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Prediction Transform GMM Vector Quantization for
Wideband LSFs

Miguel Arjona Ramirez

Abstract—Split vector quantizers are specialized over clusters The current state-of-art transform domain quantization is
defined by a low-order Gaussian Mixture Model (GMM). A GMM-based classified SVQ in the KLT domain for the line
prediction-based lower-triangular transform is adapted for the spectral frequency (LSF) representation of speech spectra

enhancement of vector quantization (VQ) in each cluster. Tis -~ .
transform is generalized to be used in generic vector spaces parameters [7], building on previous results for GMM-based

where component shifts are used instead of time shifts. Optial ~ classified SVQ [8], [9]. _ .
quantizer banks are designed in minimum noise structures wbse However, there are other decorrelating transforms, whieh a

codebooks are used for the proposed Cartesian split, which |ess complex than the KLT to compute. One such transform
improves their coding gain. A novel minimum noise structure s the prediction-based lower triangular transform (PLTQ][

is proposed for split VQ. This kind of split VQ is tested for . L . . .
line spectral frequency (LSF) quantization of wideband spech which is investigated in this paper for SVQ at reduced

spectra, revealing a comparable average performance to the COmplexity. By proper implementation, which involves the
Karhunen-Lo&ve transform at lower rates with reduced outlier Cartesian SVQ proposed in Section V, its performance is

generation and computational complexity. better than scalar quantization while its gain matches dhat

Index Terms prediction transform, vector quantizatiorlihe KLT.
Gaussian mixture models, line spectral frequencies, $peec

. ) Il. PREDICTION TRANSFORM FOR ANY SPACE
analysis, speech coding.

The prediction-based lower triangular transform (PLT)][10
B transforms thep x 1 zero-mean source vectar with
covariance matrixR,,, into vector

ECTOR quantization (VQ) is more efficient than scalar .

L . o y = Bz 1)

guantization (SQ) but generally its search complexity is
much higher and grows exponentially with dimension whewith covariance matrixR,,, which is diagonal, where x
full search is applied [1]. A successful approach factoes tp matrix B is the lower triangular analysis matrix. Unlike
space into a Cartesian product of lower-dimensional sutespathe KLT, however, its diagonal entries are not its eigenesaju
in what is known as split VQ (SVQ). Another approactput the residues or backward prediction error variantgsf
involves transform coding. Both approaches lead to lowé#creasing ordem = 0,1,...,p—1, wherep is the dimension
computational complexity at a reduced performance penaftfthe source vector space.
if properly applied. Indeed, for a broad range of applicagio = The PLT may be understood in a general linear prediction
SVQ proper [2] or enhanced versions such as [3], [4] are go@cP) context where the vector space may be any so that the
enough. vectors need not be constrained to blocks of time delayed

Linear transform coding of a vector source leads to $&mples as assumed in its original proposal [10] and the
vector space where the components are less correlated. T@gponent shift operator is used instead as is outlineden th
makes quantization under weighted square distortion me@pendix. In this case the only constraints on the covasanc
efficient for jointly Gaussian sources. Eventually, if teice  matrix are its positive definiteness and its symmetry sottieat
vectors can be rendered completely independent, the scalegper LP method to be used is the covariance method [11] in
quantization of the components of the transformed vectorggntrast to the autocorrelation method suitable for statip
very efficient and flexible [5], even though vector quanimat Sample vectors.
still holds the space-filing advantage [6]. Such an optimal The covariance matrix for multivariate vectaris defined
transform is the source-specific Karhunen-Loeve transfodS
(KLT) for jointly Gaussian sources. R,, = E [zz"], (2

By modeling an arbitrary source as a Gaussian mixtUgnere £ [] stands for the expected value with respect to
each cluster can be V|_ewed as a_jomtly Gaussian source. Tlﬂ#’éjoint probability density function (pdf) of random vect
the KLT can be considered optimal as long as each clusigr gince this pdf is not readily available, we use a training
is assigned its own KLT and the clusters are sufficiently fay,i4 matrix=, with N, columnsé of source vectors from a
apart. given Gaussian clusterin order to estimate thg x p source
covariance matrix®,, with entries
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fori,j=0,1,...,p— 1. are the mixture parameters withand@; = { p;, R, } for
Analysis matrix B may be obtained by the upper-lower = 1,2,..., M being the a priori cluster probabilities and the
(UL) Cholesky factorization ofR,, as parameters for each Gaussian component, which are its mean
. T vectorp,; and its covariance matriR;, so that the component
R,, =B R, B. (4) pdfs are
where diagonal matrixR,,, has main diagonal entrigs,, for 1

m = 0,1,...,p — 1, which may be interpreted as backward fi(x]0:) = (2m)?% \Jdet ()
prediction error variances according to the derivatioregiin 1 ’
the Appendix. x exp [—=(z— ;)" R (z— p,;)| (10)
Alternatively, we may be interested in obtaining the ineers 2
transfom matrixS = B! directly for the implementation of for i = 1,2,..., M. The number of clusterd/ could be a
a minimum noise structure as outlined below. In this case, weodel parameter [5] but we have chosen to fix iflat= 8 in
carry out a lower-upper (LU) Cholesky factorization Bf,, order to keep the computational complexity manageableswhil
as the model is still verified to be efficient.
R, = SRnyT. (5) The model parameters are estimated over the training
) ) o database, described in Section VII, that consists pf>a N
The PLT is not a unitary transform so that its inverse igata matrix= holding N p-dimensional LSF coefficients. At

not its transpose. But it attains the same gain as the Kkfsi they are sequentially segmented int6 equiprobable
as long as it is implemented in a minimum noise structurgysters, that is, initial a priori probabilities are — 1/M

Two such structures have been proposed, MINLAB(I) angly ; — 1 9 .. A and the mean vectors and the covariance
MINLAB(II) [10]. We will use the former, which turns out matrices are estimated over each cluster, thereby defining

to be less complex when the sequence of vectors is MUgR injtial model. Then the expectation-maximization (EM)
longer than the dimension. algorithm [13] is run in iterations consisting of two steps

In_order to |mplem_ent MINLAB(I), the inverse transform 1) Expectation: For each training vecta(n), the a poste-
matrix S must be derived and then factored as o o .
riori probability that it was generated by componemnt

S=8,-8---Sp_1, (6) in the mixture is computed as

where S, takes itsmth row from S and the remaining rows Xon(n) = C’If{f’” (£(n)|Om) (11)
from the identity matrix. Yo cifi (€(n)]60;)

Next, the transform matrix may be recovered by inverting  for , —.1,... N —1andm=1,2,..., M.
Eq. (6) as I . 2) Maximization: The likelihood is maximized by reevalu-

B=S,,-8, -8, (7) ating for each cluster
where the matrix inverses are quite straightforward to iobta 1 Nt
since rowm in S;;! is obtained as Cm = 37 > xm(n) (12)
n=0
_1 —_— — PR [ PR —

[l = [ =m0 Sman=t 2 0 ] ©) S ()
from row m in S,, whereas the remaining rows are just 2 =0 Xm(n)
repeated so that diagonal entriges,, are unity and do not N-1
change sign upon inversion. R, = Z Xm(n) (E(n) — ) (€(n) — p,) "

n=0
I1l. GAUSSIAN MIXTURE MODEL CLUSTERING N-1 -

Split vector quantization is to be performed over subvexctor X ; Xim(1) (14)
so that each split quantizer becomes isolated from the other -
subvectors in the vector to be quantized, thereby causing a orm :_1’2""7M' . o
split loss [12]. In order to enhance the overall performamice ~ With the mixture model estimated, the training vectors are
the quantizer, a joint GMM-SVQ system is used. assigned to the cluster whose component pdf provides the

The whole training source vectors are used for modelifgaximum likelihood, that is,
their joint probability density functiorfx (x) by a Gaussian A _ } 0. 15
mixture model m (§(n)) = Jrgmax i (§(n)]6s). (15)

M

Ix (x]0) = cifi (]04), )

i=1

These clusters are referred to as Gaussian clusters.

IV. PREDICTION TRANSFORM AND SCALAR
QUANTIZATION

Ideally, the transform should remove the correlation in the
0= { c1, ¢, ..., cpm, 01, 05, ..., Op } vector to be coded and leave the complementary modeling of

where M is the number of Gaussian components or clusters
in the mixture and
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the probability density function (pdf) to the scalar quaetj where fx(x) is the joint pdf and fx  (z,,) for m =
which is aided in this task by the GMM clustering described, 1,...,p — 1 are the marginal pdfs. Assuming a jointly

in Section 1. Gaussian vector, the memory advantage is

The scalar quantizers are just inserted in cascade between . 1p
the analysis and synthesis filterbanks when a unitary toamsf Mo(p.2) = 12 o rew(m, m) 20
is used. However, for the minimum noise PLT the scalar a(p2) = Hi:o - ' (20)

guantizer bank must be interleaved with the factored imple- _ _
mentation of the analysis filterbank. This may be represente The PLT actually provides a measure of nonlinear depen-

by means of diagonal functional operator matri€gs(-) with ~ dence bys,_1, the prediction error variance of highest order,
diagonal which quantifies how much of the variance goes unexplained

by linear prediction. When it equals zero, all dependence is
[1 .01 gu() 1 ... 1] linear; otherwise,,_; > 0 indicates remaining nonlinear
dependence between vector coordinates. The absence of any
i significant independent interferer is assumed.
.mth column_. This allows us to represent the MINLAB(I) Split quantization is proposed to take partial advantage of
implementation of the encoder as eventual nonlinear dependence. However, quantizatiosenoi
is harder to compensate at the split level than by a scalar
~ -1 -1 -1 interleaved structure. Fortunately, an interesting d@atioa
Y= (S”_l'Q B (S @ (Sl @ (w)) gié exists between the noise minirxization providegd by scalar
fluantization and the encoding benefits of vector quantiaati
It is achieved by Cartesian SVQ (CSVQ) as described below.
Scalar codebooks,,, are designed for each dimension=
i, mo; +1,...,my; in split ¢ using a MINLAB(I) structure.
For SVQ, the codebook for splitis obtained by the Cartesian
product

for m = 0,1,...,p — 1, with scalar quantizeg,, (-) at the

wherey is the quantized transformed vector. Therefore, in th
implementation, transforming and quantizing are inteseh

Furthermore, it is interesting to remark that this algarith
implements subband noise feedback from lower-frequen
bands.

Conversely, the inverse transform
D; =Cipy; X Crgit1 X -+ X Cppy,. (21)

x =Sy a7) )

In fact, the Cartesian codebook structure enables the non-
for decoding may be implemented by using either the laddérear memory advantage of VQ over SQ to be used while
decomposition in Eq. (6) or, equivalently, by using matfix enforcing the minimum noise condition as shown by the result
directly. in Section VII. Its analysis is less complex due to the lower

Since the subband signals are uncorrelated after tratrg&angular structure of the analysis matrix, which can bslga
forming, optimal rate allocation among scalar quantizers factored.
determined by the prediction error varianggs as
o R logy M N 1 o Bim (18) VI. COMPLEXITY
" p p g %2 Hf;ol B’ The operational complexity for a transform quantizer
) ) ) ) may be broken down into the following pieces: mean sub-
where R is the bit rate per vectorz/p is the average bit rate {5 tion (MSUB), analysis filterbank (ANAFB), quantiza-
per samplelog, M is the bit rate per vector for GMM cluster 5, (), distortion calculation (DIST), synthesis filterik
selection and,,, for m =0,1,...,p —1 are the bit rates per (gyNFB), mean addition (MADD) and final vector compar-
sample for each subband. ison (FVECC). The dependence of these complexity compo-
nents upon number of clusters and vector dimension is given
V. PREDICTION TRANSFORM AND VECTOR QUANTIZATION in Table | but for the quantization component.

In principle, scalar quantization is optimal when the trans TABLE |
form generates vectors with independent components before .5 ¢y 1y sreakpown oF TRANSFORM PROCESSING FOR
quantization as pointed out in Section IV for the KLT and QuANTIZATION OF p-DIMENSIONAL GAUSSIAN-MIXTURE MODELED

the PLT. However, the dependence may not be completely re- VECTORS, CLASSIFIED INTO M CLUSTERS
moved due to estimation errors and nonlinear dependence [7] Operation Transform complexity
The latter is significant in many practical situations sd ¥@ (flop/frame) | (flop/frame)
increases the coding gain as shown in Secion VII. PLT KLT
In resolution-constrained quantization, linear and rredr MSUB Mp Mp

q ; ANAFB | Mp(p—1) | Mp(2p—1)
dependences are measured by the memory advantage of VQ DIST M(4p—1) | M(4p—1)
over SQ [6], [7], which for square distortion apedimensional SYNFB | Mp(p—1) | Mp(2p—1)

. i FVECC | M M

vectors is defined as

Quantization may be implemented as block scalar quantiza-
tion (BSQ) or vector quantization (VQ). We have considered

_ (p+2)/p
anzl P/(P+2)(xm)dxm
M(p,2) = <f e (19)

| 0 (@) de
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mainly nonuniform BSQ with binary search, whose computa- « The ratio of outlier frames in the range from 2 dB to

tional complexity is 4 dB is less than 2%.
M P The best reference for scalar transform quantization is
CQBSQ = Y > Ry the KLT scalar quantizer (KLT SQ), implemented with bit
i=1j=1 allocation based on Eg. (18), whose performance is shown in
= M(R—logy M), (22)  Table 111, and can be seen to outperform SVQ in mean spectral

distortion by more than 0.15 dB and by a lower number of

total bit rate per vector antbg, M is the bit rate per vector outliers in the 2 dB to 4 dB range, even though it is slightly
for GMM cluster selection 2 inferior in outlier performance above 4 dB.

Using the partial complexities in Table I, the total compu- NOw the stage is set for evaluating the performance of PLT
tational complexity for PLT BSQ is scalar quantization (PLT SQ), displayed in Table IV, whish i

) found to outperform KLT SQ at 45 bit/fr and 46 bit/fr and by
Ctot(PLT, BSQ) = 2Mp” +3Mp+ M (R —logy M) (23) following rather close the performance of KLT SQ at lower
rates and consistently exceeding it in outlier performance
above 4 dB. Further, when the lower complexity of PLT SQ
Ciot(KLT, BSQ) = 4AMp* +3Mp+ M (R — log, M) (24) s taken into consideration, it sounds like a better option f
) ) transform SQ.
so that the total complexity for scalar PLT is about half that - . -
- d N . For training the transform vector quantizers, the training
of scalar KLT. Specifically, in the range of situations tesie ) . .
; ; o vectors are first clustered into eight classes through askaus
Section VII, this ratio is around 54%. . = .
L o Mixture Model (GMM) and then a vector quantizer is designed
For VQ ANAFB, complexity will have to be distributed over . .
. : for each cluster. The Linde-Buzo-Gray (LBG) algorithm [17]
splits and clusters, leading to . L . ; _
is used initializing with a single codevector at the cemtroi
M s . and doubling the number of codevectors in centroid spijttin
C(ANAFB & Q,SVQ) = > ) (4p; —1)2™9,  (25) steps. For testing, each test vector is quantized with theove
i=1j=1 guantizer for each Gaussian cluster and the lowest distorti

where R;; is the rate for splitj in clusteri, < is the number result is selected.

of splits andM is the number of clusters. Therefore, in order Using the procedure outlined above, the performance of
to evaluate this complexity component the dimension split aKLT SVQ is found to improve significantly over the scalar
the bit allocation per split are necessary. This is exeneglifi quantization version as shown in Table V, particularly in
in Section VII. outlier performance in both ranges.

Finally, PLT Cartesian SVQ (PLT CSVQ) has a gain in
VIl. EXPERIMENTAL RESULTS performance over its scalar version as can be seen from the

The transform quantization methods discussed and propogﬁﬂ“ts in Table VI. This is to be expeqteq since spgech
%;\ctral parameters are known to have significant nonlinear

where R;; is the rate for component in clusteri, R is the

and the total computational complexity for KLT BSQ is

have been applied to sequences of line spectral frequeﬁ _ . . .
(LSF) vectors extracted from wideband speech signals. THigpendence [1] as discussed in Section V. It is most notieeab

adaptive multirate wideband (AMR-WB) [14] coder has beewat outliers are greatly reduced either over the scaIaBi(_mr
used to compute LSF vectors at a rate of 50 Hz for the Signmrformanpe as over the KLT SVQ. performance. Still the
in the TIMIT database [15], whose training partition witfVerage distortions are somewhat .h.|gher for PLT CSVQ but
705,580 vectors has been used for training the quantizets Wﬁhey may b? traded off for the significantly lower opgrationa
its test partition with 257,852 vectors has been assigned Fé)mplexny m_curred by PLT CSVQ as compared with KLT
testing. For the simulations, MATLAB has been used. SVQ, shown in Table VI to be around 3/4 as much.

For the training set of LSF vectors, the mean vector is

evaluated and then subtracted from each vector, thereby ob- TABLE I
taining centered vectors. Spectral weighting coefficiearts PERFORMANCE OF STANDARD SP(LIT VECTO)R QUANTIZATION FOR
O : 16-DIMENSIONAL LSFVECTORS IN(3,3,3,3,4)DIMENSIONAL SPLITS,

C(_)mpLIted from the Se-nS”:lVlty matrix Of ea_Ch LSF .VeCtor. Unde INCLUDING MEAN LOG SPECTRAL DISTORTION AND TWO CLASSES OF

high-rate approximation [16] and the bit rate is optimally OUTLIERS.

allocated to scalar quantizers according to predictioidoes

variances for the PLT and eigenvalues for the KLT with Bit rate Mean Outliers

rounding and adjustment. For vector quantizers, the diloes 'Z?t/ffffame E_'f/f Slr_lt“t 25 2 —[;1 dB| >4dB

are cumulated over each split. An exceptional allocation is L& ;ime) (éé;ps';) 1(12)4 52)3 (ppnl)

made for the pure split vector quantizer in Table Il, consade 42 89.988)| 1.079| 1.05 0

as a reference. 43 (8,9,9,9,8)| 1.043| 0.78 4
Performance is measured according to the criteria set forth Z‘g E3‘3’§'§’§§ é-gé? 8-;3 g

by Paliwal and Atal for transparent quantization [2]: 16 (9.1099.9)| 0919 | 0.29 0

« The average spectral distortion (SD) is about 1 dB.
o There is no outlier frame with SD above 4 dB.
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TABLE Il TABLE V
PERFORMANCE OFKLT SCALAR QUANTIZATION FOR 16-DIMENSIONAL PERFORMANCE OFKLT SVQ FOR16-DIMENSIONAL LSFVECTORS IN
LSFVECTORS, INCLUDING MEAN LOG SPECTRAL DISTORTION AND TWO (2,2,2,2,4,4)DIMENSIONAL SPLITS, INCLUDING MEAN LOG SPECTRAL
CLASSES OF OUTLIERS DISTORTION AND TWO CLASSES OF OUTLIERS
Bit rate Mean Outliers Bit rate Mean Outliers
Per frame | SD 2-4dB| >4dB Per frame | SD 2-4dB| >4dB
(bit/frame) | (dB) (%) (ppm) (bit/frame) | (dB) (%) (ppm)
41 0.981 1.14 19 41 0.920 0.58 4
42 0.950 0.91 16 42 0.888 0.42 4
43 0.916 0.72 12 43 0.854 0.34 4
44 0.882 0.55 12 44 0.818 0.25 4
45 0.855 0.49 12 45 0.782 0.18 4
46 0.824 0.36 12 46 0.753 0.14 4
TABLE IV TABLE VI
PERFORMANCE OFPLT SCALAR QUANTIZATION FOR 16-DIMENSIONAL PERFORMANCE OFPLT CARTESIAN SVQFOR16-DIMENSIONAL LSF
LSFVECTORS, INCLUDING MEAN LOG SPECTRAL DISTORTION AND TWO VECTORS IN(2,3,3,3,3,2)PIMENSIONAL SPLITS, INCLUDING MEAN LOG
CLASSES OF OUTLIERS SPECTRAL DISTORTION AND TWO CLASSES OF OUTLIERS
Bit rate Mean Outliers Bit rate Mean Outliers
Per frame | SD 2-4dB] >4dB Per frame | SD 2-4dB] >4dB
(bit/frame) | (dB) (%) (ppm) (bit/frame) | (dB) (%) (ppm)
41 1.015 1.39 4 41 0.963 0.65 4
42 0.974 1.03 4 42 0.942 0.61 0
43 0.926 0.69 4 43 0.906 0.46 0
44 0.893 0.56 0 44 0.861 0.34 0
45 0.854 0.42 0 45 0.835 0.26 0
46 0.815 0.32 0 46 0.804 0.21 0
VIIl. CONCLUSION and its powers, or, alternatively, by the polynomial' and its

The prediction transform has been proposed for a transfoRAWers. The latter allows an interpretation of the tramsiog
quantizer designed over clusters determined by a low-ord¥erations in the context of linear prediction, estabfigha
Gaussian mixture model which improves the performance frrespondence between entries in rows of the analysisxmatr
split VQ by reducing its split loss. The transform matricesé and coefficients in the backwa}rd prediction error polyndmia
been derived by the covariance method of linear predicti@h the same order as the row index.
for general vector spaces using component shifts in cdntrasTheé covariance matrixz,, induces an inner product for
to the original proposal of the PLT for time shifts. A scalap Polynomial space associated to the vector space under
quantizer has been proposed in a minimum noise structuhe wialysis. Writing these polynomials in the variabte
interleaved analysis and quantization, whose computattio§onsider two such polynomial®(z) = > ;- ¢;z~" and
complexity is almost half that of KLT scalar quantization@(z) = Zle d;z~7. Due to the distributive property of
The coding gain has been enhanced by using VQ, which irirder products over vector addition, the inner product esth
novel PLT Cartesian SVQ comes close to KLT SVQ averag®lynomials may be expanded as
performance at low rates with improved outlier performance

K L
and complexity of almost 3/4 that of KLT SVQ. This has P — Ayt 27
been achieved because of the novel minimum noise structure \Ple), Q=) ;;CZ A 1)
for split VQ.

so that the inner product is completely defined by the praduct

of monomials
APPENDIX

<Z7i7 Zﬁj> = TII(Zv.]) (28)
GRAM-SCHMIDT ORTHOGONALIZATION FOR
COMPONENTWISE PREDICTION fori,j =0,1,...,p—1 as long as our interest is restricted to

Relations between component random variables in a mufgolynomials of degree&” < p and I, < p. These monomials
variate vector may be expressed by means of the shift opera@s€ shift operators for the vector coordinates and shoutd no

which may be represented by the lower shift matrix be identified with time delays, which they may even be just
as a special case. It should be observed that this is a valid
00 - 0 0 definition for an inner product because matk,,. is positive
Lo -0 0 definite and symmetric.
z=|01 0 o 0 (26) Given ap x p covariance matrixR,, defining the inner

: ) ) .o product in the vector space of polynomials with degree less
o0 --- 1 0 than or equal top in the variablez~! and the canoni-
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TABLE VII are found to be
OPERATIONAL COMPLEXITY OF PLT CARTESIAN SVQFOR m—1
16-DIMENSIONAL LSFVECTORS IN(2,3,3,3,3,2)PIMENSIONAL SPLITS
COMPARED TO THAT OFKLT SVQ FOR A (2,2,2,2,4,4)DIMENSIONAL bmj == Z ’leblj- (36)
PARTITION. l=j
_ _ Finally, the square norm
Bit rate PLT CSVQ KLT SVQ Ratio
Per frame | Complexity | Complexity | PLT to KLT =(B..(2).B. (2 37
(bit/frame) | (kflop/frame) | (kflop/frame) (%) B = (B (2), Bm(2)) (37)
41 63 81 78 is computed by replacing the first factor by its expression
ig ;2 gg g% in Eq. (30) and using the orthogonal relations between the
44 75 106 71 orthogonal basis vectors to obtain
45 82 117 70 me1
46 86 135 64 _
i=0
L . . = (y(mt) >
cal basis{-~*}"_, we want to obtain an orthogonal basis <Z Bm(2) ), (38)
—1 B . . . . .
{Bm(2)}n—o- where the new basis vector is replaced by its expression in

As mentioned at the beginning of this section, the operatgg. (35) to obtain the computable expression
271 used in this paper does not stand for a time delay 1

but for a one-place shift down in vector compone_nt andﬁm = rp(m+1,m+1)+ Z boniTaa(m+ 1,5 +1). (39)

the polynomials are not interpreted as transfer functiams f prd

finite-length impulse response filters. Otherwise, we ol o ' )
standard Gram-Schmidt procedure [11], which is outlineg:heSC Orthogonalization is complete up to the + 1)th basis

for the sake of completeness. It starts with the first basitove VECtor and may be carried on to include the next one up to

assignment the pth basis vector. N .
Bo(z) = 274 (29) Finally, the set of c_oefﬂuenthmj, forj=0,1,...,m f_;md
m = 0,1,...,p— 1, is used to populate the lower triangle

Then, by finite indlﬁtion, we assume that we have the orthoga-analysis matrixB whereas the backward prediction error
nal basis{ B;(z)};"," determined after having orthogonalized/ariances3,, define the diagonal entries of covariance matrix

the basis vectors up to the ba@s*i}:;. So we proceed by R, form=0,1,...,p— 1.
including the next canonical basis vector(™*1 to find the
next orthogonalized basis vector from REFERENCES
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