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Abstract— The objective of this two-part work is to present 

and discuss the relationships between the problems of blind 
equalization and blind source separation. Both tasks appear, at 
first sight, to be essentially distinct, since equalization theory was 
developed mainly under single-input / single-output (SISO) and 
single-input/ multiple-output (SIMO) models, whereas the very 
idea of source separation strongly suggests the need for 
considering models with multiple inputs and multiple outputs 
(MIMO). However, in this second part, equivalences between the 
Benveniste-Goursat-Ruget theorem and the approach to blind 
source separation based on maximum-likelihood, between the 
Shalvi-Weinstein techniques and the separation methods that 
employ kurtosis and, finally, between the Bussgang algorithms 
and the ICA tools built from concepts such as negentropy and 
nonlinear principal component analysis are indicated. Finally, 
some connections previously unexplored in the literature are 
presented that are derived from ideas such as that of temporality 
and that of considering the parallels existing between a two-stage 
(magnitude and phase) equalization procedure and the classical 
pair PCA / ICA. 
 

Index Terms— Adaptive Filtering, Blind Equalization, Blind 
Source Separation, Independent Component Analysis and 
Convolutive Mixtures. 

I. INTRODUCTION 
In this second part, we turn our attention to the relationships 

between the problems of blind equalization and blind source 
separation. Our exposition establishes a number of specific 

links and analyzes each of them separately, not, however, 
without indicating more general connections when it is 
relevant. After discussing the connections between the 
theorems of Benveniste-Goursat-Ruget (BGR) and Shalvi-
Weinstein (SW), the class of Bussgang algorithms and the 
concepts of nongaussianity, nonlinear principal component 
analysis and kurtosis-based methods, our discussion enters a 
final stage in which previously unexplored ideas play a key 
role. This final discussion gravitates around two poles: the 
notion of temporality and the idea of relating the twofold 
procedure exemplified by the operation of a magnitude-phase 
equalizer to the sequential (two-stage) use of principal and 
independent component analysis that is well-established in 
blind source separation. 
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II. RELATIONSHIPS 
After having defined in part I the problems of blind 

equalization and blind source separation and the classical 
methods to solve them, it is time to start our study of their 
multifaceted relationships. In this section, we will analyze 
how different approaches belonging to both research fields 
can be related. Our analysis will follow a general scheme: 
after exposing in intuitive terms the theoretical foundations of 
each approach, we shall proceed to the task of highlighting 
and discussing a number of links between them, as well as 
some of their implications to the future development of the 
area. 

A. Maximum Likelihood and BGR 
The BGR theorem, presented in section 2.4 of part I, 

represented a major breakthrough in blind channel 
equalization theory. The idea behind it is that, considering that 
both channel and equalizer are linear devices, if the 
probability density functions (pdfs) of the transmitted and 
estimated signals are equal, the combined channel+equalizer 
discrete-time impulse response must correspond to an 
impulse, which implies perfect recovery of the original signal. 
In a certain sense, it delineates a pdf fitting criterion that can 
be enunciated in the following terms: adapt the equalizer in 
order to render the pdf of the estimated signal as close as 
possible to that of the transmitted signal. 

Not surprisingly, this line of reasoning reveals a clear 
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relationship with the maximum likelihood approach in blind 
signal separation. In the BSS context, if one assumes that the 
pdfs of the sources are known a priori, we saw in section 3.2.3 
of part I that a valid criterion to attain the perfect separation of 
the sources is to maximize the log-likelihood function. Taking 
into account the particularities of the problem, it was shown 
that the maximization of the log-likelihood function is 
equivalent to minimizing the Kullback-Leibler divergence 
between the pdf of estimated signals and that of the sources. 
Since the divergence attains its minimum if both pdfs are 
equal, this criterion also expresses the idea of pdf matching 
provided by the BGR theorem. 

B. Kurtosis and Shalvi-Weinstein 
A close look at sections 2.6 and 3.2.2 of part I shows how 

two different developments, in different contexts, led to 
similar optimization problems, problems whose essence is the 
maximization of kurtosis. In spite of this similarity, the 
historical and conceptual motivations behind the use of this 
higher-order statistic in the problems of equalization and 
source separation are by no means identical. In fact, the 
contrast between how fourth-order statistics gained attention 
in these research fields is a very rich subject the fundamentals 
of which will occupy us in this section. 

In the SISO equalization problem, Shalvi and Weinstein 
showed how, in a context in which a ZF solution is attainable, 
the straightforward relation between the channel input and 
equalizer output signals, together with an effective gain 
control, may set the scene for the establishment of a blind 
criterion [1]. However, although gain control is an important 
restriction, we have seen in section 2.3 of part I that second-
order statistics are generally not sufficient to achieve 
equalization. The required additional ingredient is exactly the 
use of a higher-order statistic, wherefore it is possible to state 
that, in the Shalvi-Weinstein theorem, kurtosis plays the 
crucial role of selecting, among the various solutions capable 
of restoring the variance of the transmitted signal, one which 
actually inverts the channel (i.e. which corresponds to a ZF 
solution). In the case in which a ZF solution is not attainable, 
the parameters of the equalizer are chosen in accordance with 
the notion of maximizing the absolute value of the kurtosis.         

On the other hand, the correspondent solution to the 
problem of source separation is obtained through the concept 
of nongaussianity, which was defined in section 3.2.2 of part 
I. Given the fact that a superposition of i.i.d. variables tends to 
be “more Gaussian” than any of them individually, a direct 
path to recover a source from a mixture is to force a condition 
“as nongaussian as possible”. A natural choice to quantify the 
degree of nongaussianity of a signal is exactly the kurtosis, 
which is zero almost exclusively for Gaussian random 
variables. 

1) Relationships 
Even though these two approaches seem to be rather 

disparate at first sight, we will now attempt to show that they 
are, in fact, deeply interrelated. The principle of using the 
kurtosis as a higher-order statistic of reference in a 

“matching” process – the essence of the SW theorem – can be 
directly extended to the context of blind source separation. 
Firstly, due to the fact that, in the classical ICA problem, the 
mixing system is invertible, the separation scenario also 
allows, in a certain sense, “that a ZF solution be attained”. 
Moreover, it is also possible to impose the power 
normalization to the separating system, which leads us to the 
same scenario of the classical SW theorem. The main 
difference lies in the nature of the mixture: in ICA, it is 
formed by an instantaneous superposition of independent 
sources, whereas, in SISO equalization, the received signal is 
composed of several delayed samples of a transmitted 
message. This difference will be relevant in some of our 
future discussion (see section 3.1), but, at this point, it is not 
for two reasons: 

 
- When we exposed the SW theorem, we assumed that the 

samples of the transmitted signal were i.i.d., which means that 
the received signal, in the above case, is indeed a linear 
combination of independent sources (each corresponding to a 
delayed version of s(n) ), in analogy with ICA. 

- The kurtosis criterion is instantaneous in its nature, i.e., 
does not depend on samples taken at different time instants.    

 
These arguments reveal that the SW theorem, which was 

conceived under the aegis of a typical equalization problem, 
can be directly extended to the ICA framework. As a 
consequence, a source can be extracted by linearly combining 
a number of mixtures at least equal to the number of sources 
and choosing the coefficients of this linear combination in 
order to force the kurtosis of the combiner output to be equal 
to the kurtosis of the sources (under the ubiquitous second-
order power restriction).  

It is also possible to show that the principle of using 
kurtosis as a nongaussianity measure, a well-known pillar of 
blind source separation theory, can be applied to the problem 
of SISO equalization. As seen in section 2.5 of part I, 
considering i.i.d. transmitted samples, the larger the error 
between the correct inverse filter and the approximate one, the 
more non-zero terms will be present within the impulse 
response ce(n) (see equation (19) of part I). If we assume, in 
accordance with the central limit theorem, that the distribution 
of a sum of i.i.d. variables tends toward a Gaussian 
distribution, we may conclude that, as the length of ce(n) 
increases, the closer to a Gaussian distribution will be the 
convolutional noise [2]. We could then understand the 
problem in the other sense and consider that, the more 
nongaussian is the signal, the smaller is the discrepancy 
between the two filters and, consequently, the better will be 
the inverse filter approximation. In this case, we would also 
look for a measure of nongaussianity, which naturally impels 
us to the use of the maximization of kurtosis as the desired 
criterion. Consequently, we have been led to the SW criterion 
by a different interpretation of the equalization problem, thus 
showing that the conceptions originated from the study of the 
problems of equalization and blind source separation are 
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equivalent, and, therefore, can be used by researchers of both 
fields to enrich their theoretical approaches. 

2) Some Additional Comparisons and General Remarks 
 The nature and role of restrictions in these criteria also 

deserve some comments. As it is not possible to recover the 
variance of the independent components, it is assumed that the 
sources have unit variance. Therefore, ICA methods consider 
this condition as a restriction, while, in contrast, the SW 
criterion is based on the assumption of equality between the 
channel input and equalizer output variances. Actually, these 
conditions are the same: in the former approach, since it is 
established that the sources have unit variance, the output y is 
also forced to satisfy this condition, which gives a restriction 
very similar to the one proposed by Shalvi and Weinstein. 
Moreover, this similarity reveals itself again in the resulting 
adaptive algorithms, both of which require that w be divided 
by its own norm.  

In addition, the sign ambiguity also exists in both cases. 
Notice that both criteria use the magnitude of the kurtosis 
value, what enables them to be used equivalently for super-
Gaussian and sub-Gaussian sources. 

Another interesting similarity concerns the pre-whitening 
operation. In the ICA method, this process is carried out 
before the application of the kurtosis criterion, thus 
simplifying the variance constraint for the deduction of the 
adaptive algorithm. In the SW case, pre-whitening is part of 
the adaptive algorithm, appearing as the inverse of a matrix 
given by the cross-cumulants of y. This matrix helps increase 
the convergence rate of the algorithm. It is then possible to 
observe that the pre-whitening task establishes a tradeoff 
(simplicity vs. speed of convergence) when analyzed from the 
typical BSS and equalization perspectives, a fact that may 
have practical implications for both fields.  

C. Negentropy and Bussgang 
Relevant points of intersection can be found when we 

compare two classes of techniques for blind equalization to 
the blind source separation algorithms derived from estimates 
of the negentropy. In this comparison, the existence of 
similarities may seem surprising at first sight, because the 
theoretical inspirations of these two classes of unsupervised 
methods are of a different nature. Motivated by that, we shall 
place the focus of our analysis on showing how this 
connection can be established and what implications it has for 
both fields. The two classes of blind equalization techniques 
with which we will be concerned in this section are those of 
the Bussgang algorithms, discussed in section 2.5 of the first 
part, and of super-exponential algorithms, the basis of which 
is the Shalvi-Weinstein formulation we discussed in sections 
2.4 and 2.6 of the same part. 

Bussgang techniques are characterized by their use of a 
memoryless estimator as a kind of replacement for a pilot 
signal that, naturally, must not be present in an unsupervised 
approach. With the aid of this nonlinear function, it is possible 
to produce a “pseudo-supervised” error to be employed in a 
classical LMS-like update expression. In summary, we may 

state that nonlinearity emerges as a bridge between the 
familiar “supervised Wiener-like world” and the more 
complex blind domain.  

The super-exponential algorithm (SEA) is obtained as an 
adaptive method for the optimization of the normalized SW 
criterion. If the existence of a power restriction is assumed, 
this criterion is equivalent to the kurtosis maximization [3] 
and can also be reduced to the minimum entropy criterion [4]. 
The SEA has the particular characteristic of taking into 
account the projection of the combined channel+equalizer 
response onto the so-called attainable set, that is, a set formed 
by all the equalizer solutions that, given the structure of the 
involved system, can be effectively attained. Thus, an 
important difference of the super-exponential algorithm when 
compared, for example, with Bussgang algorithms, is the 
realization of a pre-whitening operation, which is responsible 
for its fast convergence. 

The source separation techniques that will be the object of 
our attention in this section are based on negentropy, which, 
as discussed in section 3.2.2 of the first part, is a robust 
measure of nongaussianity. As it is sometimes a hard task to 
obtain an estimate of the entropy from samples of a data 
signal, it is usual to employ approximations directly or 
indirectly based on higher-order moments. Perhaps the most 
widespread of them for real signals is [5][6]: 

 

( )( ){ } ( )( ) ( ){ }2 2

1 2 2a bJ k E G y n k E G y n E G ν⎡ ⎤ ⎡ ⎤ ⎡= + − ⎣⎣ ⎦ ⎣ ⎦ ⎤⎦  (1) 
 
where G1(.) and G2(.) are zero-memory nonlinear functions 
and ν is a Gaussian random variable with the same covariance 
as y(n). When a single nonquadratic function is used, this 
expression becomes equation (44) of part I, which we 
reproduce here for the sake of convenience  
 

( )( ) ( ){ }2
J E G y n E G ν⎡ ⎤= − ⎡ ⎤⎣ ⎦⎣ ⎦

 (2) 

 
where G(.) is a nonlinear function. 

As shown in [6], it is possible to obtain a gradient-based 
algorithm to optimize the cost function presented in (2): 

 
( ) ( )( )

/

TE n g nγ ⎡ ⎤Δ ∝ ⎣ ⎦
←

w x w x

w w w
 (3) 

 
where (.)T denotes the transpose and ||.|| is the Euclidean norm 
of a vector. Nevertheless, the most important method for 
finding the extrema of (2) is the FastICA algorithm: 
 

( ) ( )( ) ( ) ( )( )'

/

T TE n g n E n g n⎡ ⎤ ⎡ ⎤← −⎣ ⎦ ⎣ ⎦
←

w x w x x w x

w w w

w
 (4) 

 
It must be emphasized that in both algorithms a pre-

whitening stage is mandatory. 
 



56                                                                                                   JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 22, NO. 1, 2007
 

1) Relationship between Bussgang and Negentropy             
Our study involves three techniques built from distinct 

motivations, and it is time for us to look for the means 
whereby they can be related. Firstly, let us analyze the 
gradient-based algorithm presented in (3); it shows that the 
update of the parameter vector associated with the recovery of 
a single component can be performed in the direction defined 
by the expected value of the product between a nonlinear 
function of the output y and the input x(n) (or, at least, an 
approximation thereof). If we compare it with the general 
form of a Bussgang algorithm, shown in equation (24) of part 
I, it becomes clear that the techniques will be related if 
gnegentropy(y(n)) = gbussgang(y(n)) – y(n). This similarity is 
not obvious a priori, but neither is it incidental: its primary 
raison d’être is that both approaches are based on the use of 
nonlinear functions as estimators. The nonlinear mapping 
must, in either case, be carefully chosen in order to allow that 
the appropriate higher-order information be employed in the 
process of equalizing or separating. The curious thing is that, 
as we have just indicated, it is possible that identical update 
expressions be generated under very distinct estimation tasks, 
which suggests a connection between negentropy and 
sequence estimation that perhaps can be explored in future 
efforts. 

 
2) Relationship between SEA and FastICA 

 As discussed in [6], there is also an interesting 
relationship between the super-exponential algorithm and the 
FastICA, which, as we have seen, is based on an 
approximation of negentropy. The connection can be 
understood in a straightforward manner if we consider the 
general expression of the FastICA: 

 
( ) ( )( ) ( ) ( )( )'

/

TE n g n E n g n⎡ ⎤ ⎡← −⎣ ⎦ ⎣
←

w x w x x w x

w w w

T ⎤⎦ w  (5) 

 
and choose g(y(n)) = 2py(n)2p-1. This, as Kofidis [7] remarks, 
leads to an expression equivalent to that of the super-
exponential algorithm (SEA), repeated here for convenience: 
 

1

T

−=

=

w R d
ww

w Rw

%

%
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  (6) 

 

where R has elements of the form [ ]
2

( ) ( )

( )
ij

E x n j x n i

E a n

− −
=

⎡ ⎤
⎣ ⎦

R  and 

d of the form 
2

( ( ) : 2 1, ( ))
i a

p

cum y n p x n i
C

− −
=d . The first equation 

in (5) is equivalent to the first equation of (6), as a careful 
analysis of the vector d reveals, whereas the “second 
equations” of (5) and (6) are power normalizations. This 

reveals the intimate relation between these techniques1.  
Interestingly, as shown by [7] and [8], the solutions 

obtained via the super-exponential algorithm when p = 2, i.e., 
the equilibrium points of the Shalvi-Weinstein criterion, are 
equivalent to those of the constant modulus criterion, a 
member of the family of Bussgang techniques. This brings us 
full circle and reinforces the intimate connection between 
these three ways of using nonlinearities to generate blind 
criteria. 

 

D. Nonlinear PCA and Bussgang 
The objective of Principal Components Analysis (PCA) is, 

as it was discussed in section 3.1 of part I, to project data into 
a set of orthogonal directions in accordance with a classical 
linear scheme. This is achieved in an elegant and direct 
manner through the use of second-order statistics and of a 
standard eigendecomposition2.  

The process of decomposing a given vector into a set of 
orthogonal components can be understood as a method for 
whitening its elements. Hence, since whitening is different 
from source separation, the linear decomposition on which the 
PCA process is founded does not suffice to allow the recovery 
of the independent sources. In this context, a very natural 
extension was proposed: to employ a nonlinear data 
projection to recover the underlying components. This is the 
rationale of the so-called nonlinear principal component 
analysis (NPCA) [5]. In NPCA, the objective is to minimize 
the cost function: 

 

( ) ( )( )
2

1

N
T

NPCA k k k
k

J E n g n
=

⎡ ⎤
= −⎢ ⎥
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∑x w x w  (7)    

 
It is possible to demonstrate that, if the input data is 

prewhitened, this function becomes [6][7]: 
 

( ) ( )( )
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2
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T
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k k k
k
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=
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A comparison between (8) and equation (17) of part I 

shows that the NPCA criterion can be formulated as a sum of 
Bussgang-like cost functions up to the number of independent 
components. 

 The comparison in itself is complete, but some aspects 
deserve discussion. The emergence of a Bussgang-like cost 
function in nonlinear PCA should not surprise us, given the 

 
1 It is important to notice, however, that the FastICA algorithm given by (5) 

does not contain the inverse matrix R-1 - which is responsible for the pre-
whitening operation - an important characteristic of the SEA. Nonetheless, this 
can be explained if we consider that the data has already been pre-whitened 
before the application of the algorithm. 

2 This general process, apropos, is present in the classical adaptive filtering 
theory as the Karhunen-Loève decomposition of a random process [9], a fact 
that, in itself, already reveals a connection. 
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line of reasoning we followed in section 2 of the first part of 
this article. There, we followed a path towards blind 
equalization techniques that went from the Wiener approach 
to blind algorithms via a second-order unsupervised technique 
(linear prediction) that proved itself rather limited in its 
applicability. Under the auspices of this sequence, the 
nonlinearities present in the Bussgang algorithms can be 
promptly viewed as an implicit source of higher-order 
statistics. Nonlinear PCA follows the same path, emerging as 
an efficient alternative to a second-order approach, which is 
not sufficient to perform ICA, based on the use of a nonlinear 
function that generates the required higher-order information 
in the course of a projection task. This situation offers us two 
interesting views on the problems of equalization and blind 
source separation: 

 
1) It is possible that the problem of blind equalization be 

conceived as a problem of nonlinear PCA in a scenario in 
which the independent components are multiple delayed 
versions of the transmitted signals, versions that are 
superposed in the received message due to the existence of 
intersymbol interference. 

2) The problem of blind separation via NPCA becomes 
analogous to a MIMO equalization task. In fact, we have a 
Bussgang-like cost function and the pre-whitening hypothesis, 
which guarantees that the multiple sources will be jointly 
recovered in a correct way. This closely resembles the blind 
multi-user detection techniques proposed, for instance, in 
[10][11], which are based on the constant modulus criterion. 

III. EMERGENT TOPICS 
After having discussed some relationships between well-

established equalization and source separation approaches, it 
is convenient to analyze some connections associated with 
less visited notions. In this section, we will discuss two ideas 
that, to the best of our knowledge, have not been previously 
formulated in the literature: that of temporality and that of 
seeking parallels between the pair PCA / ICA and a two-stage 
amplitude / phase equalizer.   

A. Temporality 
In the classical problem of SISO equalization, a filter is 

introduced that must mitigate the effects of a band-limited 
channel on the transmitted pulses. This limitation reflects 
itself in the superposition of waveforms associated with 
different instants of time – a phenomenon we denominate 
intersymbol interference (ISI). The existence of linear ISI 
imposes to the received signal a model of the kind 

 
1

0
( ) ( ) ( )

M

k
x n h k s n

−

=

= −∑ k

⎡ ⎤
⎢ ⎥
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⎢ ⎥
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   (9)   

 
where M is the channel length. In this case, an equalizer input 
vector with N elements obeys the formula: 
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where H is the NxM+N-1 convolution matrix. In (10), we 
have a mathematical expression that relates a number of 
measured samples to unknown versions of an information 
signal. As a rule, the transmitted message is supposed to be 
i.i.d., which means that the vector s(n) has independent 
elements. If each of these elements is supposed to be an 
independent component, it becomes possible to understand 
(10) as the statement of an ICA problem with “less sensors 
than sources” i.e. an undermodeled ICA problem. 

When one attempts to solve a problem of this kind, an 
immediate difficulty arises: the impossibility of inverting the 
mixing matrix H (the convolution matrix). This limitation 
implies that perfect recovery of the independent components 
is not feasible - an ideal separating matrix simply is not 
attainable. These facts should not surprise us, for they are a 
direct consequence of what we discussed in section 2.1 of part 
I: a zero-forcing (i.e. an ideal) solution is beyond reach in a 
case in which both the channel and the equalizer are supposed 
to be linear non-trivial SISO FIR filters3. 

In the context outlined above, it is particularly attractive to 
consider methods that recover the sources in a “one-by-one” 
(deflation) basis, because the impracticability of extracting all 
components may, among other things, compromise any 
method founded on a joint measure of independence. Suitable 
methods (e.g. those based on kurtosis or even a version of the 
FastICA) can recover (with a non-null residual error) some 
sources and may be unable to recover others: this is something 
inexorably determined by the structure of the matrix H and the 
characteristics of the signal s(n). 

This is pretty much what we have to say about the subject 
from the standpoint of source separation when considering the 
problem of SISO baud-rate equalization. Nevertheless, our 
discussion would be incomplete without considering the 
problem from the point of view of modern equalization 
theory. The classical SISO unsupervised problem is 
commonly solved with the help of algorithms like those of the 
Bussgang class or those inspired in the SW formulation. Since 
the objective of the equalization task is to recover a version of 
the transmitted message, the entire effort is naturally directed 
towards the recovery of a single component (this corresponds 
to the “one-by-one” character discussed above). As indicated 
by the Wiener recipe, different equalization delays tend to 
produce solutions of distinct quality (this is the reason why we 
considered the Wiener problem a multimodal one): some 
delays can produce good solutions, while others can give rise 
to scenarios in which the desired signal cannot be 
satisfactorily recovered. 

The situation we have just described, which is part of a 
supervised paradigm, is reflected in the behavior of blind 
equalization techniques. The cost functions associated with 

3 For SIMO/MISO channel models/equalizers, given certain conditions, it 
is still possible to perfectly recover the transmitted signals [12].  
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the Bussgang and SW algorithms contain multiple minima, 
among which we find configurations associated with certain 
“good” equalization delays [13][14] - this is simply another 
way of stating what we have already said: some sources are 
recoverable, some are not. A method for discovering all the 
relevant facts about this undermodeled scenario, by the way, 
is an exciting open research theme. 

As we have just seen, the problems of SISO equalization 
and source separation are structurally related in a very 
consistent manner. Notwithstanding, there is a fact we must 
keep in mind: although the equalization problem can be 
formulated as a common ICA task, the involved sources are of 
a very special nature, since they are simply delayed versions 
of each other. 

1) The idea of temporality 
 The emblematic ICA problem is spatial in its nature: a 

number of sensors are disposed in a certain environment and 
distinct mixtures of these sources are captured that, if properly 
combined, permit the restoration of the independent signals. 
The SISO equalization problem is essentially temporal: 
different time samples of a distorted signal are combined to 
reduce superposition in the time domain. In the beginning of 
section 3.1, we were able to fit the temporal problem of SISO 
equalization into the spatial mould of ICA. However, a 
question remains unanswered: is it possible that some trace of 
the temporal character of the equalization task be useful to 
facilitate the tackling of the undermodeled spatial problem? 

 Let us consider the mixing matrix H for a while. It is 
noticeable that it obeys a very specific form, which is a direct 
consequence of the convolution operator. Moreover, its 
particular form is responsible for an apparently innocuous 
property: its first and last columns possess a single non-zero 
element – the first and the last element, respectively. The 
consequence of this property is that the source s(n) is present 
exclusively in the signal x(n) and, analogously, that the source 
s(n-N-M+2) is present exclusively in x(n-N+1). Without loss 
of generality, let us turn our attention to the first of these facts 
and to its potential consequences. 

 If it is our wish to recover s(n), and we are aware of the 
property we have just stated, what course of action could we 
follow? Keeping in mind that the delayed versions of s(n) are 
mutually independent, we could combine all the elements of 
the input vector from x(n-1) to x(n-N+1) to eliminate all the 
sources present in x(n), except for s(n). Accordingly, we could 
build an error signal of the kind 
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and attempt to minimize its mean-square value with respect to 
the parameters wk of the combination. A question arises: and 
what if this combination eliminates the totality of x(n), and not 
only the “undesirable” sources? This would certainly be a 
problem, but not in this particular case: since s(n) is not 
present at the elements of the combination and, in addition to 

that, is independent of all other sources, it is impossible that 
the error signal be zero. Furthermore, if the combination is 
ideally efficient, the error will tend to be exactly equal to s(n)! 
Therefore, the minimization of the error signal defined in (11) 
appears to be an efficient path to explore the structure of the 
matrix H in order to recover the source s(n). 

 It is convenient that we consider for a while what has just 
been done. Our starting point was the ICA formulation of the 
equalization problem, which revealed to us an interesting 
matrix property. Thence, we proceeded to the next step: to 
build a criterion able to take advantage of the observed 
property. So far, we thread a familiar path. The important 
thing is that the obtained error signal, shown in (11), 
corresponds to the prediction error we defined in section 2.3 
of part I! In other words, we have reached a familiar 
destination through a different path: our effort appears to be 
no more than a rediscovery of the classical prediction-based 
criterion for blind equalization. 

 Albeit it may seem that we have reached a dead end, it is 
possible that a fresh view on the subject may lead us to more 
interesting conclusions. As it was discussed in section 2.3 of 
part I, the prediction approach suffers from a serious 
limitation: it is successful exclusively when the channel is of 
minimum-phase. This restriction, the validity of which is 
beyond dispute, is, nonetheless, not so intuitively perceived 
when we analyze the expression of the error signal defined in 
(11). We are compelled to ask: why is not the linear 
combination of past input samples able to remove all sources 
distinct from s(n) when the channel is of non-minimum 
phase? The answer can be only one: because, in this case, the 
very structure of the mixing matrix engenders a filtering 
problem (in this case, a prediction problem) that cannot be 
properly solved. Being the criterion soundly formulated in 
accordance with a Wiener-like mould, there remains a single 
conclusion: the limitation of the prediction-based approach 
must lie in the choice of a linear filtering structure to play the 
role of predictor. 

 This conclusion is undoubtedly encouraging: it means 
that the possibility of exploring the observed property of the 
matrix H, i.e., of exploring the temporal character of the 
undermodeled ICA problem originated in SISO equalization, 
is not discarded. In fact, the crux of the entire question, as 
shown by Cavalcante et al. [15] and Ferrari et al. [16], is the 
choice of a more powerful filtering structure. These works 
reveal that a nonlinear predictor can overcome the classical 
“minimum-phase restriction” and establish an efficient 
nonlinear blind equalization approach. Let us translate this 
achievement into a language more suited to the course of our 
explanation: the use of a nonlinear prediction-error filter 
allows the temporal character of the “equalization ICA 
problem” to be explored and, as a consequence, that the 
source s(n) be recovered4. This is very relevant, since such a 
condition could never be reached via linear ICA techniques: it 

 
4 The same line of reasoning is valid if a backward predictor is employed. 

In this case, the recovered source would be s(n-N+1). 
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is the exploration of the structure of the matrix H, together 
with the use of a nonlinear predictor, that allows, in theory, a 
perfect recovery of s(n). 

 We decided to assume the “didactical risk” of entering a 
discussion concerning the use of nonlinear prediction for blind 
equalization because the manner whereby the subject was 
reached finely illustrates two points of the greatest 
importance: 

 
- Indeed, the problem of SISO equalization can be 

formulated as an undermodeled ICA problem; 
- However, the fact that the sources are delayed versions of 

the same signal can be used to build a criterion that works 
more efficiently than any method based exclusively on the 
“spatial character” of the emblematic ICA problem.      

 
The second of these items is the apex of our discussion, 

since it reveals that the temporality of the equalization 
problem must not be ignored when an ICA formulation 
thereof is established. 

2) Temporality and Convolutive Mixtures 
 The problem of extracting sources from convolutive 

mixtures gives us an even more pungent example of the 
potential of application of the idea of temporality to the 
problem of source separation. A convolutive mixture obeys a 
model of the kind: 
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where L indicates the model order and Ai is a mixing matrix 
associated with the time delay i. This model is both spatial and 
temporal in its character, since each sensor captures multiple 
sources (spatial character) and multiple delayed versions of 
them (temporal character). When a problem of this sort is 
studied, it is natural to attempt to formulate it in accordance 
the well-established ICA framework. This can be performed 
in a direct way by considering each delayed version of each 
source as an independent component, but this approach 
reveals, together with equation (12), the complexity of the 
problem: the convolutive model is, in a certain sense, formed 
by several SISO models; hence, the resulting ICA model is 
even “more undermodeled”. There remains, notwithstanding, 
the possibility of resorting to the temporal character of the 
convolutive model in order to transform an unsolvable “purely 
spatial” ICA problem into a well-behaved “space-time” 
problem. A recently proposed approach to this problem can be 
found in [17], in which, once more, nonlinear prediction is 
employed to “cut the Gordian knot”. The essence of this 
proposal is to use a bank of nonlinear predictors to transform 
the convolutive problem shown in (12) into an instantaneous 
(purely spatial) ICA problem that can be perfectly solved with 
the aid of conventional techniques. The rationale of this filter 
bank is simply an extension of the nonlinear prediction-based 
solution discussed above to the case in which there are 

delayed versions of multiple signals. The fact that a highly 
undermodeled problem in a conventional spatial view 
becomes perfectly solvable is yet another proof of the 
usefulness of the idea of temporality in the source separation 
framework. 

B. PCA, ICA, Prediction and Equalization 
It is always curious and inspiring to observe how proposals 

of a very similar spirit eventually emerge in separate research 
fields. In the literature, as a rule, the idea of performing 
independent component analysis is exposed as a kind of 
sequel to the mathematically simpler notion of principal 
component analysis. Furthermore, many of the existing 
algorithms indeed make use of a preliminary PCA pre-
whitening stage to facilitate the task of recovering the sources. 

This “two-stage” approach is quite intuitive and appealing. 
Since the sources are supposed to be i.i.d., they are also 
uncorrelated; therefore, the process of whitening the available 
input can be thought of as a device for restricting the possible 
solutions to the more select group of uncorrelated vectors. 
This should facilitate the entire search process and give rise to 
faster and simpler algorithms. This association, so strong in 
the field of blind source separation, obliges us to ask: does 
this “two-stage” approach have a counterpart in SISO 
equalization theory5? We think that it is possible to give a 
positive answer to this question in two different ways. 

1) Super-Exponential 
The process of pre-whitening is by no means absent from 

the classical SISO equalization theory. It is well-known that, 
in the context of the Wiener approach, described in section 2.2 
of part I, the process of eliminating the correlation between 
elements of the input vector can modify the mean-square error 
cost function in a way that enhances the speed of convergence 
of first-order methods such as the steepest descent and LMS 
algorithms [18]. 

Although an analogy with supervised techniques is valid, it 
would be more interesting to establish parallels between the 
pair PCA / ICA and a blind equalization algorithm. In this 
case, the most representative candidate is probably the super-
exponential algorithm (SEA), which was discussed in section 
2.6 of part I. The key to relating both worlds is the presence of 
a pre-whitening matrix that is responsible for a higher speed 
of convergence in comparison, for example, with a 
conventional gradient-based Bussgang technique. As shown in 
section 3.1, the SISO equalization problem can be formulated 
as an undermodeled ICA problem in which the sources are 
delayed versions of the transmitted message. This “spatial 
view” of an inherently “temporal problem” relates in a quite 
direct manner the “temporal whitening” performed by the 
matrix R-1 and the spatial whitening performed in PCA. 
Therefore, the whitening stage of the SEA can be understood 
as an equivalent of the PCA stage of a typical blind source 
separation algorithm. 

After this first analogy is accepted, the next natural step is 
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to consider if the complementary aspect follows the same 
pattern. In our opinion, the parallel is perfectly valid, since the 
SEA uses kurtosis as a reference measure to recover a delayed 
version of the transmitted signal, i.e., to extract one of the 
sources. Therefore, the second stage of this blind technique 
corresponds to ICA in a “one-by-one” basis, as it is typical in 
algorithms devised to operate in SISO environments. 

Finally, the comparison can be extended to multiuser 
detection algorithms [10][11], in which the presence of a 
correlation-based penalty term can be considered to be a sort 
of “tacit PCA” that must be continually carried out. 

2) Magnitude-Phase Structures 
The relationships we have hitherto exposed were 

predominantly based on criteria for blind equalization and 
source separation. However, it is interesting to notice that 
there is an appealing connection between PCA and ICA and a 
filtering structure conceived to operate in an unsupervised 
fashion: the magnitude-phase equalizer6 [21]. 

The magnitude-phase equalizer is a device composed of 
two parts: a linear predictor and an all-pass filter endowed 
with an additional decision-feedback stage. The role of the 
linear predictor is, in accordance with the background 
presented in section 2.3 of part I, to equalize the magnitude 
response of the communication channel without paying 
particular attention to the phase response; this is achieved 
through a conventional whitening process. The output of the 
prediction-error filter thus designed is the input of a second 
structure, a nonlinear recursive filter whose objective is to 
compensate for the phase distortions originated in the 
transmission process. The parameters of this second device are 
adapted with the aid of a decision-directed criterion. 

Let us consider for a while the filtering structure we have 
just described. Its first stage, as we have seen, is responsible 
for performing a substantial part of the equalization task: to 
invert the magnitude response of the channel by means of a 
whitening process. A successful primary stage, therefore, 
simplifies the possible solutions to the second part – only all-
pass filters need to be considered. The combination between 
pre-whitening and further simplification allows us to associate 
the first stage of a magnitude-phase equalizer to the typical 
PCA performed in source separation problems. 

Interestingly, the second stage contains a nonlinear element, 
which is expected, since blind phase equalization, as seen in 
sections 2.3 and 2.4 of part I, demands that higher-order 
statistics of the input signal be somehow generated. By tacitly 
resorting to this additional statistical information, the task is 
fulfilled and the phase response of the communication channel 
is adequately compensated for. Thus, what characterizes this 
second stage is the use of a memoryless nonlinearity to 
generate higher-order statistics, a stratagem that, as seen in 
section 3.2.2 of part I, is not unusual in ICA. Therefore, our 
analogy is complete: the phase equalizer plays a role similar to 
                                                                                                     

[6]

5 It should be noted that this approach has already been explored in a 
MIMO channel equalization context [19][20] 

6 This is, essentialy, the same idea presented in [19], but in a different 
context (MIMO equalization problem). 

that of the essential ICA stage of a blind source separation 
algorithm7.        

IV. CONCLUSIONS AND PERSPECTIVES 
We started this work from a discussion, which took place in 

part I, of the basic concepts, criteria and algorithms belonging 
to the fields of blind equalization and blind source separation. 
There, it was possible to notice how the development of both 
branches followed different paths, even though, in some cases, 
the obtained results were not essentially dissimilar. This 
careful exposition was essential for a good comprehension of 
part II.  

In part II, we, in the first place, revisited relations as the 
equivalence between maximum-likelihood formulation in BSS 
and the BGR theorem, between nongaussianity measures such 
as kurtosis and negentropy and the super-exponential and 
Bussgang techniques and between nonlinear PCA and the 
Bussgang approach. Although many of these connections 
were already mentioned in the literature, it is not of our 
knowledge the existence of a work that has considered the 
subject in a unified and systematic manner.  

In addition to these, if we may say, more direct 
equivalences, we have also treated new aspects of the relation 
between these two problems – the idea of temporality and the 
connection between PCA, ICA, magnitude and phase 
equalization. This discussion enabled us to understand the 
problems of equalization and ICA from points of view that 
can bring new interesting solutions and interpretations to these 
known problems. 

Finally, we conclude that, although both problems seem, at 
first sight, to be different, it is possible to place them under the 
same framework and realize that the solutions in both cases 
are fundamentally very similar. 
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