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Abstract— In this paper we propose a multifractal traffic
model that is based on a multiplicative cascade with generalized
multiplier distributions (CGMD). The multipliers are determined
through their probability densities estimated from real network
traffic flows by using Kernel and Acceptance/Rejection methods.
Statistical analysis and queueing behavior studies were carried
out for the model validation in comparison to other multiplicative
cascade based models. In order to build an efficient estimation
method of performance bounds for network traffic flows that
takes account of multifractal characteristics, we derive the
effective bandwidth for the CGMD model as well as its Hurst
parameter. The proposed performance bounds are computed
by relating the CGMD based effective bandwidth to statistical
network calculus concepts. Our performance bound estimation
approach is evaluated through simulations with Internet and
Ethernet traffic traces, verifying its efficiency in describing the
byte loss probability and mean buffer occupation.

Index Terms— Performance bounds, Multifractal traffic, Ef-
fective bandwidth, Network calculus, Hurst parameter.

I. INTRODUCTION

ANALYSIS of measured traffic streams taken from a wide
range of sources has indicated that many traffic sources

present correlation structure that decays much more slowly
than exponentially. These slowly decaying correlation struc-
tures have been shown in VBR video [1], Ethernet LAN traffic
[2], MAN traffic [3] and general Internet WAN traffic [4].
Such a slow decay property in autocorrelation has been related
to the concept of self-similarity and long-range dependence
(LRD). While the short-range dependent traffic models are
significant for their tractability, they cannot capture the long-
range dependencies present in real packet data traffic. Many
studies have revealed high variability of today’s Internet traffic,
i.e., traffic is bursty over a wide range of time scales in contrast
to the assumption that traffic burstiness exists only at short
time scales while traffic is smooth at large time scales [2]
[4]. This multiscale burstiness has been shown to make a
significant impact on network performance [2] [4] [5].

Most LRD traffic models are based on self-similar pro-
cesses. Precisely, asymptotically second order self-similarity
implies LRD and vice versa. In traffic modeling, the term
self-similarity is usually used to refer to the asymptotically
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second order self-similar or monofractal processes [6]. The
Hurst parameter H is used to measure the degree of ‘self-
similarity’. For random processes suitable for network traffic
modeling, the Hurst parameter is basically a measure of the
tail decaying rate of the autocorrelation function. However,
it is known that distinct long-range dependent processes with
the same measured Hurst parameter value can produce vastly
different queueing behavior [7]. In addition, as argued in
[5], the queueing performance mostly depends on the traffic’s
variability over certain time scales rather than on the value of
H.

For many real network traffic processes, the wavelet energy-
scale or variance-time plots usually do not tend to straight
lines. Instead, these processes have piecewise fractal behavior
with varying Hurst parameter over some small ranges of time
scales [8]. Processes with such fractal behavior are usually
referred to as multifractal processes. It has been observed that
queueing performance greatly depends on the degree of traffic
irregularities at small time scales which are believed to be due
to the complex dynamics of data networks [7]. Feldmann, et
al. claimed that this combination of scaling behaviours is best
represented via a multifractal process [9]. In [10], Erramilli et
al. confirmed this finding of multifractal behaviour on fine time
scales, and indicated that this behaviour can have a significant
impact on queueing performance when utilizations are low. In
[11], Lévy Véhel and Riedi showed that a multifractal version
of fractional Brownian motion (fBm) may better reflect the
properties of measured network traffic than the fBm itself.
In [12], the authors presented a multifractal wavelet model
(MWM) and argued that this model better predicted the
behavior of both a TCP trace [4] and an Ethernet trace [2]
when compared to the fractional Brownian motion. The MWM
can closely match the properties of the original traffic stream
in both marginal distribution and correlation structure. In [13],
Gao and Rubin showed that both packet interarrival times and
packet length sequences could be modeled by multifractal
processes. In [14], for packet interarrival time modeling,
Krishna et al. proposed a multiplicative cascade with the mul-
tiplier distribution being assumed Gaussian (VVGM- Variable
Variance Gaussian Model). The VVGM model assumes that
the multiplier distribution has a constant mean value equal to
0.5 in every stage of the cascade. In this work, we demonstrate
that traffic modeling can be significantly enhanced by a more
precise estimation of the multiplier distributions.

Besides traffic modeling, several studies have aimed at
characterizing the mean queue length and the packet arrival
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distribution in buffers in order to establish bounds for per-
formance measures, such as loss, delay and backlog. The
knowledge of these performance bounds explicitly allows us
to guarantee the QoS parameters requested by the traffic flows.

Using the notion of the linear envelope process (LEP),
Cruz in [15][16] derived some performance bounds in a
deterministic framework. Based on the minimum LEP, Chang
established performance bounds for both deterministic and
stochastic systems [17]. Later, Liyi et al. suggested tighter
bounds asymptotically achievable that resulted in a better
performance for traffic management [18]. Interesting enough,
in these two latter works, effective bandwidth equations are
explicitly involved in the network calculus theory [19][20][21].
We revisit this connection by incorporating into network
calculus, the proposed multifractal model properties such as
its effective bandwidth and Hurst parameter.

In this paper, we firstly develop a new multifractal traffic
modeling framework by extending the VVGM model in terms
of the cascade multiplier distributions. The multiplier distri-
butions are estimated through the Kernel method and are used
to generate multiplier samples by applying the Acceptance-
Rejection method. We also propose a novel approach to
estimate network performance bounds, such as byte loss
probability and mean queue length, by relating the effective
bandwidth for the CGMD model to network calculus. We show
that the proposed performance bounds are tighter than those
given by the Large Deviations theory.

The paper is organized in the following way: in Section
II, we describe cascade based multifractal processes and
review some multifractal modeling concepts. In Section III,
we present the proposed multifractal model (CGMD) and
in subsection III.D, its Hurst parameter. In Section IV, we
show the results of the tests to validate the CGMD mul-
tifractal model. In Section V, we derive the CGMD based
effective bandwidth. In Section VI, we show how the effective
bandwidth notion is related to the statistical network calculus
and in the subsection VI.B, we validate our performance
bound proposal by simulation tests. Finally, in Section VII,
we conclude.

II. MULTIFRACTAL PROCESSES

Multifractal processes are defined by a scaling law for mo-
ments of the processes’ increments over finite time intervals.
This means the traffic has complex and strong dependence
structures inherently, appearing very bursty and the burstiness
looks similar over a wide range of scales [6]. Traffic flows
with such properties make the network performance much
worse than those of Gaussian and short-range dependent traffic
types [22]. It is well-known that the increment process of the
cumulative traffic load is generally strongly Gaussian at large
scales while non-Gaussian at small scales. Now, let us formally
introduce the concept of “multifractality”.

Definition 1 A stochastic process X(t) is called multifractal
if it satisfies [23]:

E(|X(t)|q) = c(q)tτ(q)+1 (1)

for t ∈ T and q ∈ Q, where T and Q are intervals on the
real line, and τ(q) and c(q) are functions with domain Q,

known as the scaling factor and the moment factor of the
multifractal process, respectively. Moreover, we assume that T
and Q have positive lengths, and that 0 ∈ T , [0, 1] ⊆ Q. If τ(q)
is linear in q, the process is called monofractal; otherwise, it is
multifractal. For self-similar processes with Hurst parameter
H, it can be shown that τ(q) = qH−1 and c(q) = E(|X(1)|q)
[24].

A. Binomial Measure

The simplest multifractal, the binomial measure can be
generated through an iterative procedure, called multiplicative
cascade, on the compact interval [0,1]. Let m0 and m1 be two
positive numbers adding up to 1. At stage k = 0, we start the
construction with the uniform probability measure µ0 on [0,1].
In step k = 1, the measure µ1 uniformly spreads mass equal
to m0 on the subinterval [0,1/2] and mass m1 on [1/2, 1]. In
step k = 2, the set [0,1/2] is split into subintervals [0,1/4] and
[1/4,1/2] and interval [1/2,1] into [1/2,3/4] and [3/4,1], with
[24]:

µ2[0, 1/4] = m0m0 µ2[1/4, 1/2] = m0m1

µ2[1/2, 3/4] = m1m0 µ2[3/4, 1] = m1m1

A dyadic interval at iteration stage k is denoted by [t, t +
2−k] where t = 0.η1 . . . .ηk =

∑k
i=1 ηi2−i. Let ϕ0 and

ϕ1 be the relative frequencies of 0’s and 1’s in the binary
development of t. Then, the measure on the dyadic interval is
given by:

µ[t, t + 2−k] = mkϕ0
0 mkϕ1

1 (2)

The process preserves at each stage the mass of split
dyadic intervals, so it’s called conservative or microcanonical.
If the multipliers used have the same fixed value m0 then
the multiplicative cascade is deterministic [24]. The binomial
measure is a deterministic cascade with scaling function
τ(q) = − log2(m

q
0 + mq

1) + 1. At each stage of the cascade
the intervals can be split into b > 2 intervals of equal size;
this defines the class of multinomial measures.

B. Multiplicative Cascade

Allowing the cascade multipliers to be random variables,
we get a stochastic multiplicative cascade. Denoted by R,
these multipliers are chosen to be independent and identi-
cally distributed random variables concentrated on [0,1] with
probability distribution function fR(x). At stage k, a dyadic
interval [t, t + 2−k] of length ∆tk = 2−k (t = 0.η1 . . . .ηk =∑k

i=1 ηi2−i), has the measure µ given by:

µ(∆tk) = R(η1).R(η1, η2), . . . , R(η1, . . . , ηk) (3)

where R(η1, . . . , ηi) represents the multiplier at stage i. Since
the multipliers are assumed i.i.d, it can be shown that the
measure µ in (3) satisfies the following scaling relationship:

E(µ(∆tk)q) = (E(R)q)k = ∆t
− log2 E(Rq)
k (4)

which defines a multifractal process with the scaling function
given by:

τ(q) = −1− log2 E(Rq). (5)
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C. Multifractal Wavelet Model

R. Riedi et al. proposed an important multifractal model,
namely the Multifractal Wavelet Model (MWM). The MWM
is based on the Haar wavelet to characterize network traffic
[12]. This model can be viewed as a multiplicative cascade
in the Haar wavelet domain that aims to capture the decay of
wavelet energy on scale [25].

In the MWM synthesis process, one needs to apply the
Haar DWT (Discrete Wavelet Transform) to network traffic,
to calculate the second moments of the wavelet coefficients
at each scale, and to estimate the mean and the variance of
the scaling coefficient at the coarsest scale [12]. The MWM
model efficiently approximates the network traffic properties
in terms of marginal distribution (it produces approximately
lognormal distribution) and correlation structure [26].

D. Estimation of the Cascade Multiplier Distributions

Let XN
i represent the data at stage N of the cascade. The

data at stage (N−1) is obtained by aggregating the consecutive
values at stage N over non overlapping blocks of size two.
More explicitly, given the data at a coarser scale (N − j),
XN−j

i (i = 1, . . . , 2N−j), we obtain the data at stage (N −
j − 1) by the following ordinary sum operation:

XN−j−1
i = XN−j

2i−1 + XN−j
2i (6)

for i = 1, . . . , 2N−j−1. The procedure ends when the aggre-
gates form one point at the coarsest scale. An estimate of the
multiplier values for proceeding from stage j to stage j + 1
can be obtained as [9]:

r
(i)
j =

XN−j
i

XN−j−1
2i−1

(7)

for i = 1, . . . , 2N−j−1. The estimate r
(i)
j in (7) can be viewed

as samples of the multiplier distribution fRj (r) at stage j.
The multiplier distribution at scale j can be obtained from
histograms of r

(i)
j ’s. The VVGM model, for example, consists

of a multiplicative cascade that assumes that the multiplier
distribution at scale j is Gaussian with fixed mean equal to
0.5 and varying variances from stage to stage. In the next
sections, we will develop a new multiplicative cascade using
more general multiplier distributions in order to achieve better
traffic process representation.

III. CASCADE WITH GENERALIZED MULTIPLIER
DISTRIBUTIONS (CGMD)

In this section we present the methods that compose the
CGMD traffic model, and then in subsection C, we show how
to synthesize corresponding process samples.

A. Non-parametric Probability Density Estimation: The Ker-
nel Estimator

The probability density function is a fundamental concept
in statistics. Its estimation can be either parametric or non-
parametric, assuming or not that the data are drawn from a
known distribution, respectively. In this work, we will consider

a non-parametric approach to estimate the cascade multipliers
based on observed data.

The Kernel estimator has wide applicability, particularly
in the univariate case. The Kernel estimator apart from
the histograms is probably the most commonly used non-
parametric density estimator and certainly the most studied
mathematically.

Let Xi, . . . , Xn be i.i.d samples observed from a continu-
ous univariate distribution with unknown probability density
function f(x). The Kernel estimator of f(x) with Kernel K is
defined as:

f̂(x) =
1

nh

n∑

i=1

K

(
x−Xi

h

)
(8)

where h is the window width, also called smoothing parameter.
The Kernel function K must satisfy the following condition:

∫ ∞

−∞
K(x)dx = 1 (9)

The Kernel estimator is like a sum of ‘bumps’ placed at the
observation points. The Kernel K determines the shape and the
widths h’s of the bumps. The following two properties (mean
and variance) of the Kernel estimator will be used later into
some equation derivations:

E(f̂(x)) =
{∫ 1

0

1
h

K

(
x− y

h

)
f(y)dy

}
(10)

var(f̂(x))= 1
n

(∫ 1

0
1

(h)2
K

(
x−y

(h)2

)2
f(y)dy

)
−
{∫ 1

0
1
h K( x−y

h )f(y)dy
}2

(11)
When considering estimation of the discrepancy between

the density estimation f̂(x) and the true density f(x), a
commonly used measure is the mean integrated square error
(MISE) defined as:

EQM(f̂) =
∫ ∞

−∞
E{f̂(x)− f(x)}2dx +

∫ ∞

−∞
varf̂(x)dx

(12)
For a generic Kernel K, the optimal value of h from the

viewpoint of minimizing the MISE is given by [27]:

hot = K
− 2

5
2 {

∫ ∞

−∞
K(t)2dx} 1

5 {
∫ ∞

−∞
f ′′(x)2dx}− 1

5 n−
1
5

(13)
For a Gaussian Kernel the optimum window width hot can

be explicitly estimated by [27]:

hot =
4
3

1
5

σn−
1
5 = 1.06σn−

1
5 (14)

where σ is the standard deviation of the process X .
Fig. 1 shows the histogram of the multipliers between

stages 1 and 2 obtained using the method of Section II.D
and their density function through the Kernel method for the
dec-pkt-1 multifractal traffic trace1. It can be noticed that the
assumed Gaussian multiplier with mean 0.5 by the VVGM
model cannot sometimes be realistic. In fact, in this case, the
distribution tends to be lognormal.

1http://ita.ee.lbl.gov/html/contrib/DEC-PKT.html
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(a) Traffic trace Dec-pkt-1 (b) Kernel Estimator

Fig. 1. Multiplier Distribution between Stages 1 and 2

B. Acceptance/Rejection Method

The Acceptance/Rejection method presented is used to gen-
erate random samples of a process X in accordance with the
multiplier distribution f(x). The basic Acceptance/Rejection
algorithm has the following formulation: Let g(x) be another
probability density defined in the support of f such that:

f(x) ≤ cg(x) (15)

where c > 1 is a known constant that holds for all x in
the support. The function q(x) = cg(x) can be viewed as
an envelope function of f(x). Random samples of X can be
generated by running the following algorithm [28]:

Acceptance/Rejection Algorithm:
Repeat

1. Generate sample y from g(x);
2. Generate sample u from the uniform distribution U(0,1);

Until
3.u ≤ f(y)/cg(y);

Return X = y.

It can be shown that the process X obtained by the
Acceptance-Rejection method has the required distribution as
stated by the following theorem.

Theorem 1: Let U be a uniform random variable and Y
another random variable whose density probability is g(x).
The random variable X generated by the Acceptance-Rejection
method has probability density f(x).

The proof of this theorem can be easily done by using the
fact that P (X ≤ x) = P{X ≤ x|U ≤ f(x)/(cg(x))} with U
and X being independent.

The closer the enveloping function to f(.), the better the
acceptance rate. For this method to be efficient, an appropriate
constant c must be selected in order to get low rejection rate.
One way to choose an optimum c is by setting [28]:

c = sup
x

f(x)/g(x) (16)

From the Gaussian sum obtained by the Kernel method, we
can determine the constant c by using the following equation
[28]:

c = 1/(min(σ2
g).ng.

√
(2π)) (17)

where ng is the number of gaussian functions and σ2
g (g =

1, . . . , ng) represents the variance of the gaussian function. In

equation (17), g(x) is assumed to be a uniform distribution,
i.e., g(x) = 1 for all x, and f̂(x) corresponds to the gaussian
mixture given by the Kernel method.

C. CGMD Synthesis Procedure

In this section we present the CGMD synthesis method
that consists of a multiplicative cascade procedure assuming
different multiplier distributions in each cascade. The CGMD
synthesis procedure involves the aggregated process value
obtained in the coarsest scale of the cascade, the probability
density of the multipliers estimated through the Kernel method
and the multipliers obtained in each stage by the Acceptance-
Rejection method. Explicitly, we compute the multiplier den-
sities f̂∗i (x) in each stage i = 1, 2, . . . , N through the Kernel
estimator by the following equation:

f̂∗i (x) =
1

nδi

n∑
p=1

K

(
x− zi

δi

)
(18)

where n = 2N and the mean zi and the variance δi of the
cascade multipliers in each stage are respectively given by:

zi = E{f̂i(x)} i = 1, 2, . . . , N (19)

δi=

(∫ 1

0
1

(hi)
2 K

(
x−y

(hi)
2

)2

f̂i(y)dy

)
−
{∫ 1

0
1

hi
K

(
x−y
hi

)
f̂i(y)dy

}2

(20)
In fact, we are using a gaussian mixture to model the

real probability density of the multipliers. In summary, the
synthesis algorithm of the CGMD process basically consists
of:

1) Calculate the aggregated value obtained at the coarsest
scale;

2) Estimate the multipliers using (7);
3) Apply the Kernel method to estimate the multiplier

distribution;
4) Apply the Acceptance-Rejection method in the distribu-

tion given by (18) to generate the multipliers at each
stage i of the cascade;

5) By using the obtained multipliers and the aggregated
value of the traffic process, the same procedure described
previously for generation of a multiplicative binomial
cascade (Sections II.A) is applied.

D. Hurst Parameter for the CGMD Multifractal Model

This section is dedicated to the derivation of a global
scaling law (Hurst parameter [14]) associated with the CGMD
multifractal process and the multifractal analysis. The obtained
analytical expression for the Hurst parameter will be used for
the estimation of the statistical performance bounds.

In the multifractal analysis, the scaling of moments are
mainly evaluated through the scaling function τ(q) (also
known as partition function). For a multiplicative cascade
process, the scaling function τ(q) is represented by (5). For
q = 2, we have the multifractal scaling exponent τ(2) which is
closely related to the LRD parameter H since both parameters
measure the power-law behavior of second-order statistics.
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More precisely, τ(2) captures the scaling behavior of the
second sample moments of the process while H , the decay
of the covariance. Actually, one can demonstrate that [12]:

H =
τ(2) + 1

2
(21)

An important characteristic of the CGMD model is that its
cascade multiplier distributions are expressed as a weighted
sum of Gaussian functions by (18). Since the partition function
is related to the multiplier distribution through (5) and by using
(10), we can express the Hurst parameter of the CGMD model
as (see [29] for details on τ(q) estimation):

H =
−∑N

i=1 log2 E(f̂∗i (x)2)
2

(22)

and by applying the properties of the Kernel estimator (See
eq. (11)), we have:

H =
−∑N

i=1 log2

(∫ 1

0
1

(δi)2 K
(

x−z
(δi)2

)2

f̂∗i (z)dz

)

2
(23)

where N is the number of cascade stages, δi and f̂∗i are
respectively given by (20) and (18). Equation (23) permit
us to estimate the Hurst parameter by the knowledge of
the multiplier probability density of the CGMD model, i.e,
through the corresponding CGMD modeling parameters. Table
I compares for two well-known network traffic traces [2][10]
the Hurst parameter values given by (23) to those based on
the wavelet method described in [30].

TABLE I
MEAN, VARIANCE, HURST PARAMETER AND CGMD MODEL BASED

HURST PARAMETER

Trace Mean Variance Hurst P. CGMD H

lbl-tcp-5 2.6146.103 1.0033.107 0.7811 0.8050
Bc-Aug 1.3819.104 1.71118 0.8617 0.8789

IV. CGMD MODEL EVALUATION

In order to compare the statistical characteristics of the
CGMD model to those of real network traffic, as well as to
those of other traffic models, some tests were conducted to
evaluate some statistical parameters such as: autocorrelation
function, high order moments of aggregated data and multi-
fractal spectrum. Besides that, to verify the modeling accuracy
in representing real world traffic, simulations were carried out
to analyze the queue size and byte loss in a single server
system fed by CGMD model based synthetic traffic. TCP/IP
traffic traces (dec-pkt-1.tcp and dec-pkt-2.tcp) from the Digital
Equipment Corporation2 and Ethernet traffic traces collected
by Bellcore3 were used in the simulations. We considered
samples of traffic in a scale aggregation of 512ms and 100ms
for the TCP/IP and Ethernet traffic traces, respectively. In these
scale aggregations the considered traces present self-similar
and multifractal characteristics [2] [10].

2http://ita.ee.lbl.gov/html/contrib/DEC-PKT.html
3http://www.acm.org/sigcomm/ITA

A. Autocorrelation Function
The autocorrelation function reflects the second order statis-

tics of a time series, giving an idea regarding the long-range
dependence in data.

Let y(t) be a process with mean µt and variance σ2
t , and

y(t + k) be the same process shifted in time with mean µt+k

and variance σ2
t+k. The correlation coefficients for the process

y(t) is given by:

ρ(k) =
E[(y(t + k)− µt+k)(y(t)− µt)]

σt+kσt
. (24)

Fig. 2 shows the correlation coefficients for the Dec-pkt-
2 traffic traces, as well as for the CGMD and MWM based
synthetic traces. Notice that the correlation coefficients of the
CGMD model for the majority of the analyzed k values are
closer to those of the real traffic traces.

Network Traffic 

CGMD 

MWM 

Fig. 2. Correlation Coefficient: Dec-pkt-2 Traffic Trace

B. High Order Moments of Aggregated Data
Aggregated traffic greatly influences queuing behavior in

multiplexers and routers. Therefore, it is important to investi-
gate the statistics of the aggregated traffic. In this subsection,
we compare the higher order moments of the aggregated
synthetic traffic traces generated by different cascade models.
Let Xm

k be given by:

X
(m)
k =

1
m

km∑

i=(k−1)m+1

XN
i (25)

where i = 1, 2, ..., 2N and k = 1, 2, ..., L with L = 2N/m
denoting the total number of aggregations made for a fixed
value of m. The qth moment of the aggregated traffic is
estimated as follows:

µ̂(m)(q) =
1
L

L∑

k=1

|X(m)
k |q (26)

Fig. 3 presents the variation of log10(µ̂(m)(q)) versus
log10(m) for q = 2 and q = 4. The CGMD model provides
the tightest moment estimates which are also larger than those
derived from the real traffic traces. This fact indicates that the
CGMD model can faithfully reproduce bursty behavior indeed
occurring in real traffic traces.

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 21, NO. 3, 2006                                                                                                    169



(a) q = 2 (b) q = 4

Fig. 3. High Order Moments of Aggregated Data (Bc-Aug)

C. Multifractal Spectrum

In contrast to Markovian and monofractal traffic types, mul-
tifractal traffic processes present a multiplicity of local Hölder
exponents within any finite interval. The Hölder exponents
describe the local scaling properties of a realized path at
any point in time. Their distribution can be represented by
a renormalized density called the multifractal spectrum. In an
alternative interpretation, the multifractal spectrum describes
the fractal dimension of the set of time instants in the process
having a given local exponent [12]. While the statistical self-
similarity of the sets accounts for long memory in the process,
the concept of Holder exponent is related with the local
singularity of a process, i.e, it characterizes the burtiness of a
process at a given time instant [31]. The multifractal spectrum
f(α) of a process X(t) can be obtained via the Legendre
Transform of τ(q) (partition function) defined as:

f(α) = min
q
{qα− τ(q)} (27)

Fig. 4 compares the multifractal spectra generated by differ-
ent multifractal traffic models with respect to that computed
directly from the Internet traffic trace dec-pkt-1. Notice that
the multifractal spectrum of the Internet traffic traces (dec-
pkt-1 and dec-pkt-2) presents a great amount of α < 1 values.
This property characterizes high incidence of multiscale bursts.
Also the CGMD model captures efficiently the multifractal
spectrum and for consequence the “multifractality” of the real
traffic traces.

D. Performance and Queueing Tests

We considered a single server system with a finite buffer
fed by CGMD synthetic traffic samples in order to compare its
accuracy in representing real data traffic. We mainly analyzed
the mean buffer occupation (queue length distribution) and the
byte loss rate associated to different buffer utilizations. We
defined the buffer utilization factor λ as being the ratio of the
total service time to the total time for which the buffer was in
use. A higher value of λ indicates that the buffer is constantly
being used and consequently there could be a larger probability

Fig. 4. Multifractal Spectrum: Dec-pkt-1 Traffic Trace

of data being discarded. A value of λ smaller than 0.4 means
that the buffer is being under utilized, a value between 0.6 and
0.7 is considered ideal in real networks [32].

Fig. 5.(a) shows how the byte loss varies in function of the
buffer utilization for a finite buffer size of 64Kbytes. Fig.5.(b)
expresses the mean buffer occupation in bytes (queue length
distribution) versus the buffer utilization. It can be observed a
larger loss rate for the CGMD traffic than for the MWM model
one, probably due to the higher moments of the CGMD trace.

Fig. 6 displays the relationship between the byte loss rate
and the buffer size for the traffic trace dec-pkt-1 for a fixed
buffer utilization of 0.5. Among the analyzed traffic models, a
slightly larger loss rate was observed for the CGMD synthetic
traffic trace (but closer to the real ones). It’s worth to remind
that the CGMD model is based on the cascade multiplier
distribution estimation while the MWM relies on the decay of
wavelet energy on scale. This fact can lead to some differences
in the results of these models.

V. EFFECTIVE BANDWIDTH FOR THE CGMD MODEL

The concept of effective bandwidth for high speed networks
was first independently presented in [33][34][35] where i.i.d
and On-Off sources were considered. The methods of effective
bandwidth estimation for Markov and other processes were
carried out in [36][37][38]. Further theoretic development for
admission control, traffic regulation, and other applications can
be found in [39][40] and many others. The effective bandwidth
of a traffic flow is a rate greater than the mean flow rate but less
than its peak rate, that can be used to estimate the necessary
link capacity that attains the required QoS, given the available
buffer capacity.

Formally, the effective bandwidth (EB) of a traffic stream
is defined as [41][34]:

α(θ, t, N) =
1
θt

log EN [eθX(0,t)] 0 < θ; 0 < t < N

(28)
where X(0, t) indicates the total number of arrived bytes in the
interval of length t, θ is the space parameter and EN [eθX(0,t)]
is the measured moment generating function over a trace
consisting of N samples [34]. In the following proposition, we
state the effective bandwidth formula for the CGMD model.
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(a) Bc-Aug Traffic Trace

(b) Dec-pkt-1 Traffic Trace

Fig. 5. Byte Loss Probability and Mean Buffer Occupation

Proposition 1 The effective bandwidth of the CGMD
Multifractal Modeled process Xt can be expressed as:

α(θ, t) =

1
θt

log

(∑
q

θq

q! (
∑2N

t=1
Xt)

q
∏N−1

j=0

{∫ 1

0
1

(δj)q K

(
x−z

(δj)q

)q

f̂∗j (z)dz

})

(29)

where N is the number of cascade stages, δj and f̂∗j are
respectively given by (20) and (18).
Proof : See Appendix.

Fig. 7 presents the effective bandwidth given by (29) for the
lbl-tcp-5 traffic trace in comparison to the Norros’ monofractal
one [42]. In this case, the loss probability was set to 10−7

and the buffer size to 60Kbytes. From Fig. 7, it can be seen
that the proposed effective bandwidth is close to that obtained
by Norros’ method [42]. Notice that the effective bandwidth
proposed by Norros is based on the monofractal fBm model
[42], while, to contrast, we make use of multifractal model

Fig. 6. Byte Loss Probability Versus Buffer Size: Dec-pkt-1 traffic trace

parameters in our approach. In fact, since the CGMD is
a multifractal model, our result is more general, because
the CGMD model based effective bandwidth includes the
monofractal case.
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Fig. 7. Effective Bandwidth Estimation for the lbl-tcp-5 Traffic Trace

VI. PERFORMANCE BOUNDS THROUGH NETWORK
CALCULUS AND THE CGMD EFFECTIVE BANDWIDTH

Research on performance bounds has opened a new di-
rection for effective analysis and design of high-speed com-
munication systems [43]. Performance bounds such as mean
backlog and mean delay can be obtained in terms of effective
bandwidth [17].

The envelope process bounds the original process for an ar-
bitrary shift of time [15][19]. We denote the smallest envelope
process as the minimum envelope process (MEP). The MEP
is subadditive and has an average rate, denoted as minimum
envelope rate (MER). Based on the MER, a set of rules for
network operations such as superposition and input-output
relation of a queue can be developed.

Before describing the stochastic framework for perfor-
mance bounds, let’s introduce some elements of determi-
nistic network calculus. Consider a nonnegative sequence
{a(t), t = 0, 1, 2, . . .} corresponding to the arrival process.
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Let A(t1, t2) =
∑t2−1

t=t1
a(t). A bounding process Â(t) has the

following property:

A(t1, t2) ≤ Â(t1, t2) ∀ t1 ≤ t2 (30)

where Â(t1, t2) =
∑t2−1

t=t1
Â(t).

Â(t) is called the envelope process of a(t). A process Â(t)
is subadditive if Â(t1, t2) ≤ Â(t1) + Â(t2) for all t1 and
t2. Â(t) is “stationary” in the sense it only depends on the
difference t1 and t2. We may assume that Â(t) is increasing
and subadditive, then:

lim
t→∞

Â(t)
t

= inf
t≥1

Â(t)
t

= â (31)

where â is the envelope rate of the process Â(t). The mini-
mum envelope process (MEP) A∗(t) is also increasing and
subadditive given by:

A∗(t) = sup
s≥0

A(s, s + t) (32)

One can view the MEP A∗(t) by the family of linear
envelope process proposed by Cruz [15][16]: A∗(t) ≤ ât + σ̂
for some nonnegative constant σ̂. The minimum envelope rate
(MER) a∗ of a(t) is:

lim
t→∞

A∗(t)
t

= a∗ (33)

Now, we turn our attention to the statistical network calculus
framework. In a stochastic scenario for a server with capacity
c and operating under a work-conserving policy if the MER of
the input process is smaller than c, then we can state that [17]:
i) the queue length is bounded exponentially; ii) there exists a
linear envelope process of the departure process which can be
represented as a function of the linear EP of the input process.
Using these results, bounds for the tail distribution of queue
length can be easily computed from the linear EP of the input
process.

Let Â(θ, t) be the envelope process of a(t) with respect to
a parameter θ as defined in [17]:

1
θ

log EeθA(t1,t2) ≤ Â(θ, t2 − t1) ∀ t1 ≤ t2 (34)

Then, the MEP with respect to θ is:

A∗(t) = sup
s≥0

1
θ

log EeθA(s,s+t) (35)

Unlike the MEP in deterministic framework, this MEP is
not subadditive in general. Thus, the minimum envelope rate
of a(t) with respect to θ is given by [17]:

a∗(θ) = lim sup
t→∞

A∗(θ, t)
t

(36)

An arrival process {a(t)} is said to be bounded by a linear
envelope process a(θ)t+σ(θ) where a(θ) ≥ 0, σ(θ) ≥ 0 with
respect to θ if:

1
θ

log EeθA(t1,t2) ≤ α(θ)(t2 − t1) + σ(θ) (37)

Therefore, α(θ) is bounded on the “equivalent”, stationary
byte arrival rate while σ(θ) is usually interpreted as a bound
on the burstiness of the arrival process.

The definition of MER is connected to the Large Deviation
theory through the Gärtner-Ellis theorem [44]. We have to
consider the following conditions to {a(t), t ≥ 0}:

i) {a(t), t ≥ 0} is stationary and ergodic;
ii) a∗(θ) = limt→∞

A∗(θ,t)
t for all 0 < θ < ∞;

iii) θa∗(θ) is strictly convex and differentiable for all 0 <
θ < ∞.

Under these conditions, the sequence {A(0, t), t ≥ 1} obeys
the large deviation principle with the rate function defined as
[44]:

I(v) = sup
θ
{θv − θa∗(θ)} (38)

If the arrival process a(t) consist of i.i.d random variables,
the MER a∗(θ) is referred to as effective bandwidth [45].

The pair (α∗(θ), σ∗(θ)) defines a minimum LEP α∗(θ)t +
σ∗(θ) with respect to θ:

α∗(θ) = lim
t→∞

sup
1
t

sup
θ≥0

1
θ

log EeθA(t1,t2) (39)

and

σ∗(θ) = inf
{

σ(θ)|1
θ

log EeθA(t1,t2) ≤ α∗(θ)(t2 − t1) + σ(θ)
}

(40)
where t2 ≥ t1 ≥ 0. The expression of the minimum LEP in
(39) is valid for general traffic. Note that a(t1) and a(t2) are
not necessarily independent. If the following limit exists:

h(θ) = lim
t→∞

1
t

log EeθA(0,t) (41)

then h(θ)/θ is the effective bandwidth of a(t) with respect
to θ. Thus, α∗(θ) is exactly the effective bandwidth of the
process a(t).

Let {W (t)} be the backlog process (queue length process).
Assume that the arrival process a(t) is independent of W (0)
and α∗(θ) < c, then the moment generating function of the
backlog process is bounded by [19]:

E[eθW (t)] ≤ eθ(α∗(θ)−c)teθσ∗(θ)E[eθW (0)] + B(θ) (42)

where

B(θ) =
(1− e−cθ)eθσ∗(θ)

1− eθ(α∗(θ)−c)
(43)

When t →∞, the bound B(θ) is tighter than that obtained
in [17] by a factor of (1− e−cθ). The bound on the moment
generating function can be used to derive bounds on the
backlog process, the minimum linear envelope process of the
output process and the tail distribution of the backlog process.
Under the condition of a(t) being independent of W (0) and
α∗(θ) < c, we have the following results for a single-server
connection [19]:

i) The tail distribution of the backlog process is exponen-
tially bounded as:

P [W (t) ≥ w] ≤ e−θw{eθ(α∗(θ)−c)teθσ∗(θ)E[eθW (0)] + B(θ)}
(44)
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ii) The mean queue length is bounded by:

E[W (t)] ≤ {eθ(α∗(θ)−c)teθσ∗(θ)E[eθW (0)] + B(θ)}
(1− e−θ)

(45)

Substituting α∗(θ) by the proposed effective bandwidth
given by (29) and σ∗(θ) by (40), we can compute the per-
formance bounds for a queue fed by a CGMD multifractal
process. The parameter θ in (44) and (45), can be determined
through the operating point (t∗, θ∗), i.e., the values of time
t and space parameter θ for which the effective bandwidth
is related to the asymptotic overflow probability [46]. Deter-
mination of θ as the operating point θ∗ guarantees a tighter
performance bound. For a process with mean µ, variance σ2

and Hurst parameter H , we have the following equations for
the operating point pair (t∗, θ∗) [47]:

t∗ =
HB

(c− µ)(1−H)
(46)

and

θ∗ =
B(t∗)−2H

σ2(1−H)
(47)

where B is the buffer size and c is the link capacity.

A. Loss Probability for Long-Range Dependent Processes

The works of Norros [42] and Duffield and O’Connell [48]
are concerned with queuing systems with self-similar input
such as the fBm process. Duffield and O’Connell introduced
an asymptotic expression for the loss probability P (Q > b) at
steady-state by applying a Large Deviation Principle (LDP).
The lower-bound for P (Q > b) decays asymptotically (for
large buffer b) in a Weibullian fashion. The tail distribution
of the queue occupancy in this case is much heavier than the
exponential distribution predicted by traditional traffic models.
The result presented by Duffield and O’Connell in [48] shows
that P (Q > b), when scaled properly, will satisfy the large
deviation principle and for H ∈ (0.5, 1) the following relation
holds:

lim
b→∞

b−2(1−H) ln P (Q > b) = −a−2(1−H)(a + c)2/2 (48)

where a = c/H − c.

B. Experimental Results for the Performance Bounds

In this section, we validate our performance bound pro-
posals by simulations with TCP/IP and Ethernet traffic traces
and traces collected between the years 2000 and 2002 at the
Petrobrás computer network [49]. We aggregated the traffic
traces (lbl-pkt-5 and Bc-Aug) at the 100ms time scale because
the considered traces present multifractal characteristics at that
time scale [9][10]. We verified the same for the Petrobrás
traffic trace 10-7-S-1 by applying multifractal analysis through
its multifractal spectrum and scaling of wavelet moments [31].
The numbers of traffic samples Nt for traces lbl-pkt-5, Bc-Aug
and 10-7-S-1 are 215,214 and 212, respectively.

The estimation of the proposed loss probability and mean
queue length bounds is accomplished through the effective
bandwidth computing. In the evaluation of the loss probability

bound proposal represented by (44) in conjunction with the
CGMD based effective bandwidth (29), we considered a single
server connection with finite buffer and capacity c where
for lbl-tcp-5, 10-7-S-1 and Bc-Aug traffic traces, c is set to
5.6µ, 1.7µ and 3.1µ, respectively, and µ is the mean traffic
rate. We present in Fig. 8, the loss probability at steady
state, i.e., for t → ∞, the loss probability obtained for the
real traffic series and that given by large deviations theory
(Duffield’s method). As it can be seen from Fig. 8, the Duffield
and O’Connell’s approach underestimates the loss probability
rate in comparison with that given by the real traffic traces.
Similarly to Duffield’s, our method provides better results for
larger buffers.

Fig. 9 shows the mean queue length given by (45) and the
simulated mean buffer occupation. It can be noticed that as
the buffer size is increased, the proposed mean queue length
bound becomes closer to the mean buffer occupation of the
link fed by the lbl-tcp-5 traffic trace.
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Fig. 8. Loss probability versus buffer size
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VII. CONCLUSION

We can conclude that the proposed multifractal model
efficiently captures the network traffic characteristics. It is
also noticed that a better estimation of the cascade multiplier
density can lead to modeling improvements. The simulations
reveal that the performance of the CGMD modeling is com-
parable or even superior to that of the MWM and VVGM
modeling.

One of the challenges of network traffic characterization
is to accurately model queueing behavior. In this paper, we
demonstrated that the queueing behavior characterization can
be enhanced by connecting the CGMD properties, such as
effective bandwidth and Hurst parameter, to statistical network
calculus. This result is obtained due to both the CGMD
modeling potencial and the network calculus flexibility. We
have contributed with a new QoS estimation tool, namely
the CGMD based effective bandwidth estimator, capable of
attaining the required loss probabilities for real world network
flows.

The statistical network calculus allows us to achieve accu-
rate expressions for the byte loss probability and mean queue
length estimation by the envelope process concept [50]. The
simulation results demonstrated that the performance bounds,
based on the union of network calculus and the CGMD based
effective bandwidth, are tighter than those offered by the large
deviations theory for long-range dependent processes.

Some works have stated that the Internet backbone is
monofractal in small time scales [31] [51]. In fact, our proposal
is also suitable in this case, because the CGMD model, as
a multifractal model, also includes the monofractal case in
its structure. Indeed, we have verified that the proposed loss
probability and mean queue length estimates are adequate for
a large variety of traffic traces such as Internet and Ethernet
ones.

Finally, from our analysis, it can be concluded that the
proposed performance bounds can be promptly inserted into
admission control and other control schemes to guarantee
required QoS. Besides, more than one network performance
parameter can be analyzed, providing a more complete de-
scription of the network resources.

APPENDIX I
PROOF OF PROPOSITION 1

The effective bandwidth of the traffic process Xt is defined
as:

α(θ, t) =
1
θt

(log E{eθXt}) (49)

Using the Taylor expansion of the exponencial function (q →
∞), we can write (49) as:

α(θ, t) =
1
θt

log E

{∑
q

(θXt)q

q!

}
(50)

α(θ, t) =
1
θt

log

(∑
q

(θ)q

q!
E{Xq

t }
)

(51)

Let the multipliers r
(i)
j be i.i.d random variables with

probability density function fRj in stage j , then the moments
for a multifractal cascade with N stages is given by [12]:

E{Xq
t } =




2N∑
t=1

Xt




q
N−1∏

j=0

E{Rq
j} (52)

Therefore, we can compute the moments of the CGMD model
as:

E{Xq
t } = (

2N∑
t=1

Xt)q
N−1∏

j=0

{(∫ 1

0

1
(δj)q

K

(
x− z

(δj)q

)q

f̂∗j (z)dz

)}

(53)
Substituting (53) into (51), we obtain the following equation

for the CGMD model effective bandwidth:

α(θ,t)= 1
θt log

(∑
q

θq

q! (
∑2N

t=1
Xt)

q
∏N−1

j=0

{∫ 1

0
1

(δj)q K

(
x−z

(δj)q

)q

f̂∗j (z)dz

})

(54)
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