-cosine 
filter. 
Corollary. (Generalised raised-cosine MRA). If P(w;a) is 
the raised cosine spectrum with a (continuous) roll-off 
parameter a, i.e., 

I ;7r O';',lI'I<(1-a)7r and .,1,(a) 

P(\1'.a)'~ Jl~Jll+COS~U "'1-JT(l-aJ)lJ (l-a)iT,;1 "'1,< (l+a)7r
4ff 2a 

o i ",12 (l+a)ff 

is an arbitrary probability density function defined over the 

interval O<a<l, the scaling function <D(",) = iAla)P(,,';a)da 

defines an orthogonal MRA. 0 

5.	 IMPLEMENTATION ON MATLAB™ 
AND A FEW APPLICATIONS 

Aiming to investigate some potential applications of such 
wavelets, software to compute them should be written. 
Nowadays one of the most powerful software supporting 
wavelet analysis is the Matlab™ [24], especially when the 
wavelet graphic interface is available. In the Matlab! 
wavelet toolbox, there exist five kinds of wavelets (type the 
command waveinfo on the prompt): (i) crude wavelets (ii) 
Infinitely regular wavelets (iii) Orthogonal and compactly 
supported wavelets (iv) biorthogonal and compactly 
supported wavelet pairs. (v) complex wavelets. Complex 
wavelets present as a rule interesting symmetry and possess 
closed expression. In contrast with standard continuous 

complex wavelets (cgauN Gaussian, cmorFb-Fc Morlet, 
Shannon shanFb-Fc, fbspM-Fb-Fc frequency B-spline), the 
"de Oliveira" scaling function do exist and these wavelets 
are orthogonal so the reconstruction property is insured. 

The m-files to allow the computation of de Oliveira 
wavelet transform are currently (freeware) available at the 
URL: http://www.ee.ufpe.br/codec/WEBLET.html (new 
wavelets). The family de Oliveira includes: deo (short 
name) and cdeo (short name). Support width infinite, 
effecti ve support [-12 12]. Since 0::; a ::; 1/3 , the following 
five default values were assumed: a= 0, 1/15, 2/15, 1/4, 
4/15 and 1/3. For instance, the complex wavelet associated 
with a = 1/3 is denoted cdeoO.33333. A naive application is 
presented in the sequel so as to illustrate the potential of this 
tool. 

Figure 10. Complex orthogonal "de Oliveira" wavelet 
display over Matlab Ttvr using the wavemenu command. 

The continuous de Oliveira wavelet transform (moO) of 
an arbitrary signalj(t) can be computed according to: 

1 fX. (deOll( t-bl , (2<)
Ca,h:== ~ I j(t)~/ '- ft, ~ 

-vI a I x a ) 

where	 /f(deO)(.) isdefinedbyeqn(l8),(20),(21). 

5.1	 FAULT DETECTION IN TRANSMISSION 
LINES 

Just to exemplify the potential of this tool in signal 
processing, a few signal derived by fault simulation in a 
138kV transmission line by the ATP (Alternative Transient 
Program) were analysed [25]. Figure 11 shows a naive 
scheme for the section of the transmission system used in 
simulations. Here, ZLT is the transmission line impedance 
between A/B; Zel and Zel are the Thevenin equivalent 
impedance in the terminal A and B, respectively; Eel and 
Ecc denote the voltage source de of the Thevenin equivalent 
circuit in the two terminals. All faults are derived at a 
sampling rate of 128 samples/cycle. 

A	 B 

Figure 11: Simplified diagram of the three-phase line 
adopted in ATP simulations. 
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The faults were simulated by ATP, considering that the 
power quality monitoring took place at terminal A. The 
transmission line is assumed to be totally transposed, with a 
distributed parameter model. The total simulation slot was 
eight cycles, and all faults (with zero fault impedance) were 
simulated four cycles after the start of simulation. 

Figure 12. Voltage sample of a single-phase after a phase­
phase fault simulated by ATP for the transmission line 
shown in figure 11. A short transient occurred at four cycles 
after starting simulation. 

The wavelet analysis of the single-phase voltage signal 
shown in Fig.12 was carried out applying different complex 
wavelets as an attempt to locate the position where the fault 
start. Figure 13 and 14 illustrate the results of magnitude 
and phase-angle jump for two examples: "complex 
gaussian" and "de Oliveira" wavelets. It can be observed 
that cdeo can furnish nice time localisation ro erties. 

Figure 13. Modulus of Cab and coefficient line a=1 (left), 
Phase of Cab and coefficient line a= I (right) for the signal 
(Fig. 12). Scale settings: Min.l, step 0.5, Max. 2; colour­

complex 

Figure 14. Modulus of Cab and coefficient line a=1 (left), 
Phase of Cab and coefficient line a=l (right) for the signal 
(Fig. 12). Scale settings: Min.1, step 0.5, Max. 2; colour­
map: "pink", number of colour: 256. Different complex 
analysing wavelets: (a) cdeoO.08333 (b) cdeoO.33333 . 

6. CONCLUSIONS 

This paper introduced a new family of complex 
orthogonal wavelets, which was derived from the classical 
Nyquist criterion for lSI elimination in Digital 
Communication Systems. Properties of both the scaling 
function and the mother wavelet were investigated. This 
new wavelet family can be used to perform an orthogonal 
Multiresolution Analysis. A new function tenned peas 
was introduced, which is offered as a powerful tool in 
matters that concern raised cosines. An algorithm for the 
construction of MRA based on vestigial side band filters 
was presented. A generalisation of the (square root) raised 
cosine wavelet was also proposed yielding a broad class of 
orthogonal wavelets and MRA. These wavelets have been 
implemented on Matlab" (wavelet toolbox) and an 
application to fault detection in transmission lines 
described. These new wavelets seem to be particularly 
suitable as natural candidates to replace Sinc(.) pulses in 
standard OFDM systems. Our group is currently 
investigating this topic. 
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