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Prediction Transform GMM Vector Quantization for
Wideband LSFs

Miguel Arjona Ramı́rez

Abstract—Split vector quantizers are specialized over clusters
defined by a low-order Gaussian Mixture Model (GMM). A
prediction-based lower-triangular transform is adapted for the
enhancement of vector quantization (VQ) in each cluster. This
transform is generalized to be used in generic vector spaces,
where component shifts are used instead of time shifts. Optimal
quantizer banks are designed in minimum noise structures whose
codebooks are used for the proposed Cartesian split, which
improves their coding gain. A novel minimum noise structure
is proposed for split VQ. This kind of split VQ is tested for
line spectral frequency (LSF) quantization of wideband speech
spectra, revealing a comparable average performance to the
Karhunen-Loève transform at lower rates with reduced outlier
generation and computational complexity.

Index Terms prediction transform, vector quantization,
Gaussian mixture models, line spectral frequencies, speech
analysis, speech coding.

I. I NTRODUCTION

V ECTOR quantization (VQ) is more efficient than scalar
quantization (SQ) but generally its search complexity is

much higher and grows exponentially with dimension when
full search is applied [1]. A successful approach factors the
space into a Cartesian product of lower-dimensional subspaces
in what is known as split VQ (SVQ). Another approach
involves transform coding. Both approaches lead to lower
computational complexity at a reduced performance penalty
if properly applied. Indeed, for a broad range of applications,
SVQ proper [2] or enhanced versions such as [3], [4] are good
enough.

Linear transform coding of a vector source leads to a
vector space where the components are less correlated. This
makes quantization under weighted square distortion more
efficient for jointly Gaussian sources. Eventually, if the source
vectors can be rendered completely independent, the scalar
quantization of the components of the transformed vector is
very efficient and flexible [5], even though vector quantization
still holds the space-filling advantage [6]. Such an optimal
transform is the source-specific Karhunen-Loève transform
(KLT) for jointly Gaussian sources.

By modeling an arbitrary source as a Gaussian mixture,
each cluster can be viewed as a jointly Gaussian source. Thus
the KLT can be considered optimal as long as each cluster
is assigned its own KLT and the clusters are sufficiently far
apart.
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The current state-of-art transform domain quantization is
GMM-based classified SVQ in the KLT domain for the line
spectral frequency (LSF) representation of speech spectral
parameters [7], building on previous results for GMM-based
classified SVQ [8], [9].

However, there are other decorrelating transforms, which are
less complex than the KLT to compute. One such transform
is the prediction-based lower triangular transform (PLT) [10],
which is investigated in this paper for SVQ at reduced
complexity. By proper implementation, which involves the
Cartesian SVQ proposed in Section V, its performance is
better than scalar quantization while its gain matches thatof
the KLT.

II. PREDICTION TRANSFORM FOR ANY SPACE

The prediction-based lower triangular transform (PLT) [10]
B transforms thep × 1 zero-mean source vectorx with
covariance matrixRxx into vector

y = Bx (1)

with covariance matrixRyy, which is diagonal, wherep ×
p matrix B is the lower triangular analysis matrix. Unlike
the KLT, however, its diagonal entries are not its eigenvalues,
but the residues or backward prediction error variancesβm of
increasing orderm = 0, 1, . . . , p−1, wherep is the dimension
of the source vector space.

The PLT may be understood in a general linear prediction
(LP) context where the vector space may be any so that the
vectors need not be constrained to blocks of time delayed
samples as assumed in its original proposal [10] and the
component shift operator is used instead as is outlined in the
Appendix. In this case the only constraints on the covariance
matrix are its positive definiteness and its symmetry so thatthe
proper LP method to be used is the covariance method [11] in
contrast to the autocorrelation method suitable for stationary
sample vectors.

The covariance matrix for multivariate vectorx is defined
as

Rxx = E
[

xxT
]

, (2)

where E [·] stands for the expected value with respect to
the joint probability density function (pdf) of random vector
x. Since this pdf is not readily available, we use a training
data matrixΞc with Nc columnsξ of source vectors from a
given Gaussian clusterc in order to estimate thep× p source
covariance matrixRxx with entries

rxx(i, j) =

Nc−1
∑

n=0

ξ(i, n)ξ(j, n) (3)
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for i, j = 0, 1, . . . , p− 1.
Analysis matrixB may be obtained by the upper-lower

(UL) Cholesky factorization ofR−1
xx as

R−1
xx = BTR−1

yy B. (4)

where diagonal matrixRyy has main diagonal entriesβm, for
m = 0, 1, . . . , p − 1, which may be interpreted as backward
prediction error variances according to the derivation given in
the Appendix.

Alternatively, we may be interested in obtaining the inverse
transfom matrixS = B−1 directly for the implementation of
a minimum noise structure as outlined below. In this case, we
carry out a lower-upper (LU) Cholesky factorization ofRxx

as
Rxx = SRyyS

T . (5)

The PLT is not a unitary transform so that its inverse is
not its transpose. But it attains the same gain as the KLT
as long as it is implemented in a minimum noise structure.
Two such structures have been proposed, MINLAB(I) and
MINLAB(II) [10]. We will use the former, which turns out
to be less complex when the sequence of vectors is much
longer than the dimension.

In order to implement MINLAB(I), the inverse transform
matrix S must be derived and then factored as

S = S1 · S2 · · ·Sp−1, (6)

whereSm takes itsmth row fromS and the remaining rows
from the identity matrix.

Next, the transform matrix may be recovered by inverting
Eq. (6) as

B = S−1
p−1 · S

−1
p−2 · · ·S

−1
1 , (7)

where the matrix inverses are quite straightforward to obtain
since rowm in S−1

m is obtained as
[

S−1
m

]

m
=
[

−sm0 · · · −sm,m−1 smm · · · 0
]

(8)

from row m in Sm whereas the remaining rows are just
repeated so that diagonal entriessmm are unity and do not
change sign upon inversion.

III. G AUSSIAN MIXTURE MODEL CLUSTERING

Split vector quantization is to be performed over subvectors
so that each split quantizer becomes isolated from the other
subvectors in the vector to be quantized, thereby causing a
split loss [12]. In order to enhance the overall performanceof
the quantizer, a joint GMM-SVQ system is used.

The whole training source vectors are used for modeling
their joint probability density functionfX(x) by a Gaussian
mixture model

fX (x|θ) =

M
∑

i=1

cifi (x|θi) , (9)

whereM is the number of Gaussian components or clusters
in the mixture and

θ =
{

c1, c2, . . . , cM , θ1, θ2, . . . , θM

}

are the mixture parameters withci andθi =
{

µi, Ri

}

for
i = 1, 2, . . . ,M being the a priori cluster probabilities and the
parameters for each Gaussian component, which are its mean
vectorµi and its covariance matrixRi, so that the component
pdfs are

fi (x|θi) =
1

(2π)
p/2√

det (Ri)

× exp

[

−
1

2
(x− µi)

T
R−1

i (x− µi)

]

(10)

for i = 1, 2, . . . ,M . The number of clustersM could be a
model parameter [5] but we have chosen to fix it atM = 8 in
order to keep the computational complexity manageable while
the model is still verified to be efficient.

The model parameters are estimated over the training
database, described in Section VII, that consists of ap × N
data matrixΞ holdingN p-dimensional LSF coefficients. At
first, they are sequentially segmented intoM equiprobable
clusters, that is, initial a priori probabilities areci = 1/M
for i = 1, 2, . . . ,M and the mean vectors and the covariance
matrices are estimated over each cluster, thereby defining
the initial model. Then the expectation-maximization (EM)
algorithm [13] is run in iterations consisting of two steps

1) Expectation: For each training vectorξ(n), the a poste-
riori probability that it was generated by componentm
in the mixture is computed as

χm(n) =
cmfm (ξ(n)|θm)
∑M

i=1 cifi (ξ(n)|θi)
(11)

for n = 0, 1, . . . , N − 1 andm = 1, 2, . . . ,M.
2) Maximization: The likelihood is maximized by reevalu-

ating for each cluster

cm =
1

N

N−1
∑

n=0

χm(n) (12)

µm =

∑N−1
n=0 χm(n)ξ(n)
∑N−1

n=0 χm(n)
(13)

Rm =

N−1
∑

n=0

χm(n) (ξ(n)− µm) (ξ(n)− µm)
T

×

(

N−1
∑

n=0

χm(n)

)−1

(14)

for m = 1, 2, . . . ,M.

With the mixture model estimated, the training vectors are
assigned to the cluster whose component pdf provides the
maximum likelihood, that is,

m̂ (ξ(n)) = argmax
i∈{1,2,...,M}

fi (ξ(n)|θi) . (15)

These clusters are referred to as Gaussian clusters.

IV. PREDICTION TRANSFORM AND SCALAR

QUANTIZATION

Ideally, the transform should remove the correlation in the
vector to be coded and leave the complementary modeling of
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the probability density function (pdf) to the scalar quantizer,
which is aided in this task by the GMM clustering described
in Section III.

The scalar quantizers are just inserted in cascade between
the analysis and synthesis filterbanks when a unitary transform
is used. However, for the minimum noise PLT the scalar
quantizer bank must be interleaved with the factored imple-
mentation of the analysis filterbank. This may be represented
by means of diagonal functional operator matricesQm(·) with
diagonal

[

1 . . . 1 qm(·) 1 . . . 1
]

for m = 0, 1, . . . , p − 1, with scalar quantizerqm (·) at the
mth column. This allows us to represent the MINLAB(I)
implementation of the encoder as

ỹ = Qp−1

(

S−1
p−1 ·Qp−2

(

S−1
p−2 · · ·Q1

(

S−1
1 Q0 (x)

)

· · ·
))

,
(16)

whereỹ is the quantized transformed vector. Therefore, in this
implementation, transforming and quantizing are interleaved.

Furthermore, it is interesting to remark that this algorithm
implements subband noise feedback from lower-frequency
bands.

Conversely, the inverse transform

x̃ = Sỹ (17)

for decoding may be implemented by using either the ladder
decomposition in Eq. (6) or, equivalently, by using matrixS

directly.
Since the subband signals are uncorrelated after trans-

forming, optimal rate allocation among scalar quantizers is
determined by the prediction error variancesβm as

Rm =
R

p
−

log2 M

p
+

1

2
log2

βm
∏p−1

l=0 βl

, (18)

whereR is the bit rate per vector,R/p is the average bit rate
per sample,log2 M is the bit rate per vector for GMM cluster
selection andRm for m = 0, 1, . . . , p− 1 are the bit rates per
sample for each subband.

V. PREDICTION TRANSFORM AND VECTOR QUANTIZATION

In principle, scalar quantization is optimal when the trans-
form generates vectors with independent components before
quantization as pointed out in Section IV for the KLT and
the PLT. However, the dependence may not be completely re-
moved due to estimation errors and nonlinear dependence [7].
The latter is significant in many practical situations so that VQ
increases the coding gain as shown in Secion VII.

In resolution-constrained quantization, linear and nonlinear
dependences are measured by the memory advantage of VQ
over SQ [6], [7], which for square distortion andp-dimensional
vectors is defined as

M(p, 2) =

(

∫
∏k−1

m=0 f
p/(p+2)
Xm

(xm)dxm
∫

f
p/(p+2)
X

(x)dx

)(p+2)/p

(19)

where fX(x) is the joint pdf andfXm
(xm) for m =

0, 1, . . . , p − 1 are the marginal pdfs. Assuming a jointly
Gaussian vector, the memory advantage is

MG(p, 2) =

(

∏p−1
m=0 rxx(m,m)
∏p−1

m=0 βm

)1/p

. (20)

The PLT actually provides a measure of nonlinear depen-
dence byβp−1, the prediction error variance of highest order,
which quantifies how much of the variance goes unexplained
by linear prediction. When it equals zero, all dependence is
linear; otherwise,βp−1 > 0 indicates remaining nonlinear
dependence between vector coordinates. The absence of any
significant independent interferer is assumed.

Split quantization is proposed to take partial advantage of
eventual nonlinear dependence. However, quantization noise
is harder to compensate at the split level than by a scalar
interleaved structure. Fortunately, an interesting association
exists between the noise minimization provided by scalar
quantization and the encoding benefits of vector quantization.
It is achieved by Cartesian SVQ (CSVQ) as described below.

Scalar codebooksCm are designed for each dimensionm =
m0i,m0i +1, . . . ,mi in split i using a MINLAB(I) structure.
For SVQ, the codebook for spliti is obtained by the Cartesian
product

Di = Cm0i
× Cm0i+1 × · · · × Cmi

. (21)

In fact, the Cartesian codebook structure enables the non-
linear memory advantage of VQ over SQ to be used while
enforcing the minimum noise condition as shown by the results
in Section VII. Its analysis is less complex due to the lower
triangular structure of the analysis matrix, which can be easily
factored.

VI. COMPLEXITY

The operational complexity for a transform quantizer
may be broken down into the following pieces: mean sub-
traction (MSUB), analysis filterbank (ANAFB), quantiza-
tion (Q), distortion calculation (DIST), synthesis filterbank
(SYNFB), mean addition (MADD) and final vector compar-
ison (FVECC). The dependence of these complexity compo-
nents upon number of clusters and vector dimension is given
in Table I but for the quantization component.

TABLE I
COMPLEXITY BREAKDOWN OF TRANSFORM PROCESSING FOR

QUANTIZATION OF p-DIMENSIONAL GAUSSIAN-MIXTURE MODELED

VECTORS, CLASSIFIED INTOM CLUSTERS.

Operation Transform complexity
(flop/frame) (flop/frame)

PLT KLT

MSUB Mp Mp

ANAFB Mp(p− 1) Mp(2p− 1)
DIST M(4p − 1) M(4p− 1)
SYNFB Mp(p− 1) Mp(2p− 1)
FVECC M M

Quantization may be implemented as block scalar quantiza-
tion (BSQ) or vector quantization (VQ). We have considered
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mainly nonuniform BSQ with binary search, whose computa-
tional complexity is

C(Q,BSQ) =

M
∑

i=1

p
∑

j=1

Rij

= M (R− log2 M) , (22)

whereRij is the rate for componentj in cluster i, R is the
total bit rate per vector andlog2 M is the bit rate per vector
for GMM cluster selection.

Using the partial complexities in Table I, the total compu-
tational complexity for PLT BSQ is

Ctot(PLT,BSQ) = 2Mp2+3Mp+M (R− log2 M) (23)

and the total computational complexity for KLT BSQ is

Ctot(KLT,BSQ) = 4Mp2+3Mp+M (R− log2 M) (24)

so that the total complexity for scalar PLT is about half that
of scalar KLT. Specifically, in the range of situations tested in
Section VII, this ratio is around 54%.

For VQ ANAFB, complexity will have to be distributed over
splits and clusters, leading to

C(ANAFB & Q ,SVQ) =
M
∑

i=1

ς
∑

j=1

(4pj − 1) 2Rij , (25)

whereRij is the rate for splitj in clusteri, ς is the number
of splits andM is the number of clusters. Therefore, in order
to evaluate this complexity component the dimension split and
the bit allocation per split are necessary. This is exemplified
in Section VII.

VII. E XPERIMENTAL RESULTS

The transform quantization methods discussed and proposed
have been applied to sequences of line spectral frequency
(LSF) vectors extracted from wideband speech signals. The
adaptive multirate wideband (AMR-WB) [14] coder has been
used to compute LSF vectors at a rate of 50 Hz for the signals
in the TIMIT database [15], whose training partition with
705,580 vectors has been used for training the quantizers while
its test partition with 257,852 vectors has been assigned for
testing. For the simulations, MATLAB has been used.

For the training set of LSF vectors, the mean vector is
evaluated and then subtracted from each vector, thereby ob-
taining centered vectors. Spectral weighting coefficientsare
computed from the sensitivity matrix of each LSF vector under
high-rate approximation [16] and the bit rate is optimally
allocated to scalar quantizers according to prediction residue
variances for the PLT and eigenvalues for the KLT with
rounding and adjustment. For vector quantizers, the allocations
are cumulated over each split. An exceptional allocation is
made for the pure split vector quantizer in Table II, considered
as a reference.

Performance is measured according to the criteria set forth
by Paliwal and Atal for transparent quantization [2]:

• The average spectral distortion (SD) is about 1 dB.
• There is no outlier frame with SD above 4 dB.

• The ratio of outlier frames in the range from 2 dB to
4 dB is less than 2%.

The best reference for scalar transform quantization is
the KLT scalar quantizer (KLT SQ), implemented with bit
allocation based on Eq. (18), whose performance is shown in
Table III, and can be seen to outperform SVQ in mean spectral
distortion by more than 0.15 dB and by a lower number of
outliers in the 2 dB to 4 dB range, even though it is slightly
inferior in outlier performance above 4 dB.

Now the stage is set for evaluating the performance of PLT
scalar quantization (PLT SQ), displayed in Table IV, which is
found to outperform KLT SQ at 45 bit/fr and 46 bit/fr and by
following rather close the performance of KLT SQ at lower
rates and consistently exceeding it in outlier performance
above 4 dB. Further, when the lower complexity of PLT SQ
is taken into consideration, it sounds like a better option for
transform SQ.

For training the transform vector quantizers, the training
vectors are first clustered into eight classes through a Gaussian
Mixture Model (GMM) and then a vector quantizer is designed
for each cluster. The Linde-Buzo-Gray (LBG) algorithm [17]
is used initializing with a single codevector at the centroid
and doubling the number of codevectors in centroid splitting
steps. For testing, each test vector is quantized with the vector
quantizer for each Gaussian cluster and the lowest distortion
result is selected.

Using the procedure outlined above, the performance of
KLT SVQ is found to improve significantly over the scalar
quantization version as shown in Table V, particularly in
outlier performance in both ranges.

Finally, PLT Cartesian SVQ (PLT CSVQ) has a gain in
performance over its scalar version as can be seen from the
results in Table VI. This is to be expected since speech
spectral parameters are known to have significant nonlinear
dependence [1] as discussed in Section V. It is most noticeable
that outliers are greatly reduced either over the scalar version
performance as over the KLT SVQ performance. Still the
average distortions are somewhat higher for PLT CSVQ but
they may be traded off for the significantly lower operational
complexity incurred by PLT CSVQ as compared with KLT
SVQ, shown in Table VII to be around 3/4 as much.

TABLE II
PERFORMANCE OF STANDARD SPLIT VECTOR QUANTIZATION FOR

16-DIMENSIONAL LSF VECTORS IN (3,3,3,3,4)-DIMENSIONAL SPLITS,
INCLUDING MEAN LOG SPECTRAL DISTORTION AND TWO CLASSES OF

OUTLIERS.

Bit rate Mean Outliers
Per frame Per split SD 2 – 4 dB > 4 dB
(bit/frame) (bit/split) (dB) (%) (ppm)

41 (8,9,8,8,8) 1.124 1.43 4
42 (8,9,9,8,8) 1.079 1.05 0
43 (8,9,9,9,8) 1.043 0.78 4
44 (9,9,9,9,8) 1.015 0.72 4
45 (9,9,9,9,9) 0.957 0.38 0
46 (9,10,9,9,9) 0.919 0.29 0
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TABLE III
PERFORMANCE OFKLT SCALAR QUANTIZATION FOR 16-DIMENSIONAL
LSF VECTORS, INCLUDING MEAN LOG SPECTRAL DISTORTION AND TWO

CLASSES OF OUTLIERS.

Bit rate Mean Outliers
Per frame SD 2 – 4 dB > 4 dB
(bit/frame) (dB) (%) (ppm)

41 0.981 1.14 19
42 0.950 0.91 16
43 0.916 0.72 12
44 0.882 0.55 12
45 0.855 0.49 12
46 0.824 0.36 12

TABLE IV
PERFORMANCE OFPLT SCALAR QUANTIZATION FOR 16-DIMENSIONAL

LSF VECTORS, INCLUDING MEAN LOG SPECTRAL DISTORTION AND TWO

CLASSES OF OUTLIERS.

Bit rate Mean Outliers
Per frame SD 2 – 4 dB > 4 dB
(bit/frame) (dB) (%) (ppm)

41 1.015 1.39 4
42 0.974 1.03 4
43 0.926 0.69 4
44 0.893 0.56 0
45 0.854 0.42 0
46 0.815 0.32 0

VIII. C ONCLUSION

The prediction transform has been proposed for a transform
quantizer designed over clusters determined by a low-order
Gaussian mixture model which improves the performance of
split VQ by reducing its split loss. The transform matrices have
been derived by the covariance method of linear prediction
for general vector spaces using component shifts in contrast
to the original proposal of the PLT for time shifts. A scalar
quantizer has been proposed in a minimum noise structure with
interleaved analysis and quantization, whose computational
complexity is almost half that of KLT scalar quantization.
The coding gain has been enhanced by using VQ, which in a
novel PLT Cartesian SVQ comes close to KLT SVQ average
performance at low rates with improved outlier performance
and complexity of almost 3/4 that of KLT SVQ. This has
been achieved because of the novel minimum noise structure
for split VQ.

APPENDIX

GRAM-SCHMIDT ORTHOGONALIZATION FOR
COMPONENTWISE PREDICTION

Relations between component random variables in a multi-
variate vector may be expressed by means of the shift operator,
which may be represented by the lower shift matrix

Z =















0 0 · · · 0 0
1 0 · · · 0 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 0 · · · 1 0















(26)

TABLE V
PERFORMANCE OFKLT SVQ FOR 16-DIMENSIONAL LSF VECTORS IN
(2,2,2,2,4,4)-DIMENSIONAL SPLITS, INCLUDING MEAN LOG SPECTRAL

DISTORTION AND TWO CLASSES OF OUTLIERS.

Bit rate Mean Outliers
Per frame SD 2 – 4 dB > 4 dB
(bit/frame) (dB) (%) (ppm)

41 0.920 0.58 4
42 0.888 0.42 4
43 0.854 0.34 4
44 0.818 0.25 4
45 0.782 0.18 4
46 0.753 0.14 4

TABLE VI
PERFORMANCE OFPLT CARTESIAN SVQ FOR 16-DIMENSIONAL LSF

VECTORS IN (2,3,3,3,3,2)-DIMENSIONAL SPLITS, INCLUDING MEAN LOG

SPECTRAL DISTORTION AND TWO CLASSES OF OUTLIERS.

Bit rate Mean Outliers
Per frame SD 2 – 4 dB > 4 dB
(bit/frame) (dB) (%) (ppm)

41 0.963 0.65 4
42 0.942 0.61 0
43 0.906 0.46 0
44 0.861 0.34 0
45 0.835 0.26 0
46 0.804 0.21 0

and its powers, or, alternatively, by the polynomialz−1 and its
powers. The latter allows an interpretation of the transforming
operations in the context of linear prediction, establishing a
correspondence between entries in rows of the analysis matrix
and coefficients in the backward prediction error polynomial
of the same order as the row index.

The covariance matrixRxx induces an inner product for
a polynomial space associated to the vector space under
analysis. Writing these polynomials in the variablez−1,
consider two such polynomialsP (z) =

∑K
i=1 ciz

−i and
Q(z) =

∑L
j=1 dlz

−j. Due to the distributive property of
inner products over vector addition, the inner product of these
polynomials may be expanded as

〈P (z), Q(z)〉 =

K
∑

i=1

L
∑

j=1

cidj
〈

z−i, z−j
〉

(27)

so that the inner product is completely defined by the products
of monomials

〈

z−i, z−j
〉

= rxx(i, j) (28)

for i, j = 0, 1, . . . , p− 1 as long as our interest is restricted to
polynomials of degreesK ≤ p andL ≤ p. These monomials
are shift operators for the vector coordinates and should not
be identified with time delays, which they may even be just
as a special case. It should be observed that this is a valid
definition for an inner product because matrixRxx is positive
definite and symmetric.

Given a p × p covariance matrixRxx defining the inner
product in the vector space of polynomials with degree less
than or equal top in the variable z−1 and the canoni-
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TABLE VII
OPERATIONAL COMPLEXITY OF PLT CARTESIAN SVQ FOR

16-DIMENSIONAL LSF VECTORS IN (2,3,3,3,3,2)-DIMENSIONAL SPLITS

COMPARED TO THAT OFKLT SVQ FOR A (2,2,2,2,4,4)-DIMENSIONAL

PARTITION.

Bit rate PLT CSVQ KLT SVQ Ratio
Per frame Complexity Complexity PLT to KLT
(bit/frame) (kflop/frame) (kflop/frame) (%)

41 63 81 78
42 70 86 81
43 74 90 82
44 75 106 71
45 82 117 70
46 86 135 64

cal basis
{

z−i
}p

i=1
, we want to obtain an orthogonal basis

{Bm(z)}p−1
m=0.

As mentioned at the beginning of this section, the operator
z−1 used in this paper does not stand for a time delay
but for a one-place shift down in vector component and
the polynomials are not interpreted as transfer functions for
finite-length impulse response filters. Otherwise, we follow a
standard Gram-Schmidt procedure [11], which is outlined here
for the sake of completeness. It starts with the first basis vector
assignment

B0(z) = z−1. (29)

Then, by finite induction, we assume that we have the orthogo-
nal basis{Bl(z)}

m−1
l=0 determined after having orthogonalized

the basis vectors up to the basis
{

z−i
}m

i=1
. So we proceed by

including the next canonical basis vectorz−(m+1) to find the
next orthogonalized basis vector from

Bm(z) = z−(m+1) −

m−1
∑

i=0

γmiBi(z), (30)

where the projection coefficientsγmi, for i = 0, 1, . . . ,m− 1,
are found by imposing the set of orthogonality constraints

〈Bm(z), Bi(z)〉 = 0 (31)

for i = 0, 1, . . . ,m− 1, which, upon substitution of Eq. (30)
and simplification based on the orthogonality between the new
basis vectors reduce to

〈

z−(m+1), Bi(z)
〉

− γmiβi = 0 (32)

for i = 0, 1, . . . ,m− 1, where the square norms of the basis
vectors are

βi = 〈Bi(z), Bi(z)〉 (33)

for i = 0, 1, . . . ,m− 1. Solving the set of equations (32), the
projection coefficients are found to be

γmi =

〈

z−(m+1), Bi(z)
〉

βi
(34)

for i = 0, 1, . . . ,m − 1. Now, replacing the projection co-
efficients in Eq. (30) by their expressions in Eq. (34), the
coefficients for the new orthogonal basis vector

Bm(z) = z−(m+1) +

m−1
∑

j=1

bmjz
−(j+1) (35)

are found to be

bmj = −

m−1
∑

l=j

γmlblj . (36)

Finally, the square norm

βm = 〈Bm(z), Bm(z)〉 (37)

is computed by replacing the first factor by its expression
in Eq. (30) and using the orthogonal relations between the
orthogonal basis vectors to obtain

βm =

〈

z−(m+1) −

m−1
∑

i=0

γmiBi(z), Bm(z)

〉

=
〈

z−(m+1), Bm(z)
〉

, (38)

where the new basis vector is replaced by its expression in
Eq. (35) to obtain the computable expression

βm = rxx(m+1,m+1)+

m−1
∑

j=0

bmjrxx(m+1, j +1). (39)

So orthogonalization is complete up to the(m + 1)th basis
vector and may be carried on to include the next one up to
the pth basis vector.

Finally, the set of coefficientsbmj , for j = 0, 1, . . . ,m and
m = 0, 1, . . . , p − 1, is used to populate the lower triangle
in analysis matrixB whereas the backward prediction error
variancesβm define the diagonal entries of covariance matrix
Ryy for m = 0, 1, . . . , p− 1.
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