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Abstract— The objective of this two-part work is to present and 
discuss the relationships between the problems of blind 
equalization and blind source separation. This first part, which is 
essentially a tutorial, begins with a systematic exposition of the 
basic concepts that form the core of equalization theory, starting 
from the fundamental idea that characterizes the zero-forcing 
solution and reaching, after an explanation of the supervised 
Wiener paradigm, an analysis of the unsupervised or blind 
techniques. Afterwards, the problem of blind source separation 
and the main approaches to solving it are studied; important 
concepts are discussed, such as those of principal component 
analysis (PCA), independent component analysis (ICA) and 
strategies founded on bases as diverse as the use of mutual 
information as a measure of independence, the idea of 
nongaussianity and the employment of the classical process of 
estimation via the method of maximum-likelihood. 
 

Index Terms— Adaptive Filtering, Blind Equalization, Blind 
Source Separation, Independent Component Analysis. 

I. INTRODUCTION 
A recurrent necessity in signal processing is that of extracting 
or restoring information from a corrupted version thereof. 
This fundamental requirement is embodied in the problems of 
blind equalization and blind source separation (BSS), on 
which it can be said that the theory of unsupervised adaptive 
filtering is based. Interestingly enough, the development of the 
theory underlying these most interrelated problems took place 
along different lines: while most techniques for blind 

equalization were conceived in the context of a classical SISO 
(single-input / single-output) model, BSS evolved basically 
under the aegis of formulations of a purely spatial character. 
Two decades of efforts led these fields of research into a 
significant degree of maturity; nevertheless, the potential 
synergy between these branches, which could be decisive to 
enrich and facilitate their development, still remains to be 
fully exploited. 
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 Influenced by this spirit, we investigate, in this work, the 
various relationships between the problems of blind 
equalization and blind source separation. The work is divided 
into two parts, the first devoted to the exposition of the main 
theoretical results concerning the problems of interest, and the 
second, to a broad discussion of several aspects of the relation 
between them. This division serves an important purpose: to 
allow a non-expert reader to understand both problems and, 
afterwards, to have access to the points of contact between 
them. 
 In this first part, our starting point is the classical problem 
of SISO equalization. Afterwards, the problem of 
multichannel equalization is briefly discussed and serves as a 
conceptual link to the next subject: blind source separation. 
The problem of BSS and the most important approaches to 
solve it are then presented. It is important to remark that the 
entire exposition is based on the aim of preserving an 
illustrative sequence of the manner whereby the concepts are 
treated in the literature.  

II. BLIND EQUALIZATION 
The objective of a communication system is to allow 

information to be adequately interchanged between a 
transmitter and a receiver that, by hypothesis, are 
interconnected by a channel. As a rule, this channel is 
responsible for the introduction of a certain level of distortion 
in the transmitted message that, if not properly dealt with, may 
decisively compromise the quality of the reconstructed signal 
of interest. 

A typical strategy to overcome this practical difficulty is to 
use a filter whose structure and parameters are carefully 
chosen in order to counterbalance the channel influence: the 
equalizer. In Fig. 1, we depict a simple scheme of a baseband 
communication system endowed with a device of this sort. As 
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shown in Fig. 1, the transmitted signal1, s(n), is sent through a 
channel and received as a distorted version, x(n). This 
received signal is then processed by the equalizer and yields 
an output signal y(n). At this point, it would be quite natural to 
consider what kind of output signal we should expect to 
produce at the equalizer output. This is a crucial issue, and, 
therefore, it is convenient to analyze its multiple aspects in 
separate. 

A. The Zero-Forcing Equalizer 
A first approach to the equalization problem is to consider in 

a very direct manner the idea outlined in the preliminary 
discussion above: the notion of an equalizer as the inverse 
model of a channel. Let us assume a SISO linear channel 
model, i.e.: 
 

( ) ( ) ( ) ( ) ( )
k

x n h k s n k h n s
∞

=−∞

= − =∑ n∗

∗

 (1) 

 
where h(n) is the channel impulse response and ‘∗’ 
corresponds to the discrete-time convolution operator. In 
addition to that, let us suppose that the equalizer is also a 
linear device, that is: 
 

( ) ( ) ( ) ( ) ( )
k

y n w k x n k w n x n
∞

=−∞

= − =∑  (2) 

 
where w(n) is the equalizer impulse response. Substituting (2) 
into (1), we get to: 
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )        =

y n w n x n w n h n s n

w n h n s n c n s n

= ∗ = ∗ ∗⎡ ⎤⎣ ⎦
∗ ∗ = ∗⎡ ⎤⎣ ⎦

=
  (3) 

 
where c(n)=w(n)*h(n) denotes the combined response 
(channel+equalizer). Now, if we want the equalizer to be the 
inverse of the communication channel, it is necessary to 
ensure that 
 

( ) ( ) ( )h n w n nαδ τ∗ = −  (4) 
 
Under these circumstances, it holds that 
 

( ) ( )y n s nα τ= −  (5) 
 
which, as expected, means that the transmitted signal is 
perfectly recovered up to a gain α and a delay τ, the so-called 
equalization delay. Since, as shown in (5), the combined 
response c(n) is zero in all instants except for n=τ, the 
condition defined by equations (4) and (5) is referred to as 
zero-forcing (ZF) condition [1]. 

The ZF condition is perhaps the most direct expression of 
the intuition behind the equalization problem. When a ZF 

solution is attained, the characteristics of both channel and 
equalizer are precisely inverse, and, as a consequence, the 
desired information is perfectly recovered. Nevertheless, the 
employment of this condition in the process of establishing a 
design criterion suffers from some difficulties. In order that 
the optimal equalizer impulse response w(n) be obtained, it is 
necessary that the channel impulse response be perfectly 
known, which is, in practice, a stringent requirement. 
Moreover, the deterministic nature of the ZF solution excludes 
the effects caused by additive noise, present in most real-
world applications. 

 
1 In this work, we will consider only discrete-time zero-mean wide-sense 

stationary signals, which will be assumed to depend on a time index n. 

Finally, the ZF approach is founded on a tacit assumption: 
that the chosen equalizer is capable, from a structural 
standpoint, of inverting the channel model. This is a relevant 
issue, because, in practice, the most popular channel and 
equalizer models are linear FIR (Finite Impulse Response) 
filters. In such a case, it is possible to show that a ZF solution 
is attainable only in two cases [2]: a) in the trivial case of a 
channel that is a simply gain and b) in the impractical case of 
an equalizer with an infinite number of coefficients in both the 
causal and anticausal parts of its impulse response. 

B. The Wiener Equalizer 
In the ZF approach, the focus is on the ability of the 

equalizer to compensate for the structural features of the 
channel. Now, we will turn our attention to a different 
strategy: to use the statistical information contained in the 
received and transmitted signals in order to obtain an efficient 
filtering device. This is the essence of the Wiener approach. 
Following this approach, noise can be easily taken into 
account, differently from the ZF method, generally leading to 
a superior performance. 

Let us return to equation (5). This expression summarizes 
the final objective of any communication system: to 
reconstruct, at the receiver, a reliable version of the 
transmitted message. Suppose that it is not possible, for some 
reason (e.g. structural limitations and/or the presence of 
noise), to operate in a condition exactly like the one described 
by (5); it would then be natural to choose the parameters of 
the equalizer accordingly with the goal of reaching a condition 
as close as possible to (5). Therefore, in the Wiener approach, 
we define a desired signal: 

 
( ) ( )d n s n τ= −  (6) 

 
and adjust the equalization device in order that its output be as 
close as possible, in a statistical sense, to (6). This idea of 
statistical closeness can be translated into mathematical terms 
by taking the expected value of the square of the error signal, 
defined as the difference between the desired output and the 
actual one (the mean square error, or MSE): 
 

( ) ( ) ( )( 22
WienerJ E e n E d n y n )⎡ ⎤⎡ ⎤= = −⎣ ⎦ ⎣ ⎦  (7) 

 
where E[.] denotes the ensemble average operator and e(n) 
the error signal.  
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The next step is to look for the best solution, i.e., the 
equalizer that minimizes the cost function (7). Considering 
that the equalizer is a linear device, (2) can be rewritten as  

 
( ) ( ) ( )Ty n n n= w x  (8) 

 
where w(n)=[w(0) w(1) … w(N-1)]T is the equalizer 
parameter vector, x(n) = [x(n) x(n-1) … x(n-N+1)]T is the 
input vector, N is the number of free coefficients, and (.)T 
denotes the transpose. Under these hypotheses, it is possible to 
show that the above cost function becomes [1]: 
 

2T T T
Wiener dJ σ= − − +w Rw w p p w  (9) 

 
where 
 

( ) ( )TE n n⎡= ⎣R x x ⎤⎦

⎤⎦

p

 (10) 

 
is the correlation matrix, 
 

( ) ( )E d n n= ⎡⎣p x  (11) 

 
is the cross-correlation vector and σd

2 is the variance of the 
desired signal. For a given d(n), this function is a paraboloid 
and possesses a single minimum, called Wiener solution. This 
solution is defined by 
 

1
opt

−=w R  (12) 
 
This analysis reveals that the optimal equalizer in the MSE 

sense can be obtained from the second-order statistics of the 
received signal (contained in R) and the cross-correlation 
between the input signal and the desired signal (given by p). 
This is the typical path to solve the supervised equalization 
problem, i.e., that of finding the optimal equalizer with the aid 
of a desired signal. 

Although the fundamentals of the Wiener approach are 
given above, there remains an important aspect to be 
discussed: how should the desired signal be chosen in a 
typical equalization problem? The question, which is 
deceptively simple, must be considered in some detail. As we 
saw in (6), to recover the transmitted signal up to a delay is 
acceptable in the equalization framework, as a simple delay 
does not corrupt the information contained in the signal of 
interest. Therefore, all choices of the kind d(n) = s(n-τ) are 
equally acceptable a priori. Nonetheless, a more detailed 
analysis shows that different delays give rise, as a rule, to 
different Wiener solutions, and, moreover, to solutions 
associated with different residual MSEs. In other words, the 
choice of the desired equalization delay may either facilitate 
or compromise the task of finding the optimal Wiener 
equalizer. Furthermore, the existence of multiple possible 
delays must be taken into account when comparisons are 
established between the Wiener approach and the 
unsupervised strategies that will be discussed later [3][4]. 

The “Wiener recipe” can be considered, in a certain sense, 
the cornerstone of the entire optimal filtering theory. 
Notwithstanding, it is a theoretical construction founded on a 
somewhat complicated hypothesis: that it is possible to have 
access to samples of the transmitted signal at the receiver. In 
some systems, this is not necessarily a problem, because 
information of this nature may be required for other purposes 
(e.g. synchronization). However, the idea of transmitting 
periodic training sequences known at the receiver may be 
impractical or undesirable from a practical standpoint.  This 
fact is the main reason for interest in unsupervised or blind 
approaches. 

C. Blind Equalization and Linear Prediction 
A blind or unsupervised equalization criterion can be 

defined as one that makes exclusive use of statistical 
information about the transmitted signal to guide the choice of 
the free equalizer parameters, i.e., that does not rely on 
knowledge of the transmitted samples. In digital 
communications, the general characteristics of the transmitted 
messages are deeply related to intrinsic features of the 
communication system itself [2] (e.g. the employed 
modulation and the existence of interleaving), which indicates 
that it should not be a problem for the receiver to have perfect 
knowledge of their statistical properties.  Consequently, the 
concept of using information of this sort to build an effective 
method for mitigating the distortion introduced by the channel 
is, in principle, a sound one. 

Since the Wiener approach, which is based on second-order 
statistics, constitutes a noticeable compromise between 
effectiveness and mathematical simplicity, it would be 
desirable to keep our efforts to build a blind equalization 
criterion within its bounds. In order to do so, it is important 
that we turn our attention to another classical filtering 
problem: that of prediction. The problem of prediction can be 
stated as follows: given the present and past samples of a 
given time-series, build a filter, called predictor, to process 
them and produce an estimate of its future values. 
Mathematically, the input-output relationship of a predictor is: 

 
[ ]( ) ( ), ( 1), , ( 1)predy n F x n x n x n N= − −K +

r

 (13) 
 
where Fpred[.] represents a generic input-output mapping of 
order N-1. If the predictor is a linear filter, we may resort once 
more to equation (8). 

In the Wiener framework, the problem of finding the 
parameters of the predictor corresponds to the task of finding 
the Wiener solution for d(n) = x(n+1). From (12), we obtain 

 
1

pred
−=w R  (14) 

 
where [ ]( 1) ( )E x n n= +r x . Thus, a filter with parameters 
equal to wpred produces the best linear estimate (in the 
minimum MSE sense) of a given signal from its past samples. 
It is also important to define the concept of prediction-error 
filter, a device whose output is the prediction error e(n) = 
x(n+1) – y(n), illustrated in Fig. 2. 
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It is demonstrable that the prediction-error filter produces 
an error as white as possible, i.e., that the samples of e(n) will 
tend to be temporally uncorrelated if the order of the 
employed predictor is sufficiently large [1]. The importance of 
this fact cannot be overlooked, for, in most theoretical 
analysis, it is assumed that the transmitted signal is composed 
of i.i.d. (Independent and Identically Distributed) samples, 
i.e., that s(n-a) and s(n-b) are two independent random 
variables when a ≠ b. Since independence implies 
uncorrelatedness, it is tempting to ponder that, by whitening 
the received signal, a prediction-error filter may work as an 
efficient equalizer. This argument, however, is not as sound 
and complete as it may seem at first sight. 
 In the frequency domain, a white signal is conceived as one 
that has a constant power spectral density. Accordingly, the 
notion of “whitening a signal” can be understood as a filtering 
process that moulds its power spectrum into a pattern as close 
as possible to that of a white signal. Let us assume that an 
i.i.d. signal s(n) is transmitted through a channel whose 
frequency response is H(f), and received as a distorted version 
x(n). In this case, the power spectral densities of the two 
signals are related by the formula [5]: 
 

2( ) ( ) ( )xS f H f S f= s  (15) 
 
where Sx(f) and Ss(f) are, respectively, the power spectral 
densities of x(n) and s(n). It is important, at this point, to recall 
that the power spectral density of a random process is the 
Fourier transform of its autocorrelation function, i.e., the 
Wiener-Khintchine theorem. 

The expression shows that the power spectral density (and, 
consequently, the autocorrelation) do not take into account the 
phase information of the channel frequency response, which 
means that the whitening process is able to reduce or even 
eliminate the amplitude distortion introduced by a given 
channel, but, on the other hand, is not influenced by its phase 
distortion. Consequently, an effective prediction-error filter 
will counterbalance very well the channel amplitude response, 
but will not be reliable insofar as phase distortion is 
concerned. As a matter of fact, there is only one class of 
channels that can be adequately equalized by prediction-error 
channels: that of minimum-phase channels. This is entirely 
justifiable, since the property of minimum-phase implies that 
the amplitude and phase responses of these channels are 
uniquely related [6]. 

The prediction approach allowed us to build a blind 
equalizer based exclusively on second-order statistics. 
However, it has a very serious limitation: it is effective only 
for minimum-phase channels. In the most general case, 
whitening does not mean equalizing, because there will 
remain a phase distortion to be dealt with. This line of 
reasoning leads us to an inevitable conclusion: second-order 
statistics are not, in general, sufficient to perform blind 
equalization. It is necessary to consider other sources of 
information, sources that propitiate an adequate treatment of 
the phase distortions introduced by the communication 
channel. 

D. Blind Equalization Theorems 
Since second-order statistics are not sufficient to perform 

blind equalization in a general context, it is possible to 
conceive a direct improvement: to use statistical features of 
order higher than two, which allow, in principle, that the 
channel response be completely characterized. Based on this 
knowledge, Benveniste, Goursat and Ruget (BGR) [8]  and, 
afterwards, Shalvi and Weinstein (SW) [9], defined the 
necessary conditions to achieve ideal equalization in an 
unsupervised context. 

Firstly, let us consider the following conditions: 1) the 
samples of the transmitted signal are i.i.d.; 2) the channel and 
the equalizer are linear filters and, moreover, there is no 
additive noise; 3) it is possible to invert the channel perfectly, 
i.e., it is possible to attain the ZF solution.  After establishing 
the necessary assumptions, it becomes necessary to address a 
pair of particularly relevant questions:  how to define an 
appropriate criterion to find the channel inverse without 
resorting to supervised training? On what characteristics of 
the involved signals should this criterion be based? 

The first answer to these topics was given by Benveniste, 
Goursat and Ruget [8]. Their goal was to use a comparison 
between the probability density function (pdf) of the equalizer 
output and that of the transmitted signal as the basis of a 
criterion devised to verify if an ideal (zero-forcing) condition 
had been attained. The use of a pdf as the source of the 
required statistical information is both intuitive and clever: 
implicitly, the pdf contains all the statistics of the random 
variable it describes. At this point, we must emphasize the fact 
that the validity of the above comparison is subject to an 
important assumption: the pdf of the transmitted signal, 
ps(s(n)) must be non-Gaussian. Since Gaussian processes 
filtered by a non-trivial system remain Gaussian [5], the 
comparison would be reduced to a power adjustment [8].  

The Benveniste-Goursat-Ruget (BGR) theorem is simply a 
translation of these arguments into mathematical terms: 

 
Theorem 1 (BGR Theorem) Under conditions 1, 2 and 3, if 
the probability density functions of the transmitted signal 
(supposed to be non-Gaussian) and of the equalizer output are 
equal, then the ZF solution is necessarily attained, i.e., c(n)= 
±δ(n-τ). 
 

The simplicity of this theorem must not overshadow its 
importance. We have just exposed a criterion capable of 
describing a condition of perfect equalization without 
mentioning either a training sequence or the channel model. 
This is the reason why the BGR theorem is considered to be 
the first important theoretical result of blind equalization 
theory. 

Ten years later, Shalvi and Weinstein proposed a theorem 
[9] that can be conceived as a refinement of the ideas of 
Benveniste, Goursat and Ruget. Under the same conditions, 
the authors arrive at a blind expression of the ZF condition 
with the help of a less restrictive amount of information 
concerning the involved signals. The key to understanding 
how this is possible is the statistical concept of kurtosis. 
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Before presenting it, however, we need to define what is a 
cumulant. 
 Cumulants are statistical measures derived from the 
characteristic function [7]. We denote an order p cumulant of 
a real-valued random variable ξ as pCξ , which is equivalent to 
writing cum(ξ : p). Until third order, the cumulants are equal 
to the moments of a zero-mean random variable. Thus, 2Cξ , 
e.g., for a zero mean signal, is equal to its variance. The 
fourth-order cumulant, 4Cξ , is called kurtosis. Its definition 
based on moments is given by: 
 

4 2( ) 3K E E 2ξ ξ ξ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦  (16) 

 
Theorem 2 (SW Theorem) Under conditions 1, 2 and 3, and 
considering [ ]( )K s n to be nonzero, if  

and 

2 2( ) ( )E y n E s n⎡ ⎤ ⎡=⎣ ⎦ ⎣ ⎤⎦

[ ] [ ]( ) ( )K y n K s n= , then, necessarily, c(n)= ±δ(n-τ) . 
 

Even though the theorem above is stated considering real 
random variables, it is also valid for complex signals, as long 
as conditions 1, 2 and 3 are satisfied. 

The BGR theorem associated the “blind expression” of the 
ZF condition to a sort of “pdf matching”, that is, to an implicit 
comparison between all moments of the equalized and 
transmitted signals. The beauty of the SW theorem lies in that 
it fulfills the same task using only two statistics: the variance 
and the kurtosis. Whereas the former statistic is simply 
responsible for a sort of “power adjustment”, the latter 
statistic, which is of higher-order, bears the information that 
gives support to the process of channel inversion.  
 The theorems we have just presented are the pillars of the 
blind equalization theory. However, although they are of 
paramount importance as means of expressing the 
fundamental objective of the equalization task in suitable 
terms, it cannot be said that they explicitly indicate how the 
parameters of a given filter can be chosen in a real-world 
situation. Since this is the main concern of any 
communication engineer, it is not surprising that the research 
field of blind equalization also evolved through a different 
path: that of finding blind criteria which operate in a manner 
analogous to that which was previously referred to as “Wiener 
recipe”. We will analyze two classes of these criteria: that of 
Bussgang techniques, which, although conceptually related to 
the theorems presented above, is formed by techniques 
derived, as a rule, from ad hoc motivations and conceptions; 
and that of the Shalvi-Weinstein methods, which, as the name 
suggests, are based on the SW theorem. 

E. Bussgang Techniques 
A blind equalization criterion must necessarily provide the 

means to choose the parameters of an equalizer by resorting 
exclusively to statistical characteristics of the input sequence. 
In the so-called Bussgang methods, this crucial information 
comes from the use of a zero-memory nonlinear function 
whose role is to produce an estimate of the unavailable 
transmitted signal [10]. Typically, one considers the use of 

this estimate, to which we shall refer to as g(y(n)), in the 
context of an LMS-like adaptation scheme. However, it is not 
unusual to find the idea also applied in a sort of Wiener-like 
cost function as  

 
( ) ( ) ( )( )

( )( ) ( )( )

22

2

ˆ

        =

BussJ E e n E s n y n

E y n y nϕ

⎡ ⎤⎡ ⎤= = −⎣ ⎦ ⎣ ⎦
⎡ ⎤−⎢ ⎥⎣ ⎦

 (17) 

 
where ( )ŝ n  is the estimated transmitted symbol and ( )( )y nϕ  
is a nonlinear function. Note that JBuss is a nonconvex cost 
function, which means that it may have local minima in 
addition to global minima2.  
 Historically, the motivations for choosing the nonlinear 
function were related to specific applications and theoretical 
insights. Nonetheless, before we consider these particular 
instances, it is interesting to discuss how ( )( )y nϕ  could be 
chosen in a more systematic way. In this sense, we start by 
defining convolutional noise. Considering w(n) as the impulse 
response of the correct inverse filter and ( )ŵ n  the impulse 
response of the approximate inverse filter, obtained, for 
example, through the optimization of (17), we can write the 
equalizer output as 
 

( ) ( ) ( )y n s n nη= +  (18) 
 
where η(n) is the convolutional noise, which represents the 
residual intersymbol interference and is given by  
 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )ˆ * * *en w n w n h n s n c n s nη = − = ,   (19) 

 
that is, the convolution of the input data with the residual 
inverse filter error. If the impulse response ce(n), which 
corresponds to the convolution of the channel impulse 
response and the residual inverse filter error, is long enough, 
then, inspired by the central limit theorem [5], we may model 
η(n) as a white Gaussian noise. It is clear from (18) and (19) 
that η(n) is correlated with s(n), at least in the beginning of an 
adaptive procedure. However, it is possible to show that this 
correlation is negligible compared to the variance of η(n), and 
so η(n) can be considered orthogonal to the data sequence s(n) 
[10][11]. We also suppose the data symbols s(n) to be 
uniformly distributed with zero mean and unit variance.  
 Returning to the non-zero memory nonlinear function, in 
the context defined above, the requirement is to derive an 
estimate of s(n) that is optimal in some statistical sense. A 
sensible and robust choice for g(y(n)) is the conditional mean 
[1][11]  
 

( ) ( )( ) ( ) ( )ˆ |s n y n E s n y nϕ= = ⎡ ⎤⎣ ⎦  (20) 

 

 
2 The function also contains a maximum and, in general, saddle points [2]. 
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which minimizes the root mean-square error between the 
actual transmission s(n) and the estimation ( )ŝ n . It is 
important to remark that, although the estimate (20) is optimal 
in the mean-square error sense, it is, in practice, suboptimal 
due to the simplifying hypotheses, specially those regarding 
η(n). 
 From Bayes’ rule, we have 
 

( ) ( )( ) ( ) ( )( ) ( )
( )( )

| (
| y s

s
y

)f y n s n f s n
f s n y n

f y n
=  (21) 

 
where ( )( )sf s n  and ( )(y )f y n  are the pdf of s(n) and y(n) 

respectively and ( ) ( )( |y )f y n s n is the conditional pdf of y(n) 
given s(n). We may then rewrite (20) as 
 

( )
( )( ) ( )( ) ( )1ˆ |y s

y

s n sf y n s f
f y n

∞

−∞

= ∫ s ds

)

 (22) 

 
Once ( )(yf y n , the denominator of (22), has been 

evaluated, another useful expression for the conditional mean 
is [11]  

 
( )( ) ( ) ( ) ( ) ( )(2| ,y n E s n y n y n b y nϕ σ= = −⎡ ⎤⎣ ⎦ )

⎤⎦

 (23) 

 
where  is the convolutional noise variance 

and 

( )2 2E nσ η⎡= ⎣

( )( )

( )
( )

( )( )

y

y y n

y

df y
dy

b y n
f y n

=

−

= . 

 Although this methodology is a systematic and rational 
approach to the problem, we must not forget that at its core a 
number of hypotheses were assumed that may render any 
practical application significantly difficult. This remark 
indicates why the statistically sound approach we have just 
described has not reduced the interest for the more 
idiosyncratic and intuitive choice of ( )( y nϕ )

)n

 associated with 
the most celebrated members of the Bussgang class. 
 After choosing the nonlinear function according to some 
methodology, it is straightforward to obtain an adaptive 
algorithm to optimize (17) with the help of the usual 
stochastic approximation of the gradient vector:  
 

(( 1) ( ) ( ) ( ) ( ( ))n n n y n g yμ+ = − −w w x  (24) 
 
where μ is the step size and (.)g  is the nonlinearity resulting 
from the stochastic approximation of  (17). We can readily see 
that (24) differs from the classical LMS (Least Mean Square) 
algorithm [1] only in the nonlinear function ( ( ))g y n , which 
plays the role of a “blind reference signal”. The use of a 
nonlinear mapping as the desired signal is what characterizes a 

Bussgang algorithm: expression (24) can thereby be 
considered to define the general form of a technique of this 
class. 
 As we have anticipated, a number of important approaches 
to the blind equalization problem fit the mould of a Bussgang 
technique, of which are specially relevant for us the decision-
directed (DD) algorithm [1], the Sato algorithm [12] and the 
Godard / constant modulus (CM) algorithm [13]. In Table I, 
we list these algorithms together with their correspondent 
nonlinearities g(.). 

F. Shalvi-Weinstein Methods 
 The Bussgang algorithms are undoubtedly a prominent part 
of the corpus of unsupervised equalization techniques. 
However, any discussion on the subject of blind 
deconvolution would be incomplete without another branch of 
techniques: the class of the Shalvi-Weinstein methods. 
 Writing the equalizer output as  
 

( ) ( ) ( )
k

y n c k s n
∞

=−∞

k= −∑  (25) 

 
where c(n) is the combined channel-equalizer response, the 
cumulant of y(n) can be obtained as (considering p >2): 
 

( ) ( ) ( ) 2( ) ( )y n s n s np
p p p

k k

C C c k C c
∞ ∞

=−∞ =−∞

= ≤∑ ∑ k

2

 (26) 

 
Following Theorem 2, the first condition for obtaining a ZF 

solution is 2( ) ( )E y n E s n⎡ ⎤ ⎡= ⎤⎣ ⎦ ⎣ ⎦ . Using this condition in 

(26), we find that , which means that 2 ( ) 1
k

c k
∞

=−∞

=∑ ( ) 1c k ≤ . 

Therefore, the last inequality of (26) will become an equality 
only if the vector of the combined channel-equalizer response 
has a single nonzero element with magnitude equal to one 
(i.e., a ZF solution). 
 Based on (26) and on the discussion above, the criterion 
proposed by Shalvi and Weinstein is to maximize ( )y n

pC , with 

 (higher-order cumulant), subject to the restriction 2p >
2( ) ( )E y n E s n 2⎡ ⎤ ⎡= ⎤⎣ ⎦ ⎣ ⎦  [9][14]. The adopted values for p are 

p=3 (third-order cumulant) and p=4, which results in the 
kurtosis. The latter is used more often because the third-order 
cumulants of symmetric distributions are zero. 
 The power restriction may also be substituted by a 
normalization what gives rise to the following criterion: 

maximization of  ( ) ( )( ){ }2 2

py n y n
pC C . This criterion is used for 

the derivation of the super-exponential algorithm, also 
proposed by Shalvi and Weinstein [15]: 
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 (27) 
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where R is a matrix whose elements are given by  
 

[ ]
2

( ) ( )
( )ij

E x n j x n i
E s n

− −
=

⎡ ⎤⎣ ⎦
R  (28) 

 
and d is a vector whose elements are given by 
 

( )
2

( ( ) : 2 1, ( ))
i s n

p

cum y n p x n i
C

− −
=d  (29)  

 
The term R-1 corresponds to a whitening operation. Due to 

this term, when compared to Bussgang algorithms, the super-
exponential algorithm converges faster, at the cost of being 
computationally more complex. In [15], it is shown that this 
algorithm has an optimum step size with respect to 
convergence speed. In addition, it shows that the method can 
also be viewed as a gradient optimization scheme of a 

criterion given by the maximization of the ratio ( )( )
( )( )

2

2

p

k

p

k

c k

c k

∑
∑

, 

a criterion known as Donoho’s criterion [17]. This ratio can 
also be obtained by the manipulation of the normalized SW 
criterion, writing it as a function of the cumulants of s(n) [14], 
highlighting the close relation between these two criteria. 

 

G. SIMO/MISO/MIMO channel models  
The development of the already presented criteria was 

carried out under the auspices of a SISO linear channel model. 
In some cases, though, it may be interesting to consider 
models with more inputs and/or outputs, which can be viewed 
as direct extensions of the SISO case. For example, in a 
wireless communication application, one can distinguish three 
different scenarios [2]:   

1) A single antenna is used by the transmitter and a single 
antenna is present in the receiver – a SISO channel, as in the 
previous discussion; 

2) A single antenna is employed by the transmitter, whereas 
two or more antennas are used in the receiver – a single input / 
multiple output (SIMO) channel – or, conversely, multiple 
antennas are used by the transmitter and a single antenna is 
part of the receiver – a multiple input / single output (MISO) 
channel; 

3) Two sets of antennas are constituents of both the 
transmitter and the receiver – a multiple input / multiple 
output channel model. 

These possibilities are illustrated in Fig. 3.  
 Although a detailed analysis of the equalization problem in 
these scenarios is beyond the scope of this work, they are, 
nonetheless, important for a particular reason: the perspective 
they open of devising a situation in which it is important to 
extract simultaneously multiple information signals using 
some kind of diversity (e.g. that originated by the use of 
several sensors). Thus, the reader should keep in mind that the 

study of the multichannel problem can be a solid bridge 
between the world of SISO equalization we have been 
considering and that of blind source separation, to which we 
shall, without further ado, turn our attention.    

III. BLIND SOURCE SEPARATION 
Imagine there are three people talking in a restaurant, and 

their voices were recorded by three microphones placed at 
different locations in the room. After recording the voices, 
you obtain three signals, x1(n), x2(n) and x3(n), each one 
representing a mixture of the voices of the three people. In this 
particular case, the problem is to estimate the original voice 
signals, s1(n), s2(n) and s3(n), based on the mixtures x1(n), x2(n) 
and x3(n) captured by the microphones. Neither the mixing 
process nor the samples of the original signals are known a 
priori, which means that the problem must necessarily be 
solved in a blind fashion. The question is: how can it be done?   

This example is known in the literature as the cocktail party 
problem, and illustrates the idea behind the blind source 
separation problem, also depicted in Fig. 4. Let us consider a 
set of N signals s1(n), …, sN(n), referred to as sources, and a 
set of M received signals x1(n), …, xM(n) , the observations. 
The main goal of BSS is to provide accurate estimates of the 
sources based solely on the observed signals. 

An important point in the development of methods to 
perform the signal separation is related to the mixing process 
model. It would be very interesting to deal with a general 
model in order to obtain a flexible algorithm, capable of 
performing BSS in wide range of scenarios. Due to the 
complexity of the problem, we shall consider the linear 
instantaneous model, i.e. 

 

( ) ( )∑
=

=
N

j
jiji nsanx

1

 (30) 

 
or, in matrix form: 
 

( ) ( )nn Asx =  (31) 
 
where A is an NxM matrix, and 
 

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]TM
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=

=
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 (32) 

 
denote the vectors containing the sources and the 
observations.  

Under these assumptions, it seems reasonable to consider a 
separating system consisting of a matrix W such that 

 
( ) ( )nn Wxy =  (33) 

 
is a vector with accurate estimates of the sources. In the 
absence of noise, W should have a configuration that is the 
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inverse of the mixing system, i.e., W = A-1, an idea similar to 
that behind the ZF equalization. Nevertheless, it would be 
equally satisfactory if one could recover a scaled version of 
the source vector, or even a permutation of it. These 
conditions can be expressed in mathematical terms as 
 

( ) ( ) ( )nnn PDsWxy ==  (34) 
 
where P and D denote a permutation and an invertible 
diagonal matrix, respectively. Thus, any valid BSS criterion 
should lead to a solution in accordance to (34).  
 In order to recover the sources in a blind fashion, likewise 
in the equalization problem, the BSS method must rely on 
statistical information about the sources. A hypothesis that 
proved itself valid in a large number of applications is that the 
source signals are mutually statistically independent. In fact, 
this simple assumption is the key to the solution of the BSS 
problem, as it will be discussed in the following. 

A. PCA – Principal Component Analysis 
A first attempt to solve the problem of determining the 

separating matrix W would be to explore the second-order 
statistics of the signals, an idea similar to the one described in 
section II.C. Since the sources are assumed to be independent, 
the source vector components are also uncorrelated, i.e.: 

 
( ) ( )TE n n⎡ ⎤ =⎣ ⎦s s Λ  (35) 

 
where  Λ is a diagonal matrix. Thus, one could be tempted to 
propose a criterion for adapting W in accordance with the idea 
of forcing y(n) to have uncorrelated components. This 
approach brought to the BSS community a well-known 
statistical tool – the principal component analysis (PCA). In 
its original form, PCA can be understood as a strategy devised 
to find a set of variables smaller than and yet representative of 
a larger amount of multivariate measurements – a method for 
redundancy removal in data analysis.  

The first step to implement a PCA technique is to subtract 
the mean from x(n):  

 
( ) ( ) { ( )}n n E n= −x x x  (36) 
 
After a zero-mean vector is obtained, it is necessary to find 

a linear transformation that, when applied to it, produces a 
vector y(n) whose M elements are uncorrelated. In geometrical 
terms, the transformation is responsible for generating a 
rotated orthogonal coordinate system in which the elements of 
x(n) are uncorrelated. In simple terms, we obtain projections 
of x(n) on the new coordinate axes in a way that the projection 
on the first axis corresponds to the maximal variance, the 
projection on the second axis corresponds to the maximal 
variance orthogonal to the first axis, and so on. 

An alternative interpretation of the process arises when it is 
assumed that the main goal of PCA is to find a projection such 
as the average error between x(n) and the projection of x(n) 

on the previously found subspace is minimal [18]. This idea is 
behind the criterion of mean square error minimization 
(MSEM):  

( ) ( )( )
1

2

1

min
m

T
i i

i

E n n
=

⎧ ⎫
⎪ ⎪−⎨ ⎬
⎪ ⎪⎩ ⎭

∑w
x w x w  (37) 

 
where wi is an orthonormal base of the subspace defined by 
the vector y(n). A careful analysis of (37) reveals that the idea 
is to find a set of orthogonal directions that be the most 
suitable to represent the available data. 
 The very structure of the PCA process reveals that the 
technique is effectively built to find a set of “special 
directions” determined by the characteristics of the data of 
interest, directions on which its principal components are 
projected. Being a method based on second-order statistics, 
PCA seeks these directions under a strict restriction of 
orthogonality i.e. the principal components are always 
orthogonal. This is exactly the reason why PCA is commonly 
used in source separation algorithms as a tool to whiten the 
components of a vector. 
 After having defined the concept of PCA, we are ready to 
address a crucial problem in blind source separation: that of 
finding the independent components of a random vector.  

This problem, as a matter of fact, is the essence of the so-
called Independent Component Analysis (ICA), the objective 
of which, as the name already indicates, is to allow that a 
random vector be decomposed into a set of independent 
components. This motivation establishes a clear contrast with 
PCA, founded on the weaker assumption of orthogonality 
between the elements of interest, and, moreover, indicates that 
the problem to be solved is of a subtler and more complex 
nature. 

B. ICA – Independent Component Analysis 
In light of these fundamental hypotheses, it is 

straightforward to state the ICA problem: find the vector s(n), 
or, equivalently, the matrix A that produces the observed 
signals xj(n). If the idea is to find the sources, typically a 
separating matrix W is calculated that, when applied to x(n), 
produces a vector containing the sources; this matrix is, in a 
certain sense, the inverse of A up to scaling factors and line 
permutations. For simplicity, in this section we will consider 
the absence of noise. 

Independent component analysis is, per se, simply a method 
for decomposing a data signal into its independent 
components (in analogy with the original motivation of PCA). 
However, it is also, as we have shown with our discussion 
about the cocktail-party problem, a method for recovering a 
number of independent signals from mixed versions of them. 
The latter interpretation of ICA explains why it became the 
“standard formulation” in blind source separation theory. 

We have presented the general ICA problem, but nothing 
has been said about the methods to solve it. Therefore, in the 
next sections, the reader will be introduced to a number of 
different proposals that attempt to explore every possible 
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mathematical expression of the notion of statistical 
independence to establish effective separation criteria.  

 
1) Criteria based on Independence 

According to the previous discussion, a possible way to 
obtain the separating system based only on the information 
contained in the observed samples is to find W such that the 
components of the estimated vector are mutually independent. 
Thus, it is necessary to find ways to quantify the degree of 
independence between random variables.  

 A natural “measure” of dependence is the information 
theory concept of mutual information. In order to properly 
define it, let us define the Kulback-Leibler divergence (KLD) 
[5] between two pdfs, p(x) and q(x), as: 

 

( ) ( )( ) ( ) ( )
( )

|| log
p

D p x q x p d
q

ξ
ξ ξ

ξ

Δ

= ∫  (38) 

 
Let us consider a vector of random variables ψ, with 

associated joint pdf, pΨ(ψ), and its marginal pdfs, pΨi(ψi). The 
mutual information between the elements of ψ is defined as: 
 

( ) ( ) ( ) ( ) ( )
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i
i ii
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I D p p p d
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ψ
ψ
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∏ ∫ ∏
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ψ ψ

ψ
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  (39) 

 
Bearing in mind the notion of distance brought by the KLD, 

we can conclude that the mutual information is, in a certain 
sense, a measure of “distance” between the joint pdf of ψ and 
the pdf of a related vector with statistically independent 
components, the pdf of which is the product of the marginal 
distributions ψi. The mutual information can also be defined 
as 

 

( ) ( ) ( )
1

N

i
i

I H Hψ
=

= −∑ψ  (40) 

 
where H(.) denotes Shannon’s entropy [20], defined as: 
 

( ) ( ) ( )log
i ii i i iH p pψ ψ dψ ψ ψ= −∫ ψ   

 
and  
 

( ) ( ) ( )logH p p= −∫ ψ ψψ ψ ψ dψ  (41) 

 
A crucial property of the mutual information is that it is 

always non-negative, and is zero if an only if  
( ) ( )

i ii
p pψ ψ= ∏ψ ψ , i.e., if ψ is composed by statistically 

independent components. 
Thus, the minimization of the mutual information between 

the estimates ψ=y(n) represents a valid criterion to guide the 
optimization of the separating matrix W. As long as the 
mixing matrix A is invertible, it will be possible to recover the 
sources up to scale and permutation ambiguities. 

2) Criteria based on Nongaussianity 
The theoretical foundations of the linear BSS problem were 

laid by Comon [19], who demonstrated that source separation 
can be performed, under the conditions stated in the beginning 
of section III, by driving the outputs of a linear system, called 
separating system, to be statistically independent. On one 
hand, this idea constitutes the very essence of the ICA-based 
paradigm in BSS, but, on the other hand, its direct 
implementation may be extremely inefficient. Algorithms 
directly based on mutual information (MU), which we have 
described in section III.B.1, demand a high computational 
effort. This is the reason why the sue of MU based algorithms 
requires approximations. This is what has been done with the 
MU Edgeworth expansion yielding a cumulant-based 
optimization criterion introduced in [19]. Numerical 
algorithms based on cumulants are not computationally heavy, 
contrary to what is sometimes understood (they have a 
polynomial complexity). 

However, there are other means to carry out the separation 
task. For instance, in [21], a criterion based on nongaussianity 
was considered. In a very intuitive way, it is possible to 
understand the principle of the nongaussianity approach in 
BSS in connection with the central limit theorem (CLT). 
Since, in summary, the CLT states that a sum of independent 
random variables tends toward a Gaussian distribution, it is 
expected that each mixture signal, which is the result of a 
linear combination of sources, be “more Gaussian” than the 
sources themselves. Taking this observation into account, a 
straightforward strategy to BSS is to adjust the separating 
system in order to maximize the nongaussianity of its outputs. 

Despite the simplicity of the above justification, the 
nongaussianity approach is solidly and closely related to the 
idea of minimizing the mutual information, as shown in [19]. 
This fact becomes clear after some algebraic manipulation of 
(40), which leads to: 

 
( ) ( ) ( )( )

( )( ) ( )( )
1 2

1

, , ,

        = log det

N

N

i
i

I y n y n y n

H y n H n
=

=

− −∑ x W

K

.    (42) 

 
From this expression, one can notice that H(x(n)) does not 

depend on the parameters of the separating system, and, 
therefore, can be ignored in the optimization task. 
Furthermore, when the matrix W is restricted to be orthogonal 
and the variance of y(n) is forced to be constant, the last term 
of (42) is also constant during the optimization procedure 
[19], which permits us to conclude that the minimization of 
the mutual information, in this case, is equivalent to the 
minimization of the marginal entropies of y(n). Besides, from 
information theory, it is well-known [20] that the Gaussian 
distribution is the one with maximum entropy over all 
distributions with the same variance. Therefore, the 
maximization of nongaussianity is equivalent to the 
minimization of the marginal entropies, hence, to the 
minimization of mutual information – tacitly, the 



50                                                                                                   JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 22, NO. 1, 2007
 

nongaussianity approach also follows the guideline proposed 
by Comon: to recover the property of statistical independence.  
 Naturally, as in the independence-based criteria, we must 
have a quantitative measure of Gaussianity in the 
nongaussianity-based approach. In view of what was 
discussed in section II.F, a natural choice could be the kurtosis 
[18] of a random variable, since this cumulant assumes a non-
zero value for the great majority of random variables and is 
equal to zero almost exclusively for the Gaussian distribution. 
Differently from the mutual information approach, the 
evaluation of kurtosis does not demand any sort of distribution 
estimation, being thus a more efficient solution from the 
computational standpoint. 
 Another classical measure of nongaussianity is the 
negentropy of a random variable χ, a quantity defined as 
follows: 
 

( ) ( ) ( )gaussJ H Hχ χ χ= −  (43) 

 
where χgauss is a Gaussian random variable with the same 
variance of χ. This measure is always non-negative, being 
zero only for a Gaussian distribution. In comparison with 
kurtosis, the sample estimation of the negentropy is more 
robust to outliers, which explains the preference for 
negentropy-based criteria in BSS.   
 At first glance, we notice that the evaluation of negentropy 
demands probability density estimation, as it requires the 
evaluation of marginal entropies as in the mutual information 
approach. Fortunately, it is possible to resort to the following 
approximation [18]: 
 

( ) ( ){ } ( ){ 2

gaussJ E G E Gχ χ χ⎡∝ −⎣ }⎤
⎦

)|

W

W

 (44) 

 
where G(⋅) is a nonquadratic function. Note that if we define 
G(χ) = E{χ4}, we obtain a measure of Gaussianity very 
similar to the kurtosis, which indicates that this sort of 
approximation is in accordance with the idea of 
nongaussianity. 
 

3) Maximum Likelihood Estimation in BSS 
The work of Bell and Sejnowski [22] was important to 

popularize the problem of BSS in the signal processing 
community, which can be chiefly attributed to the fact that 
their technique was the first to propitiate the recovery of a 
great number of sources. Later, Cardoso [23] demonstrated 
that the principle presented in [22], the so-called infomax 
criterion, is equivalent to the maximum likelihood (ML) 
estimator for the ICA model, which established the paradigm 
ML/Infomax as one of the most important techniques in BSS. 
We devote this subsection to an exposition of the basics of the 
ML/Infomax approach. As it will be seen in the sequel, the 
idea behind the ML approach in BSS can be understood in a 
very illustrative manner using the divergence of Kullback-
Leibler. 

 In the ML approach [23], the estimation of the parameters θ 
= [θ1 θ2 … θN] from the vector samples Q = [q(1) q(2) … 
q(τ)], is performed through the maximization of the likelihood 
function pQ(Q | θ), which corresponds to the joint pdf of the 
samples Q conditioned upon the parameters θ. Generally, it is 
assumed that the samples q(n) are mutually independent, 
which permits us to rewrite the likelihood function as follows: 
 

( ) ( ) ( )(
1

|Q q
n

L p p n
τ

=

= = ∏θ Q θ q θ , (45) 

 
where pq(q(n)| θ) corresponds to the pdf of the sample 
conditioned to θ. 
 When ML estimation in applied to the BSS problem, the 
parameters to be estimated and the samples available are, 
respectively, the elements of the mixture matrix A (or 
equivalently its inverse, denoted by W) and the mixture 
signals x(n). Having this in mind, and recalling that px(x(n)|A) 
= ps(A-1x(n))|det(A-1)| [5], it is possible, after some 
manipulations, to obtain the likelihood function associated 
with the BSS problem, which is given by: 
 

( ) ( )( ) ( )
1

| det |s
n

L p n
τ

=

= ∏W Wx  (46) 

 
It is very usual to consider, instead of the likelihood 

function, its logarithm, which is often called the log-likelihood 
function and, in our case, is given by: 

 

( ) ( )( ) ( )
1

log log log | det |s
n

L p n
β

β
=

= +∑W Wx   (47) 

 
Since the logarithm function is monotonic, the 

maximization of (47) over W also results in the ML solution 
of the BSS problem.  
 From expressions (46) and (47), it is evident that the ML 
approach in BSS requires a priori knowledge of the pdf of the 
sources, which, in a certain sense, contradicts the essence of 
ICA, since, as we saw in section III.B, the basic formulation 
of this problem demands no assumption aside from that of 
independence between sources. At first sight, this requirement 
could render unfeasible the ML approach in BSS; however, it 
is still possible to separate the sources by only considering 
approximations of the sources pdf. In fact, when an 
approximate ps(·) of the sources pdf is considered in 
expression (47), one readily obtains the cost function 
associated with the Infomax paradigm. This equivalence was 
proved by Cardoso [23], who also answered one relevant 
question resulting from this equivalence [24]: how large can 
the mismatch between ps (·) and ps(·) be in order to guarantee 
the validity of such an approximation? It was shown that there 
is a considerable tolerance in this mismatch.  

A very illustrative interpretation of the ML approach arises 
when expression (47) is rewritten in terms of the divergence 
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of Kullback-Leibler. When β tends to infinity, the log-
likelihood function becomes [23]: 

 

( )( ) ( )( )(log ( ) || constantsL W D p n p s n= − +Wx Wx % % )    (48) 

From this expression, we notice that the maximization of 
the log-likelihood function is equivalent to the minimization 
of the divergence of KL between the hypothesized source and 
the separating mixture output distributions. Given that the 
divergence expresses an idea of distance between 
distributions, it is clear that the ML approach in BSS is 
associated with a distribution matching strategy, i.e., the aim 
in this paradigm is to adjust the separating matrix W in order 
to obtain an output distribution as close as possible to the 
hypothesized one. 

IV. CONCLUSIONS AND PERSPECTIVES 
The objective of this first part was to present the basic 

concepts and main lines of development that form the core of 
the theories of blind equalization and blind source separation. 
The work was structured in order to provide the reader with a 
representative exposition of the conceptual sequence to which 
the researchers of both areas are accustomed. We have 
revisited the most important results in the literature and shown 
the existing criteria and algorithms in each case. At a first 
glance, the fact that the equalization problem was 
predominantly discussed in a SISO context, while the BSS 
problem is inherently of a MIMO nature could give the 
impression that they have very little, or even nothing in 
common. The basic concepts discussed here, however, will be 
essential in the second part of this paper to show that this 
assumption is far from being true. It will be seen that it is 
actually possible to establish a number of connection between 
both problems and the proposed solutions to them. 
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Fig. 1.  Simplified Baseband Communication System 
 
 

 
Fig. 2.  Predictor and Prediction-error Filter 
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Fig. 3.  (a) SISO system, (b) SIMO system, (c) MISO system, (d) MIMO 
system 
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Fig. 4.  The problem of blind source separation. 
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Table I: Comparison between Bussgang Algorithms 
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