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Abstract— In this paper, we consider transmit antenna selec-
tion (TAS) with space-time block codes (STBCs). We consider
a general framework for TAS which, besides antenna subset
selection, includes the possibility of having more than oneSTBC
to choose from as well as non-uniform power allocation. Also,
to limit the number of transmit RF chains, we require that the
maximum (row) rank of the STBC matrices have an upper limit.
Simple analysis indicate that transmitting uncoded data via the
transmit antenna with the largest Frobenius norm, which can
be viewed as a particular case of TAS with orthogonal STBC
(OSTBC), not only provides full diversity as if all the transmit
antennas were used but also has larger signal-to-noise ratio as
compared to TAS with any standard OSTBC (like the Alamouti
code). This suggests that TAS with non-orthogonal STBCs should
be considered, in particular by means of exploiting instantaneous
coherence within subsets of antennas. A few TAS schemes are
proposed and computer simulations are used to demonstrate their
superior error performance.

Index Terms— Antenna selection, channel feedback, diversity,
fading channels, MIMO systems, space-time block codes, wireless
communications.

I. I NTRODUCTION

I T is well-known that multiple-input multiple-output
(MIMO) wireless communications systems have increased

capacity [1]–[3] if the number of receive antennas is at least
as large as the number of transmit antennas. On the other
hand, practical constraints have resulted in the need of systems
employing multiple antennas in the transmitter only. In this
case, good performance can be achieved by means of space-
time coding. In particular, Alamouti [4] introduced a very
interesting space-time coding technique that achieves thesame
diversity order with two transmit and one receive antennas
as maximal-ratio combining (MRC) with one transmit and
two receive antennas, thus transferring the diversity gainfrom
the receiver to the transmitter. Alamouti’s scheme called the
researchers’ attention also because of its simplicity and its low
decoding complexity; maximum likelihood decoding is simpli-
fied because of the orthogonality imposed on the codewords.
This technique has been generalized through the concept of
orthogonal designs to an arbitrary number of transmit antennas
by Tarokhet al. [5], who coined the namespace-time block
codes (STBCs). In the subclass of STBCs called orthogonal
STBCs (OSTBCs), a code designed forNt transmit andNr
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receive antennas has the desired property of achieving full
diversity order:NtNr. Non-orthogonal STBCs (NOSTBCs),
on the other hand, cannot achieve full diversity but they usually
have a greater transmission rate. STBCs are indicated when
the channel is known only to the receiver, in which case the
total average transmit power is distributed uniformly among
the transmit antennas.

When a reliable feedback path is available, the transmitter
can use side information to improve the system performance
in a way that depends on the amount of feedback available.
For instance, when full channel state information (CSI) canbe
made available to the transmitter, transmitbeamforming is the
best strategy [12, Sec. 6.1]. In effect, transmit beamforming
uses all the transmit antennas and distributes the total average
power non-uniformly among them.

Deployment of multiple antennas is normally associated
with high cost since multiple antennas usually require an equal
number of RF chains (transmit amplifiers, modulators, etc.),
which are expensive and power-consuming. To circumvent this
problem, a subset of the available antennas can be selected,
thereby reducing the number of RF chains. The amount of
feedback required in this case is much smaller. Such approach
is called transmit antenna selection (TAS). The most well-
known TAS scheme has been proposed by Gore and Paulraj
[6]. In [6], an OSTBC is used along with the optimal subset
of transmit antennas, which is the one whose associated sub-
channel matrix has the largest Frobenius norm1 This trans-
lates to maximizing the instantaneous received signal-to-noise
ratio (SNR). Although this scheme applies to any OSTBC,
the authors have focused ontransmit antenna selection with
Alamouti (TAS/A), where the Alamouti code [4] is used along
with the optimal pair of antennas. An important result proved
in [6] is that TAS with OSTBC provides full diversity order,
as if all the antennas were used.

In this paper, we consider a general framework for TAS.
It includes the possibility of having more than one code to
choose from and it allows for power allocation within the
selected subset of antennas. It is then shown that the TAS
schemes mentioned above as well as some others can be
described in this framework. The transmission of uncoded data
via the transmit antenna with the largest Frobenius norm is
seen as a particular case of TAS with OSTBC, and a simple
argument is used to show that this TAS scheme not only
provides full diversity but also has SNR larger than that of

1The Frobenius norm of a matrix/vectorA is defined as:
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TAS with any standard OSTBC. This fact and an average SNR
analysis stimulate the use of TAS with NOSTBCs, an idea
already pursued by the authors in [7]. A few TAS schemes are
proposed and computer simulations are used to demonstrate
their superior error performance.

The remainder of this paper is organized as follows. In
Section II, we present the channel model and briefly review
STBCs. In Section III, we describe the general framework for
TAS with STBCs and discuss some particular TAS schemes.
Following an SNR analysis, we propose a new TAS scheme
involving NOSTBCs. In Section IV, we present computer
simulation results that corroborate the SNR analysis of the
previous section. Finally, in Section V, we draw some conclu-
sions and make some final remarks.

II. CHANNEL MODEL AND STBCS

In this section, we describe the channel model and present
STBCs and their maximum likelihood (ML) detection.

A. MIMO Channel Model

We consider the MIMO channel withNt transmit antennas
andNr receive antennas. The quasi-static, flat Rayleigh fading
channel is assumed, i.e., the channel is assumed constant
over a frame and varies randomly from one frame to another.
The appropriate channel model under this scenario is the one
described by theNr × Nt channel gain matrix

H =







h1,1 · · · h1,Nt

...
. . .

...
hNr,1 · · · hNr,Nt






(1)

where hi,j represents the complex gain from transmit an-
tenna j to receive antennai and, for i = 1, . . . , Nr and
j = 1, . . . , Nt, they are modeled as independent zero mean
circularly symmetric complex Gaussian random variables with
variance0.5 per dimension. Letx and y be the transmit
and receive vectors, of dimensionsNt × 1 and Nr × 1,
respectively. These are complex vectors but the elements of
x are constrained to belong to a certain unit-energy signal
constellation. The input-output relationship at a given discrete
time instant is given by:

y =

√

Es

Nt
Hx + e (2)

wheree = [e1 · · · eNr
]T is the noise vector whose elements

(noise samples) are independent zero mean circularly symmet-
ric complex Gaussian random variables with varianceN0/2
per dimension (N0/2 is the two-sided noise power spectral
density). The superscriptT indicates matrix transposition. The
factor 1/

√
Nt assures that the available symbol energyEs

is shared among theNt transmit antennas. If a sequence
{x1, . . . , xN} of N vectors is transmitted the corresponding
input-output relationship is given by:

Y =

√

Es

Nt
HX + E (3)

where X = [x1, . . . , xN ] is the transmit block,Y =
[y1, . . . , yN ] is the receive block, andE = [e1, . . . , eN ] is

the noise block. The noise is also assumed to be white across
time, i.e., for receive antennasn andn′ and at time instantst
andt′, E[en,te

∗
n′,t′ ] = N0δn,n′δt,t′ , whereδm,n = 0 if m 6= n,

andδm,n = 1 if m = n (i.e., the Kronecker delta).

B. OSTBCs

Let {sk}ns

k=1 be a set ofns scalar complex symbols rep-
resenting the data sequence to be transmitted. The symbols
are constrained to belong to a unit-energy PAM or QAM
constellationS. A STBC can be defined as the image of a
mapping

{sk}ns

k=1 7→ X (4)

whereX is a matrix of dimensionNt ×N , as defined above,
whereN is the length of the space-time codeword. We often
refer in a loose way to the STBC as the matrixX. The
STBC is said to belinear if the elements of the matrixX are
linear combinations of the symbols{sk}ns

k=1 and their complex
conjugates{s∗k}ns

k=1. The modulation used for transmission
in all antennas is alsoS. So the elements ofX are also
required to belong toS. (UnlessS is an algebraically closed
set, this additional care must be taken). IfS is real (resp.,
complex) the STBC is said to bereal (resp.,complex). Since
ns data symbols are transmitted overN time intervals, the
transmission rate is equal toR = ns/N .

A linear STBCX is orthogonal if, for any signal constel-
lation, the following is true:

XXH =

ns
∑

k=1

|sk|2 · INt
(5)

whereINt
is theNt-dimensional identity matrix,|sk| denotes

the modulus of the complex numbersk, and the superscript
H stands for hermitian. The simplest example of a rate-one
OSTBC is obtained by transmission of a single symbol via
a single antenna, i.e.,XT = [s1]. The receiver performs
maximum-ratio combining. We shall refer to this code as the
“trivial” OSTBC, which explains the subscript inXT = [s].
The SNR per received symbol forNr receive antennas is:

γT = γ0 ‖h‖2 (6)

whereγ0 = Es/N0, ‖ · ‖2 denotes (squared) Frobenius norm,
and h is the single-input multiple-output (SIMO) channel
column vector. Sinceh is Gaussian,γT is a chi-squared
random variable with2Nr degrees of freedom. A well-known
result is that the diversity order, i.e, the slope (in a log-
log scale) of the average error probability curve of a digital
modulation over a channel with SNR modeled as a chi-squared
random variable with2d degrees of freedom is equal tod [8].
So, the “trivial” OSTBC offers a diversity order ofNr .

The most important and referenced OSTBC is the Alamouti
code, described by:

XA =

[

s1 s∗2
s2 −s∗1

]

(7)

Interpreting (7), at time 1 the data symbolss1 and s2 are
transmitted via antennas 1 and 2, respectively, and at time 2
the symbolss∗2 and−s∗1 are transmitted via antennas 1 and 2,
respectively. Thus, the transmission rate is equal to one.
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The ML detection of STBCs assuming perfect channel
knowledge at the receiver is described by

{ŝk}ns

k=1 = arg min
{sk}

ns

k=1∈Sns

∥

∥

∥

∥

∥

Y −
√

Es

Nt
HX

∥

∥

∥

∥

∥

2

(8)

The orthogonality property in (5) implies that all OSTBCs
have thechannel decoupling property (CDP), that is, the
joint (block) minimization problem in (8) decouples intons

independent scalar minimization problems by means of a
linear processing onY [5]. For example, equation (3) for the
Alamouti code with one receive antenna specializes to:

[y1 y2] =

√

Es

2
[h1 h2]

[

s1 s∗2
s2 −s∗1

]

+ [e1 e2] (9)

The following linear processing onY = [y1 y2] produces the
desired decoupling:

s̃1 = h∗
1y1 − h2y

∗
2 (10)

=
(

|h1|2 + |h2|2
)

s1 + h∗
1e1 + h2e

∗
2

s̃2 = h∗
2y1 + h1y

∗
2 (11)

=
(

|h1|2 + |h2|2
)

s2 + h1e
∗
2 + h∗

2e1

wheres̃1 and s̃2 are (decoupled) decision variables fors1 and
s2, respectively. The SNR per symbol for the Alamouti scheme
is given by:

γA = γ0
|h1|2 + |h2|2

2
(12)

For two transmit andNr receive antennas, it can easily be
shown that the SNR is:

γA = γ0
‖H‖ 2

2
(13)

Note that γA is a chi-squared random variable with4Nr

degrees of freedom [8]. So the Alamouti scheme extracts a
diversity order of2Nr [4]. A general OSTBC for the MIMO
(Nt transmit,Nr receive antennas) channel modeled as above
has SNR per symbol equal toγ0

‖H‖2

Nt
, and it provides a

diversity order ofNtNr [5].

C. Non-OSTBCs

Although OSTBCs achieve maximum diversity order, there
are some restrictions on the existence of general OSTBCs.
For example, rate-one complex OSTBCs for more than two
transmit antennas do not exist [5]. On the other hand, it
has been shown [9], [10] that by relaxing the orthogonality
requirement non-OSTBCs (NOSTBCs) of rates greater or
equal to 1 can be obtained at the cost of some diversity loss.
A quite simple rate-one complex NOSTBC for three transmit
antennas is obtained by extending one of the rows ofXA.
Here are three possibilities:

XEA1 =





s1 s∗2
s1 s∗2
s2 −s∗1



 , XEA2 =





s1 s∗2
s2 −s∗1
s1 s∗2



 ,

XEA3 =





s1 s∗2
s2 −s∗1
s2 −s∗1



 (14)

Note that for theextended Alamouti (EA) code, sayXEA3,
the input-output relationship for the channelh = [h1 h2 h3]
can be equivalently written in two ways, as follows:

[y1 y2] =

√

Es

3
[h1 h2 h3]





s1 s∗2
s2 −s∗1
s2 −s∗1



 + [e1 e2]

=

√

Es

2

[

√

2

3
h1

√

2

3
(h2 + h3)

]

[

s1 s∗2
s2 −s∗1

]

+ [e1 e2] (15)

That is, XEA3 can be seen as the Alamouti code for
the multiple-input single-output (MISO) channelh =

[
√

2
3h1

√

2
3 (h2 + h3)]. So XEA3 (and XEA1 and XEA2)

has the CDP and the corresponding SNR per symbol for one
receive antenna is given by:

γEA3 = γ0
|h1|2 + |h2 + h3|2

3
(16)

Again, γEA3 in (16) is a chi-squared random variable with4
degrees of freedom. Thus, for one receive antenna each EA
code in (14) alone can offer a diversity order of only2 <
Nt = 3. Of course, the EA codes are not much interesting
in the case that the transmitter has no knowledge about the
channel. However, with a little bit of feedback and a clever
selection scheme these codes can provide both diversity and
SNR gains. We show how in the next section.

III. TAS W ITH STBCS

In this section we assume that a reliable feedback link
is available from the receiver to the transmitter, and that
the channel is perfectly known to the receiver. We want to
design a communications system employing STBCs under the
restrictions of low-cost transmitters and very low rate feedback
transmission.

A. Transmitter Cost Considerations

Deployment of multiple antennas is normally associated
with a high cost since multiple antennas usually require an
equal number of RF chains which are expensive and power-
consuming. However, if the signal transmitted via a certain
antenna is equal to (or, more generally, a linear combination
of) the signals transmitted via the other antennas atall times
then the number of RF chains can be reduced. Clearly, this
situation occurs with the EA codes.

The most effective way to reduce the number of RF chains is
to transmit signals via a selected subset of the available anten-
nas. While reducing the transmitter cost, antenna selection can
be made optimal in the sense of maximizing the transmission
rate or minimizing the error probability [11]. Herein we
adopt the latter approach, which amounts to maximizing the
instantaneous SNR. Next, we give a description of TAS in
a framework that is more general than those found in the
literature (see, for instance, [11, Chapter 8] and [12, Chapter
10]).
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B. STBCs with Linear Precoding

When the CSI is known only to the receiver, and multi-
ple transmit antennas are employed, then space-time coding
(which spreads the energy uniformly among the transmit
antennas) can be used to achieve diversity gain. However,
if we assume a reliable feedback link from the receiver to
the transmitter, then the CSI can be made available to the
transmitter as well. In this case, the transmitter should be
optimized based upon this information. Depending on the
amount of feedback available, the transmitter can have either
full CSI (i.e., the whole channel gain matrix in (1)) or partial
CSI (e.g., some statistical information such as the channel
correlation matrix [11], or a few bits indicating, for instance,
the ordinal number(s) of the transmit antenna(s) with the
largest Frobenius norm(s)); in all cases the side information is
to be dispatched to the transmitter on a per frame basis [6].

When full CSI is available to the transmitter, the optimal
(in the minimum error probability sense) strategy is known
as beamforming [12, Sec. 6.1]. In this paper, we assume that
the feedback link sends a few bits to the transmitter in the
beginning of each frame, in which case the transmission model
should consist oflinear precoding, as described in [12, Section
10.3]. With some slight modifications, we arrive at:

Y =

√

Es

Nt
HWX + E (17)

that is, the transmitter pre-multiplies the STBC matrixX with
a weighting matrixW (of dimensionNt × Nt) which is
selected from a finite setΩ = {W 1, . . . , W K} of size K,
where K is an integer which is only related to the amount
of feedback available and is independent of the number of
antennas. Each matrix inΩ is required to satisfy an power
constraint Tr(WW H) = Nt, where Tr stands for trace.

It should be noted that with the transmission model in (17),
given X, all the receiver needs to do is choose the most
appropriate weighting matrix based on the channel knowledge
and send⌈log2(K)⌉ bits (an index in{1, . . . , K}) to the
transmitter. The transmitter in turn transmits according to (17),
adopting the weighting matrix fromΩ with this index. When
K is very small, precoding takes the particular form of TAS.
In this case, the columns ofW constitute a subset of the
columns of the identity matrix. In the remainder of this paper,
we discuss TAS only (as our restrictions are having a small
number of RF chains and having a smallK). However, we
extend the procedure above to include the possibility of having
more than one STBC to choose from and to allow for power
allocation within the selected subset of antennas.

C. General Framework for TAS

For the remainder of this paper, TAS will be modeled as:

Y =

√

Es

nt
HW kXk + E (18)

where the pair(W k, Xk) must be chosen on a per frame basis
from the finite set

Ω = {(W 1, X1), . . . , (W K , XK)}

For each pair (W k,Xk), the weighting matrixW k determines
a subset ofnk

t (nk
t ≤ Nt) transmit antennas from theNt

transmit antennas available for transmission of codeXk possi-
bly with non-uniform power allocation. The dimensions of the
matricesW k andXk areNt×nk

t andnk
t ×Nk, respectively,

whereNk is the length of thek-th space-time codeword. The
average power constraint becomes Tr(W kW k

H) = nk
t . Nt

is fixed, whereas the parametersnk
t , Nk, and, of course, the

matrices elements may vary withk. We shall keep the rate
constant herein, but this is not a requirement. To limit the
transmitter cost, we should make sure that the row rank of
Xk for all k is upper bounded by some constant representing
the number of required RF chains.

D. Design Examples

We now present examples of TAS schemes taken from the
literature and show how they can be described in the context
of the previous section. The expression for the instantaneous
SNR for each scheme is also given, where we assume that
the MIMO channel matrixH obeys the model described in
Section II-A. LetCk be the random variable implied by the
Frobenius norm of thek-th column ofH , that is:

Ck =

Nr
∑

i=1

|hi,k|2, k = 1, 2, · · · , Nt (19)

By assumption onH, we know thatCk are independent and
identically distributed chi-squared random variables. Wenow
define a new set of random variablesC(k) by rearranging
the Ck ’s in an descending order of magnitude:maxk{Ck} =
C(1) ≥ C(2) ≥ · · · ≥ C(Nt) = mink{Ck}. C(Nt−i+1) is called
the i-th order statistics [13]. Also, we defineC(k)+(l) as the
random variable implied by the Frobenius norm of the column
vector obtained by the (non-coherent) sum of the two columns
of H with the k-th and thel-th largest Frobenius norms.
Clearly, C(k)+(l) = C(l)+(k). It is interesting to note that the
inequalityC(k)+(l) > C(k) + C(l) holds true on occasion, i.e.,
depending on the channel realization.

Example 1: Consider the TAS strategy that selects on a per
frame basisthe best antenna from a set ofNt transmit antennas
for transmission of the “trivial” OSTBCXT . A single symbol
is sent via the selected antenna and the receiver performs
maximum-ratio combining. This scheme was proposed by
Chenet al. in [14], [15], wherein it was termed TAS/MRC. For
consistency of notation, we shall herein refer to this scheme as
TAS/T. The associated matrices are:Xk = [s], for all k, and
W k = [0 · · · 0 1 0 · · · 0] where the nonzero element occurs
in thek-th position. The feedback consists of⌈log2(Nt)⌉ bits.
The instantaneous SNR of TAS/T is given by:

γTAS/T = γ0C(1) (20)

Example 2: Consider the selection of the best two antennas
(out of Nt ≥ 2 transmit antennas) for the transmission of the
Alamouti code. The associated matrices are:Xk = XA, for
all k, andW k, for k = 1, . . . ,

(

Nt

2

)

, consist of the matrices
of dimensionNt × 2 with (Nt − 2) all-zero rows and[1 0]
and [0 1] as the nonzero rows. The selected antennas need
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not be permuted; thus the feedback consists of⌈log2(
(

Nt

2

)

)⌉
bits. The instantaneous SNR of TAS/A is given by:

γTAS/A = γ0

C(1) + C(2)

2
(21)

More generally, the instantaneous SNR of TAS with an OS-
TBC would be:

γTAS/OSTBC =
γ0

nt

nt
∑

i=1

C(i) (22)

Example 3: Consider the selection of the best three anten-
nas (out ofNt ≥ 3 transmit antennas) for the transmission of
the extended Alamouti codeXEA3. The associated matrices
are: Xk = XEA3, for all k, andW k, for k = 1, . . . ,

(

Nt

3

)

,
consist of the matrices of dimensionNt × 3 with (Nt − 3)
all-zero rows and[1 0 0], [0 1 0], and [0 0 1] as
the nonzero rows. The feedback consists of⌈log2(

(

Nt

3

)

)⌉ bits.
The instantaneous SNR of TAS/EA3 is given by:

γTAS/EA3 = γ0

C(1) + C(2)+(3)

3
(23)

It should be noted that this selection strategy neglects thefact
that the sum of two antennas with small individual Frobenius
norms may have norm greater thanC(2)+(3). Nevertheless, the
simplified selection strategy yields very good results.

Example 4: Consider the selection of either the best two
antennas for the transmission of the Alamouti code or the
best three antennas (out ofNt ≥ 3 transmit antennas) for
the transmission of the extended Alamouti codeXEA3. The
associated setΩ is the (disjoint) union of the two sets of
matrices pairs in the Examples 2 and 3. This TAS scheme
was proposed by the authors in [7] and will be termed
hereinhybrid-1. Considering antenna permutation in this case
amounts to including inΩ the NOSTBCsXEA1 andXEA2,
attached to the same weighting matrices in Example 3. Note
that, once the best three antennas are selected, permutingh(2)

and h(3) in (16) makes no difference. That is why there are
only three essentially different EA codes. With permutations,
the hybrid scheme will be calledhybrid-1p. The feedback
consists of⌈log2(3

(

Nt

3

)

+
(

Nt

2

)

)⌉ bits. The instantaneous SNR
of TAS/hybrid-1 and TAS/hybrid-1p are, respectively:

γTAS/hybrid−1 = max
{

γTAS/A, γTAS/EA3

}

(24)

and

γTAS/hybrid−1p = max
{

γTAS/A, γTAS/EA1,

γTAS/EA2, γTAS/EA3

}

(25)

E. Average SNR Analysis

In this section, we present an average SNR analysis of
the schemes given in Examples 1-4. As a consequence of
the results we propose a new hybrid TAS scheme, which
outperforms the previous ones.

Let us begin by definingSnt
(for nt = 1, . . . , Nt) as

Snt
,

1

nt

nt
∑

i=1

C(i) (26)

So, S1 = C(1), S2 =
C(1)+C(2)

2 , and so on. Now note that
Snt

decreases asnt increases from 1 toNt. Therefore, TAS
with standard OSTBCs should not be used. That is, ifΩ were
to contain OSTBCs only then the “trivial” OSTBC would
always be the best selection, not only on the average but for
any channel realization. Moreover, TAS withany OSTBC and
in particular with the “trivial” OSTBC provides the maximal
diversity order, as if all the antennas were used, as proved in
[14]. Therefore, by the decreasing property ofSnt

, we can
assure that the largest (instantaneous or average) SNR gain
is achieved with TAS with the “trivial” OSTBC (among all
OSBTCs). This leads us to consider the “trivial” as the only
OSTBC, and possibly some NOSTBCs, in designingΩ. The
natural hybrid scheme, termed hereinhybrid-2, is described as
the union of TAS/T and TAS/hybrid-1p. The feedback consists
of ⌈log2(3

(

Nt

3

)

+ Nt)⌉ bits. The instantaneous SNR is given
by:

γTAS/hybrid−2 = max
{

γTAS/T , γTAS/EA1,

γTAS/EA2, γTAS/EA3

}

(27)

The average SNR analysis of TAS schemes would involve
the knowledge of the probability density function (PDF) and
cumulative distribution function (CDF) of the order statistics,
which are in fact well-understood [13]. A closed-form expres-
sion for the expected value ofC(i) as well as a table with
the expected value ofC(1) and C(2), for Nt = 3, . . . , 6 and
Nr = 2, . . . , 4 can be found in [6]. In that paper an exact
average SNR analysis of TAS/A has been presented. Chen
et al. have derived exact bit error probability expression, for
binary phase shift keying (BPSK), of TAS/A in [16], and of
TAS/T in [14], [15]. The same analysis for the hybrid TAS
schemes would be somewhat more complicated, as the SNR in
those cases are expressed as the largest random variable from
a set of dependent random variables which are themselves
functions of order statistics. We get around this problem by
presenting the CDF of the instantaneous SNRs for the TAS
schemes in Figures 1 and 2, for (a)Nt = 3, (b) Nt = 4,
(c) Nt = 5, and (d) Nt = 6 transmit antennas. In these
figures, where we have setγ0 = 1 (0 dB), solid lines represent
the CDF ofγTAS/hybrid−2 and dashed lines the CDF of the
instantaneous SNR for the other TAS scheme. The average
SNRs of the two schemes in each figure appear as vertical
lines.

In Figure 1, we present the CDFs ofγTAS/hybrid−2 and
of γTAS/A. As expected, the average SNR of each scheme
gets larger as the number of transmit antennas increases. The
average SNR gain of TAS/hybrid-2 over TAS/A decreases as
Nt increases. It is about 1.51 dB, 1.42 dB, 1.35 dB, and 1.33
dB for Nt varying from 3 to 6, respectively. The reason for
this behavior is that asNt increases the best norms become
more uniform, i.e.,S2 (see (26)) tends toS1 asNt increases.
We can also see this decrease in SNR gain as a function ofNt

from the code selection statistics. In simulating TAS/hybrid-2,
it was seen that the “trivial” code is the selected code for over
76% of the channel realizations whenNt = 3, and 51% when
Nt = 6.

In Figure 2, we present the CDFs ofγTAS/hybrid−2 and
of γTAS/T . Here the average SNR gain of TAS/hybrid-2 over
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Fig. 1. CDF ofγTAS/hybrid−2 (solid lines) andγTAS/A (dashed lines)
for (a) Nt = 3, (b) Nt = 4, (c) Nt = 5, and (d)Nt = 6 transmit antennas,
andγ0 = 1 (0 dB). Vertical lines indicate average SNRs.Nr = 1.
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Fig. 2. CDF ofγTAS/hybrid−2 (solid lines) andγTAS/T (dashed lines)
for (a) Nt = 3, (b) Nt = 4, (c) Nt = 5, and (d)Nt = 6 transmit antennas,
andγ0 = 1 (0 dB). Vertical lines indicate average SNRs.Nr = 1.

TAS/T increases withNt. It is about 0.13 dB, 0.23 dB, 0.29
dB, and 0.33 dB forNt varying from 3 to 6, respectively. The
reason for this is that the “trivial” OSTBC belongs toΩ in
the two TAS schemes. The average SNR advantage accrues
from the opportunistic selection of the EA codes. Although
the gains in terms of average SNR are small, the gains as
measured by the SNR required to achieve a given bit error
rate (BER) are more significant, as we shall see next.

IV. SIMULATION RESULTS

In this section, we compare the TAS schemes discussed
in Section III in terms of their error performance, by means
of computer simulations. We present the BER for BPSK
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Fig. 3. BER of TAS/EA3, TAS/A, TAS/EA123, TAS/T, TAS/hybrid-1p, and
TAS/hybrid-2, for BPSK,Nt = 6, andNr = 1.

under flat, quasi-static fading. In all simulations we have
assumedNr = 1 receive antenna, 130 symbols per frame,
and considered as stopping criterion the occurrence of 10,000
symbol errors per each SNR. The maximum number of RF
chains for all schemes simulated is 2. The BER for the case
of no diversity (Nt = Nr = 1) is also plotted to serve as a
reference.

Figure 3 shows, forNt = 6 transmit antennas, the BER
of TAS/EA3, TAS/A, TAS/EA123, TAS/T, TAS/hybrid-1p,
and TAS/hybrid-2. The scheme TAS/EA123, not previously
described, corresponds to the selection of the best three
antennas and the best EA code (EA1, EA2 or EA3). It is
just the scheme TAS/hybrid-2 without the “trivial” code. From
the simulation results, we observe that TAS/EA3 does not
achieve full (i.e., order 6) diversity. This would be expected
since EA3 is a NOSTBC. However, it is interesting to note
that when permutation of the selected antennas is considered
(TAS/EA123), full diversity can be extract despite the factthat
in this case all codes inΩ are non-orthogonal.

The contribution of the EA codes to the overall gain
obtained by TAS/hybrid-2 can be quantified by the gain of
TAS/EA123 over TAS/A in Figure 3, which is 0.5 dB. About
the same gain is achieved by TAS/T over TAS/A. The complete
system (i.e., TAS/hybrid-2), as can be seen from Figure 3,
shows an improvement of about 1.3 dB over TAS/A. This
hints that multi-code selection can be interesting.

The number of feedback bits required by TAS/hybrid-2 for
Nt = 3, 4, and 5 is, respectively,3, 4, and 6. For Nt = 6,
there are66 pairs (W k, Xk) in Ω. With negligible loss of
performance, we can discard two such pairs rounding the size
of Ω so that the system requires6 bits of feedback. These
figures represent no more than two extra bits as compared to
TAS/A.

Regarding the other curves in Fig. 3, the superior perfor-
mance of the hybrid schemes corroborates the average SNR
advantage of Section III-E. Note that the SNR gain (from the
BER curves) of TAS/hybrid-2 over TAS/T is about 0.7 dB in
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Nt = 3, . . . , 6, andNr = 1. Full (i.e., orderNt) diversity is achieved as if
all the transmit antennas were used.

the high-SNR regime, while the average SNR gain found in
Section III-E was only 0.33 dB.

In order to demonstrate the full diversity gain obtained
with TAS, even in the presence of NOSTBCs, the BER of
TAS/hybrid-2 and TAS/A is shown in Figure 4. Note that the
slope of the curves is related toNt.

V. CONCLUSIONS ANDFINAL REMARKS

In this paper we have considered a general framework for
transmit antenna selection with space-time block codes. In
general, transmit antenna selection schemes require very little
feedback as compared with optimal transmit beamforming.
Furthermore, the nature of the transmit antenna selection
approach is such that the amount of feedback is independent
of the number of antennas. Another important advantage of
transmit antenna selection is the reduced transmitter costas
fewer RF chains are required.

In our general framework, based on the instantaneous
channel conditions, the transmitter chooses a STBC and a
weighting matrix for transmission aiming at minimizing the
error probability. It was seen that the “trivial” orthogonal
STBC — obtained by transmitting uncoded data via a single
antenna — is the best choice within the class of orthogonal
STBCs, both in terms of instantaneous (and average) SNR
and in terms of the number of transmit RF chains. It was
then shown that to improve error performance further non-
orthogonal STBCs have to be included as options for selection.
A few transmit antenna selection schemes containing simple
non-orthogonal STBCs as well as the “trivial” orthogonal
STBC were proposed, and their error performance was evalu-
ated through computer simulations.

Perhaps the most important conclusion that can be drawn
from the results in this paper is that in transmit antenna
selection non-orthogonal STBCs should be exploited. The
schemes proposed in Sec. III-D are only simple special cases,
that may serve as an indication of the improved performance

obtained in this way. Another interesting scheme wherein
non-orthogonal STBCs are considered has been proposed by
Akhtar and Gesbert [17], [18]. The so-called Group-Coherent
Codes (GCCs) are non-orthogonal STBCs that are used in a
selection scheme based upon the instantaneous channel condi-
tions. They can be described in the context of the framework
in Sec. III-C, and correspond to no-antenna, but purely code
selection, i.e., thent = Nt case. For example, the simplest
GCC would be described asX1 = X2 = [XA

T XA
T ]T ,

and W k = diag(I2, (−1)k+1I2), for k = 1, 2, with Nt =
nt = 4. It requires 1-bit feedback. SinceXk has rank 2 this
system requires only two RF chains. If more transmit antennas
were available, then the GCCs could be used in combination
with antenna selection, thus following the idea of TAS with
non-orthogonal STBCs.

Another point that is worth mentioning is the benefits of
non-uniform power allocation. If the weighting matrices asso-
ciated with the NOSTBCs in the framework of Sec. III-C are
prepared to distribute the transmit power among the transmit
antennas in an optimal fashion, then further coding/array gains
can be obtained. Non-uniform power allocation also plays an
important role in the case of feedback errors. In this regard,
a very interesting result has been presented by Ganesanet al.
[19]. According to their analysis, TAS/T experiences diversity
loss in the presence of errors in the feedback path. Under
these non-ideal conditions, it turns out that TAS/OSTBC
with optimal non-uniform power allocation represents a more
robust solution. The analysis of the error performance of
TAS schemes involving non-orthogonal STBCs for unreliable
feedback lies beyond the realm of this paper, but it is an
interesting problem for future investigation.
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Bartolomeu F. Uchôa-Filho (S´94-M´96) was born
in Recife, Brazil, in 1965. He received the B.S.E.E.
degree from the Federal University of Pernambuco
(UFPE), Recife, Brazil, in 1989; the M.S.E.E. degree
from the State University of Campinas (UNICAMP),
Campinas, Brazil, in 1992; and the Ph.D. degree in
electrical engineering from the University of Notre
Dame, Notre Dame, Indiana, U.S.A., in 1996. Dur-
ing 1997-1999 he held a Post-Doctoral position at
the State University of Campinas. From August 1999
to January 2000 he was a Visiting Researcher in the

Department of Electrical Engineering, Federal Universityof Santa Catarina,
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