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Abstract—A design using total squared correlation (TSC) 

measure for the overloaded complex spreading sequence sets on 
the uplink of multicellular synchronous CDMA systems is 
introduced. For equal power users, the design provides 
orthogonal Welch Bound Equality (WBE) complex spreading 
sequences with constant chip magnitude. We developed an 
algorithm, which allows obtaining a structured Gram matrix 
having a particular pattern for cross correlations of the 
multicellular signature sequence sets without alphabet 
constraints. By using the proposed algorithm spreading 
sequences with maximum equicorrelated amplitude are also 
obtained. The mathematical formalism is supported with selected 
numerical examples in the multicellular S-CDMA context. 
 

Index Terms— Total (Weighted) Squared Correlation, 
generalized Welch Bound Equality (WBE) sequences, spread 
spectrum systems, multicellular systems, interference avoidance, 
and multiple access design. 
 

I. INTRODUCTION 
HE problem of designing complex spreading sequences 
(a.k.a codewords or signature waveforms) for single cell 

synchronous code division multiple access (S-CDMA) 
systems is a traditional one (see  [9], [12] ,[13], [14], and 
references therein). Recently, much attention has been paid to 
the problem of constructing and optimizing the signature 
sequences for synchronous (direct sequence) DS-CDMA 
systems [15], and [16] in order to understand the impact of 
such sequences on the wireless system performances.  
     The current CDMA technologies for second (2G) or third 
generation (3G) communication systems (all based on DS-
CDMA, such that IS-95 A/B, cdma 2000, UTRA, W-CDMA, 
TD-CDMA) are suited only for low-speed continuous 
transmission applications such as voice, but not a good choice 
for high burst traffic, as in the case for future wireless 
communication systems (4G) [3], and [7]. Therefore a new 
wave of research is required for novel CDMA complex 
spreading design techniques.  

 We focus on constructing complex valued signature sets 
for multicellular synchronous CDMA under the total squared 
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correlation (TSC) criterion, which is a measure of multiple 
access interferences (MAI) [25] and [26]. While the extension 
of some optimal results of from one cell to multiple cells is 
straightforward, the design of spreading sequences under TSC 
criterion is a more challenging task due to the amount of 
interference constraints that are considerably stricter than in 
the single-cell case1.  

  In a traditional deployment, base stations are located in the 
center of a cell. The coverage of a base station extends in both 
directions along the linear array. The decoding of any mobile 
user is undertaken by the nearest base station with co-channel 
interference simply treated as noise. All mobile users, which 
share the same two nearest base stations, will be grouped into 
the same cell. However, in the case of multicellular systems, 
we assume the cooperation of multiple base stations that share 
the same extended signal space and requiring that each base 
station to have its own power constraint. 
     We developed an algorithm, which allows obtaining a 
structured Gram matrix having a particular pattern for cross 
correlations of the multicellular signature sequence sets 
without alphabet constraints. It is an extension of the one 
presented in [1] in single cell case and it overcomes the 
limitations of the previous algorithms presented in [6], [15]-
[17]. It is based on Gram matrix approach using TSC ([4], [5]) 
as a design criterion and Givens rotations [21]. By using this 
algorithm it is possible to obtain complex spreading sequences 
with maximum equicorrelated amplitude and constant chip 
magnitude in the absence of multipath. It is different from the 
algorithms presented in [8] and [24] which are based on the 
inverse eigenvalue problem [22], and [15]. The extension of 
the proposed algorithm for multipath channels [23] and 
unequal power users for each cell is an open problem. 
   The merit of this algorithm is two fold. When it is used for 
real numbers, then real spreading sequences are obtained, as 
2G or 3G multicellular CDMA systems require them [3]. 
When it is used for complex numbers, then complex spreading 
sequences for uplink overloaded multicellular S-CDMA 
systems are obtained. For the particular case of the overloaded 
 

1 Some performance measure of interest, such that signal-to-interference 
ratio (SINR) or spectral efficiency converges to some deterministic values, 
which are functions of the empirical eigenvalue distribution of random 
matrices associated to signature spreading design. It should be noted here that 
the optimum spectral efficiency (without spreading) could be achieved with 
orthogonal spreading sequences when TSC is zero and the system load is 
unity. It is also known that even when the system load is higher then the unity, 
there exist spreading codes that incur no loss in capacity relative to multi-
access with no spreading. See also the footnote 2.  

T 

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 21, NO. 3, 2006                                                                                                    146

ISSN 1980–6604/$20.00 c© 2006 SBrT/IEEE

mailto:Paul.Cotae@utsa.edu


S-CDMA when all the users in a cell have the same power, 
this algorithm is used to obtain complex spreading sequence 
sets with constant chip magnitude [1], [2], and [6].  
     For the future wireless communication systems beyond the 
third generation (B3G) and 4G, where the dominant load will 
be high speed burst type traffic, the complex spreading 
sequences with constant chip magnitude for fast start-up 
equalization and channel estimation ([10], [11]) are definitely 
needed. This is also desirable for multiple antenna wireless 
communications [3], and equal gain unitary space-time 
modulation [7]. 
    The organization of this paper is as follows. In Section II 
the characteristics of the uplink overloaded multicellular S-
CDMA systems model under the TSC criterion are described. 
The proposed design for constant chip magnitude is developed 
in Section III. The algorithm is developed in Section IV. 
Selected numerical results are given in Section V. Conclusions 
and future works are drawn in Section VI. 

II. SYSTEM MODEL AND TOTAL SQUARED CORRELATION   
 

 Modeling the 4G CDMA network, including all the 
parameters such as signal propagation, fading, free space loss, 
etc., is a challenging task. In this paper, we focused on TSC 
metric, which is more tractable on the uplink than the sum 
capacity [16], and it was successfully applied in [25] for the 
next CDMA technologies in the presence of multipath. In 
addition, we assume that each base station has its own 
“policy” on power control assignment. However, for wireless 
cellular type systems we consider a more restrictive condition: 
the sum of transmitted power for each cell is constant one. In 
other words, the sum of elements on the main diagonal of the 
Gram matrix associated to each cell-spreading signature 
design is constant. This assumption will allow us to use a 
common signal space for all the cells signature design, while 
the powers of different signals in the multicellular system are 
vastly different. 
     We consider first the synchronous uplink vector multiple 
access channels (VMAC) of single-cell S-CDMA system with 

 independent active users and the processing gain  
([15], [16]).  In the presence of noise vector 
K N

z , the received 
signal in one symbol interval is given by 
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where for user k , kp  is the tran mitted power, kx  is the 
random inform tion symbol, and ks  is the unitary signature 
sequence as N  dimensional column ariance 

matrix associated with noise vector 

a
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  The model of uplink multiple cell synchronous S-CDMA 

systems used in this paper is a generalization of (1) and it is 
given by (2) (the same model was used in [25]). Our work is 
different from CDMA systems with random spreading, where 
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where 1( ,..., )

ii i iKdiag p p=P , 1 2( , ,..., )
ii i i iKx x x=x . 

The composite spreading signature matrix  S  associated to 
multicellular system is o 2whole overloaded f the form  [25] 

 
                            = ⊕ ⊕ ⊕1 2 MS S S S"                            (3) 
 

sum of two matrices by considering A  and B , i.e., 

0
0⎛ ⎞

⊕ =
A

⎜ ⎟
⎝ ⎠

A B
B

[22]. In contrast with the underloaded S-

CDMA systems ( i iK N≤ ), the composite Gram matrix of (3) 
is positive semidefinite (there exist at least one null 

 

]

2 If we consider a composite spreading matrix of the form 
in fact, we assume the case of equal spreading gain  for 

each cell. This brings us back to single cell case in  dimensional signal 
space considered in [6], [15] and [16]. When model (2) is particularized to 
noncolaborative scenario it allows analyzing the case where in each cell the 
users have different spreading gain as in the future wireless CDMA 
networks. 

[= 1 2 MS S S S" N
N

iN
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eigenvalue, its determinant is zero, and Choleski 
ecomposition with pivoting can not be applied in order to 

e matrix
d
obtain th iS ) may be expressed as   

 matrix 
mplex spreading sequences across cells are 

 
            = = ⊕ ⊕ ⊕* * * *

1 1 2 2 M MS S S S S S S S"                  (4) 
 
where ∗  is the complex conjugate transpose operation. The 
dimensionality of the extended signal space of the 
where the user co

G

G
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1

M
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=
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    Given the composite spreading signature S , by definition, 
the TSC metric is the Frobenius norm of the Gram m trix (4) a

ding signatures ulticellular 
 of its eigenvalues 

associated to all sprea
system and it is expressed in term

in the m
ijμ  
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m  single cell case, 
i.e. a generic cell , the corresponding spreading signature 
matrix 
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ula for multicellular systems, which still is 
an open problem.  

III. CONSTANT CHIP MAGNITUDE DESIGN  

l 

 
for unitary power users (6a) and unequal power users (6b), 
respectively. When the users have unitary power the condition 
(6a) corresponds to Welch Bound Equality sequences (WBE) 
[18], [19] and the condition (6b) corresponds to so called 
generalized WBE sequ ces [24 ( NiI

identity matrix of order iN ) [21]. 
     TSC metric defined in (5) is a measure of the total amount 
of interferences in the multicellular S-CDMA system and it 
includes as a particular case the TSC criterion considered in 
[4] and [5] for a single cell. In addition, it is an alternative to 
sum capacity form

 
     It is instructive to focus on the single cell first. We will 
consider the cel i  for convenience, after that the 
generalization to M  cells follows. In the case of equally 
correlated signature sequences the cross-correlation 
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      The ma hievable crosscorrelation amplitude with
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Now, we extend the constant chip design for  M  overloaded 
cells, 1 i M≤ ≤ , focusing on orthogonal E sequences for 
each cell. Our design for constant chip m itu ased on 
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3 For real minimum WBE sequences (MWBE) ,ijg i jρ= ± ≠ and for 

complex MWBE sequences ,ijg j i jρ= ± ≠ [18]. 
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The equation (12a) is a quadratic one whose discriminator 
depe on the values of iK  and iN  being associated to the 
first iN  users. The equation (12b) corresponds to the next 

1i iK N− −  overloaded users, and the last equation considers 
the inner product of the first ( 1iK − ) users with the last one. 
This imposed particular form is discussed in Lemma 4.1 (the 
next Section). By solvin ystem (12a)-(12c) usg the s ing 

erical methods [21] we obtained for a single cell 
ension  the following results: 

 COMPLEX SPREADING ENCE ITH  R  MAXIMUM EQU
ROSSCORRELATION AMPLITUDE4

K 3 4 5 10 16 

standard num
with the signal dim [1,6]N ∈

 
TABLE I 

 
SEQU S W EAL AL 

C
++ + 6 7+

N 2 3 4 3 6 5 6 
 

TABLE II 
 

 CO LE PREADING U S W MPLE XIM AL

C FICIEN

MP X S SEQ ENCE ITH CO X MA UM EQU  

CROSSCORRELATION OEF T
5

K 4 7 7 9 11 11 12 13 1++ + ++ ++

N 2 3 4 3 5 6 6 4 4
  
     The Jacobi method [21] of calculating the eigenvalues of a 

symmetric matrix use Givens (Jacobi) rotations. The idea 
behind Jacobi’s method is to reduce systematically the off 
diagonal entries of a matrix. Under TSC design we are going 
in the opposite direction. The proposed design for constant 
chip magnitude overcomes the limitation of numerical search 
method based on generalized Lloyd algorithm developed in 
[6] du

 

e to highly structured matrix ((7) in [6]) which does not 
satisfy the bandwidth constraint for each cell as it is discussed 
next. 

id complex spreading sequences for 

erloaded multicellular CDMA 

on 
e following theorem [1] that allows constructing a structured 

ting matrices in (4)
 

4 The + corresponds to the simplex case (K, K-1) and one of the nice feature 
of the proposed algorithm in the next section is that generates complex 
spreading sequences with constant chip magnitude. 
 
5 The ++ cases were reported in [6].  

 

IV. THE PROPOSED ALGORITHM 
     
      If we know the optimal eigenvalues of Gram matrix 
specified by (5), then based on (4), we need to construct a 
structured Gram matrix of the form required by (4), and at the 
same time, we need to preserve the bandwidth6 of spreading 
sequences of each cell. The algorithm proposed in [15], 
(reproduced completely with its original proof in [17]) and 
those used in [16] based on the so called T-transform [20], 
may fail to generate val
overloaded multicellular S-CDMA systems under TSC 
measure defined in [5].  
   The main drawbacks of the algorithms presented in [15]-
[17] (when they are used for construction of the complex 
spreading sequences for ov
systems) is the requirement of ordering the eigenvalues of 
composite Gram matrix [8].  
     Our algorithm generalizes the algorithms given in [1]; it is 
amenable to online implementation due to the finite number of 
steps required for convergence. Focusing on TSC, the 
proposed algorithm might be used for decentralized 
transmitter adaptation in multicellular systems and it does not 
require updates of sequences at each step. Hence it is suitable 
for a distributed implementation. The algorithm is based 
th
orthogonal matrix necessary in genera .  

Theorem 4.1: Given the vectors 1 2( , ,..., )M=  and 

1 2( , ,..., )
x x x x

M=y y y y  such that each vector  ix  is majorized by 

the vector iN ) then there exist an 
orthogonal matrix U  such that the diagonal entries of the 

matrix ( )T diagU y U  are the components of U  can be 
ritten as

iy (of the same length 

 and  
ct of at 

x
w  the produ most ( 1)M N − orthogonal 

 
The proof is given in the Appendix7. 

 

rotations.  

 

6 The bandwidth is specified by the dimensionality of initial signal space of 
the dimension .  iN
 
7 This theorem is a generalization of those presented in [27] and [28], which is 
referring to a single majorization relation between two vectors of the same 
length. The extension of complex spreading sequence design to multiple cells 
context is not trivial due to different vector lengths in each cell. 
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Proof: The Algorithm starts with  and 1p = q K j=  imposing 

for the element 11 /j jg K N=  of  the value 1. After the 

first iteration the main diagonal of  becomes 
0G

1G
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 The Gram matrix obtained with the algorithm after the first 
iteration can be written as 
 

                            1
11

1
T

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

x
G

x G
                                  (15) 

 
where  is of order 1 (x 1)jK× −  and  is a matrix of order 11G

( 1) (j jK K 1)− × − with the eigenvalues  

 

N11

1

( ) ( / ,..., / , 0,...,0 ( ) / )j j j j j j j
K Nj jN j

eig K N K N K N N
−−

= −G
����	���


.  

 
The Algorithm will continue with  and q2p = K j= . We can 

apply this procedure at most  times.  Since the 

Frobenius norm is preserved by orthogonal transformations, 
we find that, after the first iteration, the TSC is given by 
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Thus, under the TSC design, the absolute value of the inner 
product for the vector  is exactly given by (10). In the last 

iteration we obtain . Again, since TSC is 

preserved by using Givens rotations, we have 
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We observe that, due to symmetry, the column vector y  has 
all equal elements. Thus, the vector y  can have the form 

( ,..., )T
i iρ ρ=y  or ( ,..., )T

i iρ ρ= − −y  for real 

crosscorrelation case and ( ,..., )T
ij j iρ ρ=y  or 

( ,..., )T j jρ ρ= − −y  for complex crosscorrelation case, which 
concludes the lemma. Since the Gram matrix is normal 
( for some unitary matrix U ) we will prove next, 
that for each pattern in (14), there exist a unique orthogonal 
matrix , which considerably simplifies the design. 

∗ =G GU

V
 
Lemma 4.2: The orthogonal matrix  used to construct 
matrices given by (14) is unique. 

V

 
Proof: The Gram matrix of order Ki  given by (14) is a normal 
matrix since it commutes with its Hermitian adjoint. By 
Theorem 2.5.8 [22] there is an orthogonal matrix  such that Q
 
              1 2( , ,..., ),   1T

K iidiag k K= ≤Q GQ G G G ≤           (18) 

 
where each jG  is either a real 1 by 1 matrix or is a real 2 by 

2 matrix of the following form 
 

                              
j j

j
j j

α β

β α

⎡ ⎤
= ⎢

−⎢ ⎥⎣ ⎦
G ⎥                                   (19) 

 
With the proposed Algorithm we can find an orthogonal 
matrix  such that U
 
               i N1 ( / ,..., / , 0,...,0)

i ii

T
i i i i

K NN

diag K N K N
−

=G U U���	��
           (20) 

 
The value of the determinant of  given by (13) is 1 so  is 
a unitary matrix.  From (16) there is an orthogonal matrix  
such that 

V U
Q

 
              i N2 ( / ,..., / , 0,...,0)

i ii

T
i i i i

K NN

diag K N K N
−

=G Q Q���	��
             (21) 

 

It is easy to check that i1G  and  are real commuting 
normal matrices and by Theorem 2.5.15 [22] there exists a 
unique real orthogonal matrix  such that 

i 2G

P i1
TP G P  and 

i 2
TP G P  to be of the form (13) which concludes the proof.  

V. NUMERICAL RESULTS 
 
Experiment 5.1 Generating orthogonal WBE complex 
spreading sequences with constant chip magnitude. 
 
    Consider two cells with having 8 users with the same 
spreading gain 1 14, 3K N= = and . The 
following vector 

2 24, 3K N= =

(4 / 3,4 / 3, 4 / 3,0,4 / 3, 4 / 3, 4 / 3,0)=y  gives 
the distribution of the optimal eigenvalues used for 
construction. Running the proposed algorithm with the above 
data we obtained the following matrices 
 

                  1

2

0
0

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

G
G

G
              1

2

0
0

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

S
S

S
 

 
where the Gram matrices for the users are obtained as 
 

1

1.0000 0.3333 0.3333 0.3333
0.3333 1.0000 0.3333 0.3333
0.3333 0.3333 1.0000 0.3333
0.3333 0.3333 0.3333 1.0000

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
⎣ ⎦

G  

 

2

1.0000 0.3333 0.3333 0.3333
0.3333 1.0000 0.3333 0.3333
0.3333 0.3333 1.0000 0.3333
0.3333 0.3333 0.3333 1.0000

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥
− − −⎣ ⎦

G  

 
and the corresponding complex spreading sequences  with 
constant chip magnitude are obtained according to Lemma 
4.1: 
 

1

0.5556 0.1571 0.5556 0.1571 0.5556 0.1571 0.5556 0.1571
0.5556 0.1571 0.5556 0.1571 0.5556 0.1571 0.5556 0.1571
0.5556 0.1571 0.5556 0.1571 0.5556 0.1571 0.5556 0.1571

j j j j
j j j j
j j j

+ + − − +

j

⎡ ⎤
⎢ ⎥= + − − − − − −⎢ ⎥
⎢ ⎥+ − − + +⎣ ⎦

S
 

 

2

0.3333 0.4714 0.3333 0.4714 0.3333 0.4714 0.3333 0.4714
0.3333 0.4714 0.3333 0.4714 0.3333 0.4714 0.3333 0.4714
0.3333 0.4714 0.3333 0.4714 0.3333 0.4714 0.3333 0.4714

j j j j
j j j j
j j j

+ + − − −

j

⎡ ⎤
⎢ ⎥= − − + − + −⎢ ⎥
⎢ ⎥+ − − + − −⎣ ⎦

S

 
 
      One might think it is possible to design complex spreading 
sequences for individual cells and concatenate their 
correlation matrices as diagonal blocks in a composite block-
diagonal correlation matrix as long as the cells operate 
orthogonally to each other. This is true in a non-collaborative 
scenario when users communicate independently and are 
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supervised by only one base station8.  
In this case the T -transform provides the same results as the 
algorithm proposed in this paper. However, in a collaborative 
scenario and in the same extended signal space, users need to 
have the same signature waveforms when they are “seen” by 
different base stations. This condition is satisfied if there exist 
a matrix U  as it is provided by Theorem 4.1. 
 
Experiment 5.2 Generating orthogonal WBE complex 
spreading sequences with real maximum equal 
crosscorrelation amplitude: 
 
We also consider two cells with 12 users with the same 
spreading gain  and . The 
following vectors  and 

 give the distribution of the 
diagonal of composite Gram matrix and the optimal 
eigenvalues used for construction. Running the proposed 
algorithm with the above data we obtained the following 
structured Gram matrix 

1 16, 3K N= = 2 26, 3K N= =

12

(1,1,...,1)=x �	


(2,2, 2,0,0,0,2, 2, 2,0,0,0)=y

 
1

2

0
0

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

G
G

G
 

         
where the Gram matrices for the users are obtained again with 
patterns specified by  Lemma 4.1: 
 

1

5 1 1 1 1 1

1 5 1 1 1 1

1 1 5 1 1 15
5 1 1 1 5 1 1

1 1 1 1 5 1

1 1 1 1 1 5

⎡ ⎤− −
⎢ ⎥

− − −⎢ ⎥
⎢

− − −⎢= ⎢ − −⎢ ⎥
⎢ − −⎢
⎢ ⎥− − − − −⎣ ⎦

G

−

⎥
⎥
⎥−
⎥− ⎥

          

 

2

5 1 1 1 1 1

1 5 1 1 1 1

1 1 5 1 1 15
5 1 1 1 5 1 1

1 1 1 1 5 1

1 1 1 1 1 5

⎡ − −
⎢

− −⎢
⎢

− −⎢= ⎢ − −⎢
⎢ − −⎢
⎢ ⎥⎣ ⎦

G

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

2

 

 
As in the previous experiment we can observe that the 
bandwidth of spreading sequences in each cell, specified by 

 and , respectively, is preserved in the signal space of 

dimension 

1N 2N

8 The notion of collaborative base stations is crucial to the idea of intercell 
interference mitigation. The extension of our results to overloaded “cognitive 
radios” is left for future research. Thank you to anonymous reviewer for this 
perspective. 

1K K+  of the composite Gram matrix . 
 
Experiment 5.3 Generating orthogonal complex spreading 
sequences with complex maximum equal crosscorrelation 
amplitude: 
 
For this experiment we used the optimal eigenvalue vector 

(2, 2,0,0, 2,2,0,0)=y and the corresponding Gram matrices 
for each cell with four users are obtained as 
 

1

1
3 3 3

1
3 3

1
3 3 3

1
3 3 3

j j j

j j

j j j

j j j

− −

3
j

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎣ ⎦

G  

                

2

1
3 3 3

1
3 3

1
3 3 3

1
3 3 3

j j j

j j

j j j

j j j

− − −

3
j

⎡ ⎤
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥=

− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

G  

 
The above two matrices specified by Lemma 4.1 are in fact the 
same since we can check that . 1 2

∗ =G G

VI. CONCLUSIONS AND FUTURE WORK 
 
     We developed a distributed algorithm for 4G wireless 
communications providing complex spreading sequences with 
constant chip magnitude and maximum cross correlation 
amplitude for multicellular S-CDMA. In this paper we have 
focused on symbol-synchronous CDMA systems in the 
presence of AWGN. The extension of our results to the 
asynchronous situation and considering colored noise is 
interesting and also an important open problem. Our current 
efforts are directed towards solving this important open 
question. 

APPENDIX 
 
Proof of  the Theorem 4.1:  
 
a) For the particular case when 1M =  the Theorem 4.1 is the 
same with Theorem 4.1 [2]. 
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b) Consider 1M >  and we use induction on . Without loss 
of generality we can assume within a cell  the eigenvalues 

 (of ) and diagonal elements 

N
i

iy iy ix  (of ) are arranged in 
decreased order and 

ix

1 2 ... Ny y y≥ ≥ ≥ 1 2 ... Nx x≥ ≥ ≥ x .  The 
vector  is said to be majorized by the vector x y , denoted 

 if [20] x y≺

                                   a)              
1 1

, 1, 2,...,
k k

i i
i i

x y k N
= =

≤ =∑ ∑ 1−

i                                   b) 
1 1

N N
i

i i
x y

= =
=∑ ∑                                (22) 

 
      i) Verify for 2M =  and 2N = . We start with 1M = . 
Condition (22) is equivalent to 1 1x y≤ , 1 2 1 2x x y y+ = +  and 
becomes  since 1 1 2 2y x x y≥ ≥ ≥

1 1 2 2 1 2 1 2x y y x y y x y= + − ≥ + − ≥  and  2 1 2 1x y y x= + − . If 
 the proof is trivial. Otherwise  and it follows 

from (22) that . We can use Lemma 4.1 [2] 
imposing for the elements of matrix 

1y y= 2 2

2

1y y>

1 1 2y x x y≥ ≥ >
A  the values 

1 2x x ,z x= = . After solving for 

 we can find the 
orthogonal matrix V  of order 2 in one step. Hence the 
theorem holds for 

2
2 1 1 12 0( x y )tan ( ) y tan( ) ( x y )ϕ ϕ− − + − =

1M =  and as we expected. 2N =
    For the matrix  there exist a rotation matrix  

 of order 4 such that the (1,1), (2,2), (3,3) and (4,4) 

elements of  are 

1 2( , )diag y y
V

1 2( , )T diagV y y V 1x , 2 1 2 1x y y= + − 3x , x , 

4 3 4 3x y y x= + − , respectively [2]. We need to apply Lemma 
4.1 [2] twice to solve for eigenvalues . Hence the 
theorem holds for 

1 2,y y
2M = , 2N = and orthogonal 

rotations are necessary. 
2(2 1)−

      ii) Now suppose that theorem holds for 2M =  cells, 
 and we will prove for . The main idea is to use 

two block orthogonal rotation matrices of order 2(
2N ≥ 1N +

1)N − such 
that 
 
                            1 1 1 1( , , ,N Ndiag − −=U I V I 2 )V

)
 
                                                      (23) 2 ( ,1, ,1N Ndiag=U U U
 
where   and  are obtained as in [2].  1V 2V
  Regarding the cellular CDMA context where we assumed 
the same processing gain  in all cells, it is interesting to 
note that from this point on in proving the Theorem 4.1 we 
can also assume different processing gain in different cells i  
and 

N

j . However, for sake of simplicity we will continue with 
the vectors of the same lengths. Let 

 be a 

diagonal matrix of order . By Schur’s theorem [20] 
there exist a Hermitian matrix with the eigenvalues 

1 2 1 1 2 1( , ,..., , , , ,..., , )i i iN iN j j jN jNdiag y y y y y y y y+ +=Λ

2( 1)N +

1 2 1 1 2 1, ,..., , , , ,..., ,i i iN iN j j jN jNy y y y y y y y+ +  and diagonal 

elements 1 2 1 1 2 1, ,..., , , , ,..., ,i i iN iN j j jN jNx x x x x x x x+ +   

satisfying (22).  We can find for each cell the smallest integers 
 and n  such that m 1im iN imy x y 1+ +≥ ≥  and 

1 1jn jN jny x y+ +≥ ≥ , respectively. Considering the 

eigenvalues  and imy jny , we can permute the diagonal 

elements of Λ  to obtain the matrix   
 

 
1 2 1 1 1

1 2 1 1 1

( , ,..., , ,..., , , ,

, ,..., , ,..., , , )
ij i i im im iN im iN

j j jn jn jN jn jN

diag y y y y y y y

y y y y y y y
− + +

− + +

=Λ
 

Using the matrix  we obtain 1U
     
                    (24) 1 1 1 1 2 1( ) ( , , ,T

ij iN jNdiag diag x x+=U Λ U Λ Λ )+

1

 
where  
                                         

1 1 2 1 1 1( , ,..., , ,..., , )i i im im iN im iN iNdiag y y y y y y y x− + + += + −Λ   
 
and  

                    
2 1 2 1

1 1

( , ,..., , ,...,

, )
j j jn jn

jN jn jN jN

diag y y y y

y y y x
− +

+ +

=

+ −

Λ 1

 
Let 1μ  be the following eigenvalue vector  

1 1 2 1 1 1 1( , ,..., , ,..., , )i i im im iN im iN iNy y y y y y y x− + + += + −μ  and 

2 1 2 1 1 1( , ,..., , ,..., , )j j jn jn jN jn jN jNy y y y y y y x 1− + + += + −μ ,  

respectively. Consider the initial elements on diagonal i.e. the 
vectors 1 1 2( , ,..., )i i iNx x x=η  and 2 1 2( , ,..., )j j jx x x=η N

)

, 

respectively. Now, what remains is to prove that 
. If this is true under the induction 

assumption there exist an orthogonal matrix  (included in 
) such that the diagonal elements of 

 are precisely  

1 2 1 2( , ) ( , )η η μ μ≺

NU

2U

1 2( ,T T
N N N Ndiag U ΛU U Λ U

1 2 1 2, ,..., , , ,...,i i iN j j jNx x x x x x .  

 
We need to check conditions (22.a) and (22.b) again. For 
condition (22.a) it is enough to show that  
                                        

                     (25) 1
1

( )

, 1,...,2 1

l l
ij ij ik iN iN

j k j k
x y y y x

l k k N

+ +
= = +

≤ + + −∑ ∑

= + −

1 ,

2N

 
By using (22.b) for the matrix of order  we have                                    2N
                                   
2 1 2 2 2 1

2 2 2
1 1 1 1

N N N N
i i N i N i N

i i i i
x x x y x x y x

− −

= = = =
= − = − = + −∑ ∑ ∑ ∑  

                                                                                             (26) 
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which can be written using (22.a) for the matrix of order 
 as        2N + 2

 

         2 2
1 1

, 1,2,..., 2
j j

i i N N
i i

x y y x j N
= =

≤ + − =∑ ∑                (27) 

 
or equivalently 
                                                

          (28) 
1 1

2 2
1 1 1

( )
j jk k

i i i i k N
i i k i i k

x x y y y y y
− −

= = = = +
+ ≤ + + + −∑ ∑ ∑ ∑ N

i

 

Since already 
1 1

1 1

k k
i

i i
x y

− −

= =
≤∑ ∑  the desired results follows. 

Condition (22.b) it easy to verify since 
 

1 1
1 1

1 1 1

N N N
ij iN jk jN ij jk

j k j
y x y x x x

+ +
+ +

= = =
− + − = +∑ ∑ ∑

1

N

k=
∑       

 
 or         
 

                        (29) 
2 2

1 1
1 1 1

N N N
i ij iN jk jN

i j k
y x x x x

+
+ +

= = =
= + + +∑ ∑ ∑

 
which completes the proof of theorem for . 1N +
iii) To verify the theorem for 2M >  it is enough imposing in 
(23) a matrix  such that  1U
 
                          1 1 2N N N Mdiag( , , , ,..., , )=U I V I V I V
 and       
                  .  2 ( ,1, ,1,..., ,1)N N N

M

diag=U U U U�����	����


 
We need to follow (25)-(29) again considering a vector of 
length MN . 
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