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Abstract— There are many factors that have to be considered 

during planning phase of mobile radio networks. Some of the 
most important factors are: quality of service (QoS), cost of 
implementation and provisioning, traffic coverage ratio, and 
resource utilization. This paper analyzes economic aspects of 3G 
mobile radio network deployment and presents a planning model 
which explicitly takes into account some important factors such 
as QoS and investment cost. It emphasizes the impact of planning 
objectives and network element cost structures on 3G radio 
network deployment. The planning problem can be NP-hard, 
which is approximately tackled by a metaheuristic optimization 
method – tabu search algorithm. Numerical experiments with 
realistic problem sizes are conducted to describe some important 
aspects of efficient 3G network planning and demonstrate the 
efficiency and the practicality of the tabu search algorithm. 
 

Index Terms—3G, Mobile network planning, 3G, Tabu 
Search, Optimization. 
 

I. INTRODUCTION 
VERY cellular network deployment requires planning and 
optimization in order to provide adequate coverage, 

capacity, and quality of service (QoS). Mobile radio network 
planning and optimization is a very complex task, as many 
aspects must be taken into account, including the topology, 
morphology, traffic distribution, existing infrastructure. 
Depending on how these and other factors are incorporated 
into the planning process, there can be many possible 
strategies. During planning process, each of these factors can 
be either part of the objective function or subject to certain 
constraints or neglected. As shown in [1][3][13], Mobile 
network planning problem can be NP-hard.  

A good planning objective is extremely important in 
selecting an effective deployment scenario. In [2][3][4], the 
models proposed are for both microcells and picocells in 
coverage limited environments. These approaches use an 
objective function directly related to path loss which is 
optimized to determine base station locations. In [5], authors 
propose a model which considers interference limited 
environments and use an objective function which directly 

related to QoS. In [6], the goal of mobile network planning 
and optimization is to cover the maximum number of 
subscribers in an effective manner. In [7] a profit 
maximization model is presented. In [8] a cost minimizing 
planning and optimization model is developed. Most of those 
previous studies have been carried out for 2G mobile 
networks, and have not revealed enough information about 
efficient mobile network deployment configurations. Planning 
3G mobile networks, such as UMTS, is even more sensitive to 
the planning objective due to the inherent CDMA features [9]. 
In [10], a net revenue maximizing model is presented, which 
takes as given a set of base station (BS) locations with 
corresponding costs, the amount of available bandwidth, the 
maximum demand for service in each geographical area, and 
the revenue potential in each customer area. In [11], a net 
revenue maximizing model for WCDMA networks has been 
investigated, which can help a network planner with the 
selection of BS sites and the calculation of service capacity. In 
[12], the cost efficient planning of a single frequency network 
(SFN) is proposed, which is compared with coverage efficient 
planning scenario and coverage planning with saving best cost 
configuration scenario.  In [22], the author proposed an 
approach which is based on the application of the powerful 
optimization technique known as Particle Swarm Optimization 
(PSO). First, the working area is represented by a suitable 
model showing topological and morphological information 
and the places for the candidate sites. After that, a solution 
representat on is proposed converting each network plan to a 
bit stream. Finally, the PSO algorithm is applied to reach the 
best network plan satisfying our objectives. However, the 
authors do not address the economic aspects of radio network 
planning. In [23], a simple integer programming model for 
WCDMA radio network planning and optimization. Four 
heuristic algorithms, namely tabu search, simulated annealing, 
genetic algorithm and hill climbing local search, are used to 
find optimized network configurations. The experiments show 
that tabu search achieved the best performance and 
outperformed the other heuristics, while the worst 
performance appeared with greedy algorithm, which was 
expected. Evolutionary Simulated Annealing did slightly 
worse than tabu search, but genetic algorithm was strongly 
significantly worse, even with a delicate search. 
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network planning problem as an optimization process. Section 
IV proposes the optimization solution structure and procedure. 
Section V demonstrates experimentally that the proposed 
planning model and the tabu search algorithm can efficiently 
find good solutions for realistic 3G planning scenarios. 
Section VI concludes the paper. 

 

II. 3G RADIO NETWORK PLANNING MODEL 
In this section, 3G radio downlink planning problem is used 

as an example to illustrate the planning process [13][14][15], 
which defines the decision variables, design constraints and 
objective functions. 

A. Working Area and Traffic 
A working area is the part of a geographical region where 

the mobile network needs to be deployed. Two basic discrete 
sets of points are identified on it. 

A set of sites are candidates for the positioning base 
stations, denoted by S = {1,…, m}, where a base station (BS) 
can be installed and that an installation and maintenance cost 
Cj is associated with each candidate site j, j ∈ S. Each site is 
defined by its coordinates (x, y), and eventually by z (height 
above sea level). 

A set of traffic test points (TPs) I = {1,…, n} are described 
as in [13]. Each TP i ∈ I can be considered as a centroid 
where a given amount of traffic di is requested and where a 
certain level of service (measured in terms of SIR) must be 
guaranteed [11]. The required number of simultaneously 
active connections for TP i, denoted by ui, turns out to be a 
function of the traffic, i.e., ui = φ(di). The mobile terminals are 
located on TPs, where the network must overcome a signal 
quality threshold SIRmin, to ensure a given quality of service 
(QoS). The value of the threshold depends on the service type. 
To check the signal quality threshold on each TP, the field 
strength has to be computed on each point. 

B. Decision Variables 
In general, a BS antenna can be in one out of q different 

configurations, denoted by set L = {1,…,q}. A configuration 
represents a sextuplet BS = (location, type, height, tilt, 
azimuth, power). This accounts, for instance, for a variable tilt 
selected out of a set of possible angles with respect to the 
vertical axis, and for a variable height selected from a finite 
set of values with respect to the ground level. Since 
propagation gains depend on the BS antenna configuration, 
we denote by w

ijg  the propagation gain from TP i to potential 

site j if the BS antenna is in configuration w. The decision 
variables are needed for each configuration: 
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for i ∈ I,  j ∈ S and w ∈ L. Once these basic decision variables 
have been determined, other dependent system variables, such 
as loading factors and SIR for each mobile terminal, etc., can 
be easily derived from. 

C. Design Constraints  
Constraints (3) make sure that each TP i is assigned to at 

most one BS. Note that by restricting the assignment variables 
xijw to take binary values, it is required that in every feasible 
solution all active connections must be assigned to a single 
BS. 
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If the left terms of constraints (3) were forced to be equal to 

one, that is,  each TP must connect to a BS, the results would 
too demanding for network resources. In some cases, a 
feasible solution would not be found. Therefore, constraints 
(3) are relaxed and intentionally allow some TPs not to be 
assigned. 

Constraints (4) are called minimum service requirements 
[11], which ensure that service is available in the working area 
that have at least a proportion β of all traffic demand nodes 
(0<β<1). The parameter µi is the required number of 
simultaneously active connections for TP i. 
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In our model, the cost of a BS involves the cost of site 

installation and cost of the configuration: 
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jC (5)

 
The overall cost of a radio access network in the predefined 

working area, C(y), is the sum of the non-configuration cost of 

each BS antenna , and its associated configuration cost 

, i.e., C(y) = . The vector y is 

defined by constraints (2). Cost is an extremely important 
factor for choosing an adequate network configuration. 
Denote Cmax an externally given ceiling cost, or a budgetary 
limit in total monetary investment. In most cases, it is practical 
to consider the budget constraints (6). 
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Constraints (7) correspond to the most stringent constraints 
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that TP i is only assigned to site j if a BS with configuration w 
is installed in j, and the power limit on a single connection 
from BS j to TP i: 
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where Pmax is the maximum emission power for the 

connection from site j to TP i and Ptar /  corresponds to the 

emission power required by BS j to guarantee the target 
received power Ptar at TP i. For each pair of site j ∈ S and TP 
i ∈ I, constraints (8), which are active only if TP i is assigned 
to BS j (i.e., xijw = 1), correspond to the signal quality 
requirement. Finally, constraints (9) impose an upper limit Ptot 
on the total emission power of every BS. Please note that the 
subscripts i∈ I, j∈ S, w∈ L are applicable to all the constraints 
in this paper. 
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 In addition to the constraints (8) and (9), the quality of 
service constraints should be emphasized. Since in a power-

based power control mechanism Ptar /  is the power that 

needs to be emitted from a BS with configuration w in site j to 
guarantee a received power of Ptar at TP i. For each 
connection between a BS installed in j and a TP i falling in a 
sector of this BS, the SIR constraints can be expressed as 
follows [13]: 
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Equation (11) represents the total interference incurred in 

the same cell, whereas Equation (12) describes the 
interference from all the other BSs, measured at mobile unit i 
in the area. 
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where for any site l ∈ S, w ∈ L, the index set  ilw
lI
σ

 denotes 

the set of all TPs in I that fall within the sector σilw of the BS 
with configuration w and location l, which contains TP i. The 
parameter (0<α<1) is the wideband CDMA signal 
orthogonality factor. The parameter µk is the required number 
of simultaneously active connections for TP k. 

For any single connection between a BS located at site j and 
a TP i falling in one of its sectors (denoted by σijw), the 
numerator of the left-hand-side term in constraints (10) 
corresponds to the power of the relevant signal received at TP 
i while the denominator amounts to the total interference due 
to all other active connections in the working area. Indeed, the 
first summation term expresses the total power received at TP 

i that is directed from BS j to every TP k in , i.e., all TPs 

assigned to BS j with configuration w and falling within the 
same sector as TP i, from which the received power Ptar of the 
relevant signal is subtracted. The second summation term 
expresses the interfering power received at TP i that is 
directed from all BSs l, with l ≠ j, to other TPs falling within 
the sectors σilv of each BS l that do also contain TP i. 

kjw
jI σ

D. Problem Formulation  
3G planning problem can be formulated as an optimization 

problem. The available cell sites (S), the traffic demand nodes 
(I) with capacity requirements (μ), configuration set (L) are 
fixed input parameters. Building upon the work by 
[10][11][12][13],  we propose three formulations of the 3G 
radio network planning problem. In all cases, the following 
variables are the basic decision variables. Based on these basic 
decision variables, most of radio access network parameters 
can be derived from [18][19]. 
1) The number of selected base stations and their 

configuration, denoted by multi-dimensional vector y.  
2) The capacity assignment matrix, x. 
3) The power assignment vector (mobile transmitter 

participation), p. 
 
Minimal Cost Planning 

A practical objective deals with the price of the solution in 
terms of installation and provision costs. In this formulation, 
the goal of the planning is to achieve as low cost as possible.  
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Instead of optimizing the technical performance, such as 
coverage outage, which would potentially lead to a network 
with unnecessary high resource usage, we choose the 
objective for minimizing the network cost. The planning 
objective is defined by the formulation (13), which is subject 
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to constraints (3)-(10). 
 
Maximum Capacity Planning  

A more real-life formulation of the 3G radio network 
planning problem is to aim for maximizing the satisfied 
capacity demands. The optimization problem can be written 
as: 
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∈Lw Sj Ii
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(14)

 
The objective function is the sum of the served capacity 
demands. If xijw = 1, then µi at the location i is served by BS j 
with configuration w. If xijw = 0, then traffic µi at the location i 
is in outage.  The formulation (14) is subject to constraints (3)-
(10). 
 
Combined Cost and Capacity Planning 

This model explicitly considers the trade-off between the 
revenue potential of each BS site with its cost of installation 
and configuration. This trade-off is subject to QoS constraints 
in terms of sufficient SIR ratios (constraints (10)). The 
objective of the model is to maximize the total annual profit 
generated by the cellular network operator, which is equal to 
the total annual revenue minus the annual costs. 
Mathematically we have: 
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ε denotes the annual revenue ($) generated by each channel 
utilized in the working area. θ is a weighting factor. Relation 
(15) represents the maximum profit optimization when θ = 1. 

All three formulations (13), (14) and (15) are subject to 
constraints (3) – (10). 

 

III. SOLUTION PROCEDURE 
In order to apply tabu search to solve the planning problem, 

we need to define: 
1)  An initial feasible solution. 
2)  Representations for feasible solutions. 
3)  Neighborhoods for feasible solutions. 
4)  Search techniques for neighborhoods, and 
5)  Evaluation methods for gains in objective values. 

A. Solution Structure and Neighborhood 
Tabu search is a local search algorithm [24]. A local search 

algorithm starts from a candidate solution and then iteratively 
moves to a neighbor solution. This is only possible if a 
neighborhood relation is defined on the search space. 
Typically, every candidate solution has more than one 
neighbor solution; the choice of which one to move to is taken 

using only information about the solutions in the 
neighborhood of the current one, hence the name local search. 

Decision variables are the BS locations, their powers, their 
antenna heights, etc. Given these decision variables, a radio 
access network configuration can be defined as a set of 
vectors [(p1, h1, …), …, (pm, hm, …)], which can be 
represented abstractly by the network configuration vector y. 
In practice, configuration parameters can take values from a 
certain range. 

After vector y is decided, every traffic demand node TP i ∈ I 
is assigned to a serving BS using a capacity assignment 
algorithm, described later in this section, that is, to determine 
the capacity assignment pattern, denoted by vector x. 

Each feasible search space point, denoted by J(x, y), is a 
particular set of locations, powers, heights, and other 
configurations for each BS, and a particular assignment 
pattern of traffic demand nodes to each selected BS satisfying 
the various constraints. To generate a new neighbor, two sets 
of neighborhood generating operators are required, one that 
moves the locations and configurations of BSs and another 
that changes the capacity assignment pattern for each BS. The 
first set of operators is defined as follows: 

1) On-Off: a BS site is chosen randomly. If there is a BS at 
the site, it is removed. If there is no BS at the site yet, a new 
BS is placed at the site. 

2) Local Move: one of the decision variables (power, 
height, or other configuration parameters) of a randomly 
chosen BS is appointed randomly, and the new neighbor is 
generated by taking its value one size above or one size below 
its current value. 

B. Capacity Assignment Algorithm 
The second set of operators is the capacity assignment 

algorithm. Given the locations of BSs, their powers, heights 
and other configurations, demand nodes I should be assigned 
first to the available BS that has the largest signal attenuation 
factor before establishing connections to other BSs [13]. The 
algorithm works like this: 

1) Step 0: Start with a given radio access network 
configuration y. 

2) Step 1: For each i ∈ I, calculate minimum power    

 according to propagation matrix G = [ ]; assign 

demand node i to its closest BS j, requiring the minimal 
transmit power; calculate x. In this step, constraints (7) are 
automatically satisfied. 

w
ijgtarP / w

ijg

3) Step 2: If x from Step 1 and y satisfy constraints (9), go 
to Step 3; otherwise repeat the process: randomly select and 
disconnect a demand node i belonging to the overcrowded BS 
j, which will reduce its transmit power accordingly, until 
constraints (9) are satisfied. 

4) Step 3: If x from Step 2 and y satisfy constraints (10), go 
to Step 4; randomly select and disconnect a demand node i 
belonging to the overcrowded BS j, which will reduce its 
transmit power accordingly, until constraints (10) are 
satisfied. 
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5) Step 4: Output final capacity assignment vector x. 

C. Initial Solution Generation 
An initial network configuration is generated by intuitively 

(randomly) placing BSs at potential locations with a uniform 
distribution, in such a way that the number of initial locations 
is approximately half the total number of possible locations in 
our implementation, and assigning their powers, antenna 
heights, and other configuration parameters within the 
respective feasible ranges. Then every traffic demand node TP 
i is assigned to a closest serving BS using the demand 
assignment algorithm, described earlier in this section. 

The next step is the optimization process. The heuristic 
algorithm receives as input the initial network configuration, 
finds better configurations by improving the measure of 
performance in successive iterations and returns a final good 
quality network configuration and traffic assignment pattern. 

D. Tabu Search 
Tabu search is a mathematical optimization method, 

belonging to the class of local search techniques. Tabu search 
enhances the performance of a local search method by using 
memory structures: once a potential solution has been 
determined, it is marked as "taboo" ("tabu" being a different 
spelling of the same word) so that the algorithm does not visit 
that possibility repeatedly. Tabu search is attributed to [16]. 

The tabu search implementation for the cell planning and 
optimization problem may be described as follows [13]: 

1) Step 0: l ← 0. The counter of the algorithm iterations, l, 
is initialized. An initial solution Jo(x, y) is chosen randomly in 
such a way that the number of BSs is equal to half the total 
potential locations, and that the power, the height and other 
configuration parameters of a selected BS are chosen 
randomly from an element of the corresponding feasible set. 
Then, the capacity assignment algorithm is applied to generate 
the capacity assignment pattern. Calculate the objective 
function, f(Jo) from relation (13), (14) or (15). The set of 
taboo and aspirant moves is initialized, i.e., T(l) = ∅, and A(l) 
= ∅. A candidate list M(l) is initialized. 

2) Step 1: If the stop criterion is satisfied, the procedure 
ends and a transition to Step 9 is performed. 

3) Step 2: The set of move operators M is applied to 
solution Jl, and hence, a new set of candidate solution list M(l) 
is produced. Each move produces a new neighbor of the 
current search space point. 

4) Step 3: The M(l) set is examined to satisfy the constraints 
(8), (9), and (10) forms the new set of solutions N(l) that are 
neighbouring to solution Jl. 

5) Step 4: The set of solution, C(l), that are candidate for 
obtaining the best solution status, and therefore, for replacing 
solution Jl in the next algorithm iteration, is formed through 
the relation C(l) = N(l) – T(l). Moreover, solution Jl is 
appended in the C(l) set. 

6) Step 5: The A(l) set is formed. More specifically, the 
objective function value that is scored by the solutions in the 
T(l) set is computed. Those solutions that improve the 

objective function by more than a given level are removed 
from the T(l) set and placed in the A(l) set. 

7) Step 6: The set of solutions C(l) is enhanced through the 
relation C(l) = C(l) ∪ A(l). 

8) Step 7: The solution of the C(l) set that is the best in 
improving the objective function becomes the best solution 
that will be used in the next algorithm iteration. 

9) Step 8: l ← l + 1. The next algorithm iteration is 
prepared. Therefore, the set of tabu moves that will be used in 
the next algorithm iteration is updated through the relation T(l 
+ 1) = T(l) ∪ M(l).  Moreover, solutions that have stayed in 
the taboo set for more than a given number of algorithm 
iterations are removed form the T(l + 1) set. Finally, A(l + 1) = 
∅ and C(l) = ∅. A transition to Step 1 is performed. 

10) Step 9: End. 
An experimental analysis of the performance of four search 

algorithms for the problem of designing the optimal location 
of base stations in a mobile communication system [21][23] - 
Random Walk, Simulated Annealing, Tabu Search and 
Genetic Algorithms. It is found that Genetic Algorithms and 
Tabu Search both perform well with Tabu Search providing 
the most consistent final cost value on multiple runs. So, it is 
reasonable to use Tabu Search in this paper. 

 

IV. EXPERIMENTAL RESULTS 
Numerical experiments are made for 3G downlink radio 

network planning. The system performance evaluations are 
based on 3G WCDMA system specification. The optimization 
strategies used in these experiments are also applicable to 
other systems (e.g., TD-SCDMA, CDMA 2000). We will 
present in detail a realistic planning scenario in this section. 

A. Impact of Planning Objectives 
In pure capacity maximization planning, the network cost is 

not included in the optimization process, which may result in 
network configurations with unnecessarily high cost. In pure 
cost minimization planning, the capacity is not included in the 
optimization process, which may result in network 
configurations with unacceptable low capacity. Our purpose 
with the following quantitative examples is to illustrate the 
tradeoff between capacity and cost. Table 1 contains important 
planning input data. 

 
TABLE I 

3G CELL PLANNING DATA 
Parameters Values 

Mobile antenna height 1.8 m 
Frequency 2 GHz 
Mobile antenna gain 0 db 
BS antenna gain 14 db 
SIRmin 0.009789 
Eb/Io 7 db 
Processing gain 512 
Mobile receiver sensitivity -110 dBm 
WCDMA orthogonality 0.7 
Thermal noise density -130 dBm/Hz 
Annual revenue per channel $10,000 
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Let us assume that the task is to design 3G downlink radio 

access network to provide conversational service over a 
predefined urban working area 1.5 km x 1.5 km. There are 
500 demand nodes (n) uniformly distributed, and for the sake 
of simplicity, each demand node channel requirement μi takes 
one value from the set {1, 2, 3} for each i ∈ I. There are 100 
potential candidate BS locations (m) which are randomly 
generated with an uniformly distribution. Assume that annual 
site non-configuration cost is $100K for each potential site. 
BS antennas are assumed to be omnidirectional at every site. 
For the sake of presentation clarity, we define the feasible 
power- and antenna height sets for all sites uniformly. The 
three power and height values, as well as their associated 
configuration costs, are shown in Table 2. For simplicity, we 
assume the power-based power control mechanism is adopted, 
because it requires much less computational effect. COST 231 
Hata urban propagation model [17] is used to generate 

configuration gain matrix G = [ ]. w
ijg

 
TABLE II 

 FEASIBLE VALUES FOR ANTENNA POWER, HEIGHT AND COSTS 
Max transmit power BS antenna height 

Permitted 
values 
(watts) 

Cost 
(unit $K) 

Permitted 
values 

(m) 

Cost 
(unit $K) 

20 100 10 10 
40 150 20 20 
80 200 30 30 

 
From Table 2, intuitively, BS antenna height configuration 

costs are not significant when compared to other cost 
components. This means that the antenna heights are not 
important in cost optimization, but important in capacity 
optimization, because antenna heights are a dominating factor 
in determining coverage area and received power strengths at 
traffic demand node points. We apply tabu search to solve the 
above planning problem, but using alternative objective 
functions, according to the following three scenarios: 

1) Capacity Planning (CAP): Cost is completely 
disregarded during the optimization, the objective function is 
formulated in relation (14) to maximize the served traffic in 
the working area (or minimize the number of unserved traffic 
points where some constraints are not satisfied (outage). For 
simplicity, we call this scenario the pure capacity planning. 

2) Cost Planning (COST): Capacity factor is completely 
ignored during the optimization, the objective function is 
formulated in relation (13) to minimize the total cost and 
hopefully find the cheapest feasible network configuration 
during the optimization process. 

3) Combined Cost and Capacity Planning (COM): Cost is 
part of the objective function, according to relation (15). The 
weighing factor θ allows us to give priority to either 
minimizing cost or maximizing capacity. To find an 
appropriate value for θ, a number of alternative values have 
been applied, and the results are subject to comparisons based 

on a large number of independent tabu search executions. Fig. 
1 summaries the results of four representative values, θ = 0.1, 
1.0 and 10. 

Low θ value results in low success in terms of finding high 
capacity feasible network configurations, which can be 
attributed to the possibility to sacrifice one or more traffic 
demand nodes to obtain a cheaper network configuration. This 
phenomenon is demonstrated by the low traffic service ratio 
(capacity) as well as by the apparently low total cost figures, 
as it is exemplified by the θ = 0.1 case in Fig. 1. The θ = 1 
case already represents a situation where network 
configurations have on average a higher capacity and cost 
than feasible configurations with low network cost. The θ  = 
10 case makes solutions cluster than θ  =1. Experiment show 
that Increasing θ further does not lead to additional capacity 
improvement. 

 

Fig. 1.  Resulting overall traffic coverage ratios and total cost histograms for 
three different capacity weighting factors, θ = 0.1, 1 and 10. 

 
Fig. 2 summaries the results of the three planning cases 

CAP, COST, and COM in terms of the total obtained network 
configuration costs. The histograms are generated from the 
results of 100 independent tabu search runs for each of the 
three cases. We use the same parameters and test cases as 
above for CAP, COST, and COM, and apply θ =1 for COM. It 
can be seen that pure cost optimization case yields 
considerable cost reduction when at least 40% traffic demand 
must be satisfied. It is believed that pure cost optimization 
case would not select any BS if we did not specify a minimum 
traffic satisfaction requirement.  
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Fig. 2.  Resulting total cost values for pure capacity optimization, pure cost 
optimization, combined cost and capacity optimization (θ = 1). 

 
Likewise, pure capacity planning yields considerable cost 

increase. Here we assume that the budgetary constraint allows 
no more than 20 BS sites installed. The combined cost and 
capacity optimization case lies somewhere between two 
extreme cases, striking a meaningful tradeoff. For explanation 
we can look at Table 3, which contains that statistical results 
of 100 resulted network configurations found by tabu search 
for each objective (CAP, COST, COM).  

 
TABLE III 

SUMMARY OF ALLOCATED RESOURCES FOR SCENARIOS CAP, COST, COM 

C
AP 

C
O

ST 

C
O

M
 

 (θ = 1) 

O
ptim

ization case 

best 

m
ean 

best 

m
ean 

best 

m
ean 

No. of BS 12 14.78 5 6.60 8 10.71 

Total power 56.81 57.29 53.98 55.46 55.05 56.17 

Average 
power 46.02 45.59 46.99 47.27 46.23 45.87 

Average 
height 17.05 16.08 22.00 22.12 17.50 17.48 

Total cost 3060 3745 1410 1866 2040 2727 

Measurement Unit: power [dBm], height [m] and cost[$K] 
 

The resource utilization of the networks is measured by the 
average number of BS transmitters in the networks, average 
total power, average height of antennas in the networks and 
the average cost. Besides the average values over the 100 
runs, we indicate the parameters of the best found network in 
terms of cost. 

Comparing the statistical values, the total power usage of 
these three cases are very similar. In pure capacity planning, 
the results favor networks with a larger number of lower BSs. 
In contrast to that, networks of the pure cost planning contain 
fewer BSs with higher structural antenna. 

Comparing the best achievable results of CAP and COM, 
the total power usage (i.e., CAP, 56.81 dBm and COM, 55.05 

dBm) and the average antenna height (CAP, 17.05 m and 
COM, 17.50 m) are approximately the same for both 
objectives, but the number of BSs is decreased from 12 (CAP) 
to 8 (COM). This result indicates that the network remains 
“over-provisioned” under CAP, that is, the planning does not 
attempt to remove unnecessary BSs, neither to cut back 
excessive power. 

B. Impact of Cost Configurations 
In this section, we present the effect of different cost 

configurations in the same planning problem. The trials are 
performed in a 3G downlink radio network planning task. 
Assume that power-based power control mechanism is 
adopted. In this case, the urban area is 1.5 km x 1.5 km. There 
are 500 demand nodes (n) uniformly distributed, and for the 
purpose of simplicity, each demand node channel requirement 
µi take one value from the set {1, 2, 3} for each i∈ I. There 
are 100 potential candidate BS locations (m) which are 
randomly generated with an uniformly distribution. Assume 
that annual site non-configuration cost is $100k for each 
potential site. BS antennas are assumed to be omnidirectional 
at every site. For simplicity, we assume that all BS antennas 
have the same height (10 m), because in 3G radio network 
planning the BS antenna height cost is negligible compared to 
other cost components, e.g., BS equipment cost (power 
related). The feasible set of power values is P = {20, 40, 80, 
120} [w]. Two different cost configurations are applied during 
the planning process as defined by Table 4 (The cost figures 
are fictitious and for illustration purpose only). The objective 
function of this planning task is COM with θ = 1. 

 
TABLE IV 

TWO SETS OF BS COST CONFIGURATIONS 
Max power 

(watts) 
Cost 

configuration 1 
(x $K) 

Cost 
configuration 2 

(x $K) 
20 100 100 
40 250 150 
80 400 200 

120 500 250 
 

For both cost configurations, the optimization of the 
planning process is performed by tabu search algorithm, 100 
runs. The resulting network configurations are evaluated by 
the frequency of the BS antennas with power values of P. The 
statistics presented in Fig. 3 follow the cost configurations. In 
the cost configuration 1, the cost of antenna power drastically 
increases for larger values and the site cost relatively low. 
According to the expectations, the resulting BS antenna 
assignment in Fig. 3 (left subfigure) is featured with a large 
number of BS antennas, on average 15.83, with low power. 
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Fig. 3.  For cost 1, the average BS number is 15.83 for cost configuration  
(left subfigure). For cost 2, the average BS number is 10.15 (right subfigure). 

 
In the cost configuration 2, we repeat the optimization with 

a modified cost configuration where the BS antenna power is 
relatively cheap. As the results show in Fig. 3 (right 
subfigure), the optimization reacts with different solution to 
the input. The average number of BS antennas is 10.15. Due 
to the cost configuration and its relation to the size of the 
coverage area per BS, the middle size BS antennas are 
preferred. The use of large BS antennas requires also some 
small gap filling BS antennas. Due to the high cost for P = 80, 
120 w, the number of BS antennas with these power values is 
low. 

C. Performance Evaluation of Tabu Search 
In order to evaluate the performance of Tabu search, we 

compare it with greedy algorithm and simulated annealing 
algorithm experimentally [20]. These three optimization 
algorithms are tested over the same parameters as listed in 
Tables 1 and 2, and the same planning case COM (θ = 1). We 
focus on evaluation of the quality of the solutions in terms of 
objective function value, which in our test case represents the 
total profit. Three algorithms always find feasible solutions. In 
each of 30 test runs, Tabu search consistently yields better 
optimization results in the objective function value (total 
profit) in comparison with simulated annealing and greedy 
algorithm, with average improvement rate 0.85% over 
simulated annealing and 2.13% over greedy algorithm 
respectively.  In terms of execution time, greedy algorithm is 
the fastest among the three, followed by simulated annealing 
and Tabu search. Here, the execution time is not as important 
as the improvement in optimization results, because for large-
size cellular network projects (in the order of tens of millions 
of dollars), a small improvement in optimization results can 
translate it into less capital investment at the beginning of the 
project and a good cost saving in the long run; for example, 
for a mobile operator whose network building cost is 500M 
per year, the 0.85% and 2.13% improvements are equivalent 
to 4.25M and 10.65M annual investment savings respectively, 
which can make a difference. 

 

V. CONCLUSION 
This paper mainly focuses on the economic aspects of 

mobile network planning.  Firstly, instead of just minimizing 
the cost as most previous works do, we consider alternative 
objectives, which better reflect the dynamics of the various 
requirements of potential mobile operators. Secondly, the 
decision variables and traffic capacity can be embedded in the 
objective function and are optimized in a single integrated 
step. This can result in the tradeoff between the cost reduction 
and the capacity improvement, compared with approaches 
where they are considered separately. Finally, because it deals 
with the static simulations of 3G networks, the results from 
this paper provide the low bound for the network 
infrastructure investment. The dynamic aspects, such as soft 
handoff, are not necessarily considered. Future work should 
focus on developing better algorithms and models which 
incorporate multi-traffic scenarios, existing network 
expansion, and time. 

REFERENCES 
[1] M. R. Garey and D. S. Johnson. Computers and Intractability: a guide to 

the theory of NP-completeness, W. H. Freeman and Company, 1979. 
[2] H. R. Anderson and J. P. McGeehan, “Optimizing microcell base station 

locations using simulated annealing techniques,” Proceedings of IEEE 
Vehi. Tech. Conf., vol. 2, June 1994, pp. 858-862. 

[3] H. D. Sherali, C. M. Pendyala, and T. S. Rappaport, “Optimal location of 
transmitters for microcellular radio communication system design,”  
IEEE J. Selected Areas in Communications, vol. 14, No. 4, May 1996, 
pp. 662-673. 

[4] D. Stamatelos and A. Ephremides, “Spectral efficiency and optimal base 
station placement for indoor wireless networks,” IEEE J. Selected Areas 
in Communications, vol. 14, No. 4, May 1996, pp. 651-661. 

[5] K. W. Cheung, and R. D. Murch, “Optimising indoor base station 
locations in coverage and interference limited indoor environments,” 
Proceedings of IEE Communications, Dec. 1998, pp. 445-450. 

[6] R. K. Rawnsley, and S. Hurley, “Towards automatic cell planning,” 
Proceedings of the 11th IEEE International Symposium on Personal, 
Indoor, and Mobile Radio Communications, Sept. 2000, pp. 1583-1588. 

[7] J. Kalvenes, J. Kennington, and E. Olinick, “Hierarchical cellular 
network design with channel allocation,” Technical Report 01-EMIS-08, 
Southern Methodist University, 2001. 

[8] A. Dutta and V. Hsu, “Cellular network design site selection and 
frequency planning,” Annals of Operations Research, vol. 106, 2001, 
pp. 287–306. 

[9] C. Y. Samuel, CDMA RF System Engineering, Artech House, 1998. 
[10] J. Laiho, A.Wacker, and T.Novosad (ed.), Radio Network Planning and 

Optimization for UMTS, John Wiley & Sons Ltd. 2001. 
[11] J. Kalvenes, J. Kennington, and E. Olinick, “Base station location and 

service assignment in WCDMA networks,” Technical Report 02-EMIS-
03, Southern Methodist University, 2002. 

[12] A. Ligeti and J. Zander, “Minimal cost coverage planning for single 
frequency networks,” IEEE Transactions on Broadcasting, vol. 45, 
No.1, March 1999, pp. 78-87. 

[13] E. Amaldi, A. Capone, and F. Malucelli, “Discrete models and 
algorithms for the capacitated location problem arising in UMTS 
network planning,” Proceedings of ACM Dial-M, 2001, pp. 1-8. 

[14] K. Tutschku and P. Tran-Gia, “Spatial traffic estimation and 
characterization for mobile communication network design,” IEEE J. 
Selected Areas in Communications, vol. 16, No. 5, 1998, pp. 804-811. 

[15] E. Amaldi, A. Capone, and F. Malucelli, “Base station configuration and 
location problems in UMTS networks,” Proceedings of the 9th 
Conference on Telecommunication Systems, Modeling and Analysis, 
2001. 

[16] F. Glover, E. Taillard and D. de Werra, “A user’s guide to tabu search,” 
Annals of Operations Research, vol. 41, 1993, pp. 3-28. 



40                                                                                                   JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 22, NO. 1, 2007
 

echnology. 

[17] COST 231 Final Report, Digital Mobile Radio: COST 231 View on the 
Evolution Towards 3rd Generation System, 1999. 

[18] A. Eisenblatter, et al., “Modelling feasible network configurations for 
UMTS,” ZIB-Report 02-16, March 2002. 

[19] E. Melachrinoudis, and B. Rosyidi, “Optimizing the design of a CDMA 
cellular system configuration with multiple criteria,” Annals of 
Operations Research, Vol. 106, 2001, pp. 307- 329. 

[20] S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, “Optimization by simulated 
annealing,” Science 220,  pp. 671-680, 1983. 

[21] B. Krishnamachari, “Global optimization in the design of mobile 
communication systems,” Master's thesis, Electrical Engineering, 
Cornell University 1999 

[22] E.M. Elkamchouchi, M.E. Hassan, and M.A. Makar, “Cellular radio 
network planning using particle swarm optimization,” 24th National 
Radio Science Conference, Egypt, 2007. 

[23] J. Zhang, J.Yang, M. Aydin, and J.Y. Wu, “Mathematical modelling and 
comparisons of four heuristic optimization algorithms for WCDMA 
radio network planning,” 8th International Conference on Transparent 
Optical Networks, Nottingham, U.K., 2006. 

[24] E. Aarts and J.K. Lenstra, Local Search in Combinational Optimization, 
Princeton University Press, 2003. 

[25] H. Holma and A. Toskala, WCDMA for UMTS, John Wiley & Sons, 
2002 

 
 
 
 

Yufei Wu received the B.Sc. and M.Sc., both in 
radio communications, from Nanjing University, 
Nanjing, China.  He also received an MBA degree in 
1995 from McGill University, and Ph.D. in mobile 
communications engineering from the University of 
Montreal (Ecole Polytechnique) in 2004, both from 
Montreal, Canada.  

Since 2006, Dr. Wu has been an assistant 
professor at the University of Trinidad and Tobago. 
His research interests focus on mobile network 

planning and optimization, communication system simulations, mobile 
gaming and animation, and wireless anti-crime and security t
 
 
 

Samuel Pierre received the B.Eng. degree in civil 
engineering in 1981 from École Polytechnique de 
Montréal, Québec, the B.Sc. and M.Sc. degrees in 
mathematics and computer science in 1984 and 
1985, respectively, from the UQAM, Montréal, the 
M.Sc. degree in economics in 1987 from the 
Université de Montréal, and the Ph.D. degree in 
Electrical Engineering in 1991 from École 
Polytechnique de Montréal. From 1987 to 1998, he 
was a Professor at the Université du Québec à Trois-

Rivières prior to joining the Télé-Université of Québec, an Adjunct Professor 
at Université Laval, Ste-Foy, Québec, an Invited Professor at the Swiss 
Federal Institute of Technology, Lausanne, Switzerland, then the Université 
Paris 7, France. He is currently a Professor of Computer Engineering at École 
Polytechnique de Montréal where he is Director of the Mobile Computing and 
Networking Research Laboratory (LARIM), chairholder of the NSERC - 
ERICSSON Chair in Next Generations Mobile Networking Systems and 
Director of Mobile Computing and Netwking Research Group (GRIM). His 
research interests include wireline and wireless networks, mobile computing, 
artificial intelligence, and telelearning. He is a senior member of IEEE and a 
member of ACM. He is a Regional Editor of the Journal of Computer Science, 
an Associate Editor of IEEE Communications Letters, IEEE Canadian Journal 
of Electrical and Computer Engineering and IEEE Canadian Review, and 
serves on the editorial board of Telematics and Informatics edited by Elsevier 
Science. He has received many distinctions, such as the Prix Poly 1873 for 
excellence in teaching (2001 and 2005), Fellow of Engineering Institute of 
Canada (2003), among others. He is a Fellow of the Canadian Academy of 
Engineering (2008). 


	I. INTRODUCTION
	II. 3G Radio Network Planning Model
	A. Working Area and Traffic
	B. Decision Variables
	C. Design Constraints 
	D. Problem Formulation 

	III. Solution Procedure
	A. Solution Structure and Neighborhood
	B. Capacity Assignment Algorithm
	C. Initial Solution Generation
	D. Tabu Search

	IV. Experimental Results
	A. Impact of Planning Objectives
	B. Impact of Cost Configurations
	C. Performance Evaluation of Tabu Search

	V. Conclusion

