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Algebraic Soft-Decision Decoding of Reed-Solomon
Codes with Erasures on Gaussian Channels

Fabio Rizental Coutinho and Evelio Martin Garcia Fernandez

Abstract— The search for increasing the error performance of
algebraic soft-decision decoding of high rate Reed-Solomon (RS)
codes motivates the development of this work in an attempt to
determine the ultimate error-correcting capabilities of algebraic
soft-decision decoding of RS codes in Gaussian channels with
erasures. It is shown through simulation that a significant
performance improvement can be obtained when the unreliable
bits received from channel output are declared as erased bits.
An alternative method to construct the reliability matrix is
developed through the mapping of the a posteriori channel
probabilities in order to assign equal multiplicity for symbols with
the same erased bits patterns. Conversely, it is also shown through
simulation that trying to declare the unreliable symbols received
from the channel as erasures does not lead to any performance
gain and in some cases it would affect the decoder performance.

Index Terms— Reed-Solomon codes, algebraic soft-decision
decoding, erasure channels, error correcting codes.

To be reviewed as a Regular paper in Coding Theory and
Techniques

I. INTRODUCTION

EED-SOLOMON codes [1] are among of the most

important error correcting codes which are widely em-
ployed in many digital communications and data storage
systems with applications ranging from digital data storage
(CD and DVD), to satellite communication systems. One of
the most important research subject about Reed Solomon
codes has been to achieve soft decision decoding throughout
its strongly algebraic nature in contrast with the traditional
approach of using an (unpractical) trellis representation of the
codes. In 1999, Guruswami and Sudan showed in [2] how
they surpassed the conventional error correction capacity of
(n — k)/2 symbols through a polynomial-time list decoding
algorithm that corrects up to n — v/nk symbol errors. To
achieve this results they thought the decoding process as if
it was a problem of constructing a bivariate polynomial that
pass through all the points received from the channel with
an arbitrary order or multiplicity m. For a comprehensive
tutorial on the Guruswami-Sudan (GS) decoding algorithm we
recommend [3] and [4]. Lately, Koetter and Vardy, in [5],
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adapted the strongly algebraic structure proposed in [2] to
reach a major breakthrough in this research area: soft decision
decoding of Reed-Solomon codes. They showed that, instead
of choosing a fixed interpolation multiplicity for all points, the
interpolation multiplicity m could be arbitrarily changed for
each point considering the soft information available for them.
They also showed that for codes of infinite length the best way
to choose the value of m is by making it proportional to the
soft information available for each point. In [6], [7] and [8]
there were presented some multiplicity assignment strategies
which were optimized for infinite-length codes through com-
plex numeric algorithms. However for codes of finite length,
an optimum multiplicity assignment strategy is still an open
problem.

An erasure is an error whose location is known but its
value is unknown. Erasures can occur when the signal re-
ceived from the channel is simply lost or when it was so
corrupted that the receiver cannot decide anything about it;
in these cases the received symbols are declared as erasures.
In [9] the decoding radius when using algebraic soft-decision
decoding (ASD) over the binary symmetric channel (BSC)
and the binary erasure channel (BEC) were investigated and
it was shown that, for those kind of channel models, the
proportional multiplicity assignment strategy is optimum. The
authors also showed how ASD can improve the performance of
the conventional Berlekamp-Massey decoding algorithm over
erasure channels.

In an attempt to improve the performance of algebraic soft-
decision decoding of finite length, high rate RS codes without
increasing the decoding complexity, this paper presents an
alternative method for constructing the reliability matrix based
on the erasure of unreliable bits by considering them equally
probable. The validity and decoding performance obtained by
the proposed method were confirmed through simulation. The
method is extended by erasing unreliable symbols from the
channel, however in this case the decoder performance was
affected due to the great number of possibilities that exist when
a symbol is declared as an erasure.

The organization of the paper is as follows. In section Il
the proposed method for mapping the reliability matrix by
intentionally erasing the unreliable bits and assigning the same
a posteriori probabilities to symbols with equal bit erasure
patterns are described. Simulation results are shown in section
I11. Conclusions and future works are drawn in section IV.
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I1. BACKGROUND

In this section some background concepts on Reed-Solomon
codes and algebraic soft-decision decoding of RS codes that
are relevant to this paper are reviewed.

A. Classic Construction of Reed-Solomon Codes

Consider an (n, k) RS code with length » and dimension &,
constructed over a Galois field with ¢ elements, F = GF(q).
Let « be a primitive element in GF(q). The message to be
transmitted consists of k elements of GF(q) that defines a
message vector m = (mg,m1,...,mx_1) € GF(q)¥, that
can also be used to construct a message polynomial m(z) =
mo+mix+ ... +my_ 128"t € GF(q)[z] with degree at most
k—1. ARS (n, k) code maps the message polynomial m(x)
into a codeword vector ¢ = (cg, ¢1, ..., ¢n—1) With n elements,
through the evaluation of m(z) at all non-zero elements of
GF(q) as:

ym(a" ). (1)

It can be noticed that the construction process of RS codes
as showed above is a linear process. It also can be noticed that,
being k£ and n, respectively, the dimension and the length of
the code, the minimum distance can be found by using the
property of fundamental algebra that a polynomial of degree
less than & can has up to & — 1 zeros, so it can be at most
n — (k — 1) non-zero symbols in an RS codeword, which
define its minimum distance: d,,,;», = n — k + 1, so RS codes
are maximum distance separable (MDS) codes. Hence, each
codeword of a Reed-Solomon (n, k) code consists of some n
values of a polynomial f(z) of degree less than k. And this
polynomial can be uniquely recovered by interpolation from
any k of its values. Thus an RS(n, k) code can correct up to
n — k erasures or, equivalently, up to (n— k)/2 symbol errors.

(co,C1y s 1) 2 (m(a®), m(a), ...

B. Algebraic Hard-Decision Guruswami-Sudan Decoding Al-
gorithm

Guruswami and Sudan showed in [2] that much more errors
can be corrected by using a stronger algebraic structure in the
decoder algorithm and by changing the conventional bounded
distance decoding paradigm to a list decoding procedure.

It was already pointed out that the RS codewords can
be thought as polynomials of degree less than k. As a
consequence, a transmitted RS codeword can be viewed as an
algebraic curve of the form y — f(«), with maximum degree
k — 1. The GS list decoding algorithm for RS codes considers
the RS codewords as bivariate curves and is based on the
Bézout’s Theorem that estipulate,

Theorem 2.1: Two algebraic curves of degrees d and §
intersect in dé points, and cannot meet in more than dé points
unless the equations defining them have a common factor.

Therefore, if it could be constructed a bivariate polynomial
curve Q(x, y) that intercepts the points received at the channel
output in more points than the product of the degrees of
Q(z,y) and y — f(z), then by Theorem 2.1, this constructed
curve and the polynomial representing the transmitted code-
word must have a common factor and as the transmitted

polynomial is prime, the only way for the two curves to have
a common factor is y — f(x) being a factor of Q(x,y).

Formally, consider a bivariate polynomial with coefficients
over a GF(q):

Qz,y) =Y > aia'y’ e GF(g)lr,y). ()
i=0 j=0
Let w, and w, be two non-negative real numbers, so the
weighted degree (w,,w,) of Q(z,y) can be defined as the
maximum fw, + jw, which makes a;; # 0. Let o, 3 be
elements of GF(q), so the Hasse’s derivative of Q(x,y) at
points («, 3) > 0 is defined by:

Qrs(z,y) = zzj Z (;) (i) ai 'y . @)

Hence Q(x,y) pass through the points (z;,y;) with multi-
plicity m; if Q. s(z,y) =0, for all « 4+ 3 < m;.

Consider a received word as being y = ¢+ e where e is the
error vector introduced by the channel. An element x; over
GF(q) can be associated with y; defining a set of n points
(z1,11), (x2,Y2), ..., (Tn, yn ). If there is no channel noise (e =
0) then y; = f(z;) and the polynomial Q(z,y) = y — f(z)
pass through all the n points with multiplicity one. In the
presence of noise (e # 0), the interpolating polynomial will
pass through some points that do not belong to the transmitted
codeword. The Guruswami-Sudan algorithm guarantees that
the transmitted codeword will be in Q(x,y) if the number of
coefficients of the interpolating polynomial do not exceed the
number of constraints:

> mi(mi +1)/2 | < Co,1), (4)
j=1

where v = k£ — 1 and C(v,l) is the number of monomial
of weighted degree (1,v) less than or equal to [ which is
described by:

cwn- (o) (13t @

The Guruswami-Sudan decoder is a list decoding algorithm
based on interpolation and consist of two main steps:

1) Interpolation: Given a set of points P =
{(z1,91), (x2,42), .., (Tn,yn)} over GF(q)xGF(q)
and a positive integer m, find a bivariate polynomial
Qp(z,y) of minimum (1, k) weighted degree, that pass
through all the points of P with multiplicity at least m.

2) Factorization: Given a bivariate polynomial Q p(z,y),
find all the factors of Qp(z,y) of the form y — f(x)
with degree f(z) < k.

C. Algebraic Soft-Decision Decoding

An algebraic soft-decision decoder makes use of the soft
information received from the channel, which is available in
many situations [10], [11]. This information are generally
delivered as a g x n reliability matrix II which relates the
a posteriori probability of each symbol from GF(q) with its
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position in the codeword vector. For an RS code, a random
codeword X = (z1,xa,...,x,) is selected to be transmitted
and at the output of the memoryless channel an observation
vector Y = (y1, y2, ..., yn) 1S constructed. If it is assumed like
in [5] that all the elements of X are independent and uniformly
distributed over GF(q), the a posteriori probabilities can be
defined as,

mi; =Plx; =a5ly;), 1=1,2,...,¢q,7=1,2,...,n.  (6)

Therefore the reliability matrix IT can be constructed us-
ing the entries {m;;} as computed in (6), where the set
{1, s, .., } are all the elements of GF(g).

Once obtained the reliability matrix II, a multiplicity as-
signment algorithm computes a ¢ x n multiplicity matrix M
of non negative integers. In [5] it was shown that the optimum
multiplicity assignment strategy for Gaussian channels is to
make the multiplicity matrix M proportional to the reliability
matrix II as

mi; = | Al @)

where )\ is an arbitrary non-negative real number. The propor-
tionality constant A controls the tradeoff between performance
and complexity of the decoder so it must be carefully chosen
according to the code used.

The number of linear constraints or cost of interpolation
associated with the multiplicity matrix M is defined in [5] as,

R
|M| £ QZZmi,j(mi,j +1), €))

i=1 j=1

and the score of a codeword vector c is defined with respect
to a given multiplicity matrix M as:

Sue) 2 3 Mifes). ©)
1=0

The score thus represents the total multiplicity of all the
points associated with the vector c. This matrix is then passed
to a modified Guruswami-Sudan algorithm that will perform
the two final steps of the decoding process.

Consider a bivariate polynomial over GF(q), Q(z,y) =
Doico 2 g @ity . Let w, and w, be two non negative real
number, so the weighted degree (w,,w,) of Q(x,y) could be
defined as the maximum {w, + jw, such that a; ; # 0.

The first step is the soft interpolation that consists of
constructing a bivariate polynomial Q(z, y) of minimal (1, k—
1) weighted degree that passes through each of the points
(xj, ;) with multiplicity m;; # 0, for ¢ = 1,2,...,q and
j=1,2,....,n.

The second step, is the factorization, that consists of finding
all the factors of the form (y— f(x)) that divide Q(x, y), where
f(x) is a polynomial of degree less than k. Each polynomial
f(z) obtained in this step will be in the list of possible
transmitted codewords.

Although the performance of the ASD decoder is difficult
to compute and characterize, it is shown in [5] that a sufficient

condition for ASD to return the transmitted codeword as the
cost |[M| — oo is:

SM(C) >4/ Q(k — 1)CM.

For finite interpolation cost the sufficient condition of (10)
is well approximated by [7]:

Saile) > {m_ %J |

The precise characterization of the performance bounds of
the Koetter-Vardy algorithm [5] is denominated the asymptotic
performance and is given by:

(10)

(11)

(IL, [e]) >VE—1
(IL 1) — '

(12)
D. Performance Analysis of ASD over the Binary Erasure
Channel

Consider Reed-Solomon codewords over GF(2™) whose
symbols are being transmitted as binary m-tuples through a
BEC channel with erasure probability p. In this model of
discrete memoryless channel the transmitter can only send one
bit at a time, 0’ or "1, but at the receiver side either could be
a’0’,a’1l” or a message saying that the bit was not received,
which means that the bit was erased or simply that an erasure
has occurred. The binary erasure channel is characterized by an
erasure probability p, an input random variable X that can take
values from the alphabet {0, 1} and an output random variable
Y with values from the alphabet {0, 1,e/}, where e/ is the
erasure symbol. Therefore the channel transition probabilities
can be described as shown in Figure 1 where the symbol *?’
denotes the erasure sample value of Y.

1p
X1 Y1
p
?
p
X2 Y2
1-p

Fig. 1. Transition Probability Diagram for the Binary Erasure Channel
When performing the ASD decoding process, if an erased
bit exists in an m-bit symbol, then when the multiplicity
assignment step is reached and taking into account that the a
posteriori probability values are not available to the decoder,
it must be considered that the two candidate symbols (one
with the erased bit represented as '0’ and the other as ’1’) are
equally probable. And as in [5], [9], [8] it will be considered
here that the codeword symbols are equiprobable, so there is
no preference of one symbol over another. Hence it can be
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assigned the same multiplicity for two candidate codewords
that are equiprobable.

Furthermore it will be defined, as in [9], a symbol of type i
as being a symbol that has 7 erased bits. For a Reed-Solomon
code over GF(2™), it can be up to m + 1 different symbol
types. Let the number of symbols of type i in a received
codeword be a; [9]. As mentioned before, we will assign equal
multiplicity to symbols of the same type, so the multiplicity
for a symbol of type ¢ is m;. Therefore the total assigned
multiplicity for a symbol of type i will be 2%m;. The score
and cost of the multiplicity matrix will be, respectively,

m

S = E a;m;,
1=0

-$ur()

For larger values of m;, (14) can be approximated by [9]:

(13)

(14)

m

ZaqT

Equation (10) characterizes the condition for the ASD algo-
rithm to have success in decoding. Without loss of generality,
this result can be used to find the optimum multiplicity assign-
ment strategy for BEC channels. Consequently, the problem
to be solved is to maximize the score with the cost restriction
of the multiplicity matrix M. Considering high multiplicity
values this problem can be expressed as,

(15)

MAT Z a;m;, (16)
=0
subject to
_! i a;2'm? (17)
=5 2im2.
1=0

This problem of optimization was solved in [9] using
Lagrange multipliers and the final result was
o« 27° (18)

Hence, it can be observed that the optimum multiplicity

assignment strategy for BEC channels is the assignment pro-
portional to the reliability matrix II.

I11. ALTERNATIVE METHOD FOR MAPPING THE
RELIABILITY MATRIX

In this section it will be shown how the coding gain can be
improved by means of a new method of mapping the reliability
matrix.

A. Binary Symmetric Channel with Erasures

In the discrete channel model of Figure 1, all the possible
errors are being treated as erasures. If the error transition
probabilities were introduced in this diagram, an hybrid chan-
nel model will have been formed which is known as Binary
Symmetric Channel with Erasures. In this kind of channel
model two type of symbols can be transmitted, {z1,22} =
{0,1}, and the channel output can be one of the symbols
{y1,y2,7} = {0,1,er}, depending on the channel transition
probabilities. This channel model is illustrated in Figure 2.

1p—q
X1 Y1
q
p
?
p
q
X2 2
1p—q

Fig. 2. Transition Probability Diagram for the Binary Symmetric Channel
with Erasures

In what follows, erasures will be introduced at a Gaussian
channel model output in order to extend the results about
the optimum multiplicity strategy obtained for Binary Era-
sure Channels in [9] to Gaussian channels with erasures.
The modulator-demodulator system in conjunction with the
additive white Gaussian noise (AWGN) channel model can
be viewed as a Binary Symmetric Channel by adapting the
error transition probabilities in order to make them equal to
the AWGN channel a posteriori probabilities. However we still
have to deal with the erasure transition probability.

B. Assigning Equal Probabilities for Symbols with the Same
Erasure Bit Patterns

Consider a binary transmission system using BPSK (Binary
Phase Shift Keying) modulation over an AWGN channel. For
this case the signal constellation consist of points belonging to
the set S = {V/E,, —VE,}, where E, is the transmitted en-
ergy per information bit. Therefore, the conditional probability
densities at the channel output are given by,

p(r|S =V Ep) e 2o 52 (r=VEy)? 19
1S =VR) = e 19)

1 1 2
p(r|S = —/Ey) = ez THVET L (0)

V2mo?

where o2 is the noise variance and r is a sample value of the
random variable that represents the channel output. Equation
(19) corresponds to the binary transmission of a ’1’, and (20)
corresponds to the binary transmission of a ’0’.

If the Binary Symmetric Channel model was under con-
sideration and so, hard decision decoding was being used, it
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could have simply been used, as decision threshold, the zero
value output from the channel. Hence, if a signal level greater
than zero is received, it will be demodulated to a binary ’1’,
on the other hand, received signal which values are less than
zero will be demodulated to a binary ’0’.

Let this model be changed in order to include erasures at the
channel output. To do that, two thresholds, —¢ and +¢, will be
introduced in such a way that all received signals that fall into
the interval [—¢, +¢] will be declared as erasures. This decision
context scenario is shown in Figure 3, where the conditional
probability density functions were plotted for £, = 1 and
o=1.

0.4

P(ris=yE)
0s --—-P(r|s=~JE) |
0.25+ B
kS]
o
®© 02 4
c
S
B os- B
c
o
o
0.1 ; —
0.05+ ’ *
0= — s 2 1 -t o t 1 \T 3 4
Channel Output, r
Fig. 3. [lllustrating the decision problem when considering Binary Symmetric

Channels with erasures

Knowing that the proportional multiplicity assignment strat-
egy is optimum for the binary symmetric channel and for
the binary erasure channel [9], and that it is asymptotically
optimum for Gaussian channels [5], it can be assumed without
less of generality that this assignment strategy must also be
optimum for the binary symmetric channel with erasures.

Hence, as defined in subsection I1-D, when there are one
or more erased bits in a symbol it should be considered that
all candidate symbols of being the transmitted symbol must
have the same a posteriori probability and, as a consequence
of using the proportional multiplicity assignment strategy, they
will have equal multiplicity as well.

However the task to assign equal multiplicity based in a
reliability matrix that can has symbols with erased bits is dif-
ficult. To solve this problem in an easy way we are proposing
a procedure of computing the conditional probability density
function at the channel output by assigning to the erased bits
a value that make them having the same probability of being
a’0’ or a’1’ in the following way,

Jifr<—torr >+t

1 If —t S T S +t )

(21)
where s € {\/Ey, —Ey}. Assuming a memoryless channel
model, it can be considered that the probability of an individual
bit is independent of the probability of the previous bits, so it
can be stated that the conditional probability density function
of a generic m-bit symbol « from GF(2™) is:

flyla) = T plrs = 9). (22)
i=1
Hence, the probability of a transmitted symbol © = «,
conditioned to the observation of y at the output of the channel
can be found through Bayes theorem as,

J(ylo)
dowex fylz)

Substituting (22) into (23) and then into (6), we will be
able to compute all the elements of the reliability matrix II.
Once defined the mapping between the channel output and
the reliability matrix the Koetter-Vardy algorithm can be used
without any modification. As a result, the points that are inside
the erasure region will have the same probability which implies
that, in the multiplicity assignment step, these points will have
the same multiplicity which is the fundamental idea of the
proposed method because a bit erasure must have the same
probability of being "0’ or "1°.

Pz =aly) = (23)

C. Choosing the Erasure Threshold

In order to achieve the significant coding gain that is
expected when using soft decision decoding, it is important to
choose an optimum erasure threshold value. Since the a pos-
teriori probability density function has its standard deviation
changed with the signal to noise ratio (SNR) at the receiver
then the threshold ¢ must vary as well. It will be defined the
erasure threshold as a multiple of the standard deviation, o,
of the conditional probability density function such that,

(24)

t = wo.

It can also be noticed that the standard deviation can be
easily obtained through the evaluation of the SNR at the
receiver. Thus, in order to find an optimum value for ¢,
computer simulations were performed in order to evaluate
the impact of varying the proportionality factor w on the
codeword error rate. As low SNR are not feasible in practice
the simulation were carried out for a fixed SNR value of 6 dB.
The variation of the threshold was studied for three different
RS codes.

Figure 4 shows the results obtained by taking into account
the RS (15, 11) code over GF(2%), using the Koetter-Vardy
soft-decision decoding algorithm and the proposed multiplicity
assignment procedure on a Gaussian channel using BPSK
modulation. It can be noticed that for this code there are two
values that minimizes the codeword error rate: the first point
is shown to be ¢ = 1.95 and the second one is approximately
t = 2.80. The second value is too large because it is not
difficult to show that, with a Gaussian probability distribution,
the area under the region from r» = 20 to oo is only 5% of the
area under the whole curve, and it was verified by simulation
that 2.80 is optimum only for the specific value of SNR= 6dB,
so the best choice for ¢ is 1.95. The corresponding results
when using the RS (31, 25) code over GF(2°) are shown in
Figure 5. In this case the curve converges to a minimum, so
the optimum value is ¢ = 2.1.
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Codeword Error Rate

Fig. 4. Variation of the codeword error rate with the erasure threshold ¢ for
the RS (15, 11) code with BPSK modulation and bit erasures
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0.006 b

Codeword Error Rate

0.004 —

0002 vaokiB] 1

Fig. 5. Variation of the codeword error rate with the erasure threshold ¢ for
the RS (31, 25) code with BPSK modulation and bit erasures

For the case when there is a set of erased bits, which implies
having symbol erasures, the threshold value was evaluated for
the RS (31, 25) code using the Koetter-Vardy soft-decision
decoding algorithm and the results are shown in Figure 6.
Here it can be noticed that the optimum threshold value is
very high, ¢ = 2.55, and with this value it can be concluded
that the codeword error rate will be very low, and so it will
be difficult to improve the coding gain, since in this case,
the existence of symbol erasures is more likely to produce
decoding failures.

IV. SIMULATION RESULTS

The simulation results presented in this section were ob-
tained using the Koetter-Vardy soft-decision decoding algo-
rithm with the proposed modification in the construction of
the reliability matrix II from the channel output in such a
way that it can be assigned the same a posteriori probabilities

Codeword Error Rate
o o o o
w I @ =y
T T T T

o
N
T

o
B
T

o

iR
I
N

Fig. 6. Variation of the codeword error rate with the erasure threshold ¢ for
the RS (31, 25) code with BPSK modulation and symbol erasures

for candidate symbols with the same bit erasure patterns. The
simulations were based on the RS (15, 11) and the RS (31,
25) codes. These two codes were chosen because they are
high rate and finite length codes. All the simulations were
done considering an AWGN channel.

In order to make decoding performance comparisons with
the Guruswami-Sudan and the Berlekamp-Welch algorithms
the expressions tgs = n — v/nk and ty = (n — k)/2 were
used, respectively, to compute the error correction capacity
associated with those algorithms. However due to the high
rate of the chosen codes the performance of the Guruswami-
Sudan decoding algorithm degenerates to that of Berlekamp-
Welch. As Reed-Solomon codes are linear and in order to
decrease the simulation run time, information vectors with all
symbols equal to zero were used and then these vectors were
coded and transmitted over an AWGN channel with BPSK
modulation. At the channel output, hard-decision decoding
was performed on the received signals in order to compute
the decoding performance for the case when the Guruswami-
Sudan and Berlekamp-Welch algorithms were used.

When soft-decision decoding was under consideration, it
was also constructed a ¢ x n reliability matrix II that was
used to compute the asymptotic decoding performance of
the Koetter-Vardy algorithm, through equation (12), and to
compute the decoding performance of the Koetter-Vardy al-
gorithm with the proportional multiplicity assignment strategy
using the parameter A\ as a proportionality constant. In both
cases, an unquantized AWGN channel without declaring bit
erasures was considered. Another ¢ x n reliability matrix,
I1*, was computed using the proposed method where the
symbols with the same bit erasure patterns were assigned the
same a posteriori probabilities using the previously computed
optimum threshold ¢ for declaring bit erasures.

Simulation results for the rate R = 0.733, RS (15, 11) code
are shown in Figure 7. For the multiplicity assignment step it
was used A = 3.99. This value was chosen based on the results
of [12], because it leads to the best decoding performance for
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the RS (15, 11) code. The erasure decision threshold used
was t = 1.950. Here, at a codeword error rate of 1073, the
algebraic soft-decision decoding with bit erasures provides a
coding gain of about 0.3 dB when compared with the KV
algebraic soft-decision decoding algorithm with A = 3.99.

Codeword Error Rate

x 0

HD-BW=HD-GS

SOFT KV Asymptotic

SOFT-KV Lambda=3.99

SOFT-KV Lambda=3.99 with bit erasure

+

*

5| i i i i i i
0 1 2 3 4 5 6 7
SNR(dB)

Fig. 7. Performance comparison of various decoding algorithms for the RS
(15, 11) code with BPSK modulation on an AWGN channel

For the rate R = 0.806, RS (31, 25) code, an improvement
in coding gain was achieved as shown in Figure 8. In this
case, the interpolation cost used was A\ = 4.99. Here it can be
noticed that the curve representing the decoding performance
of algebraic soft-decision decoding with bit erasures is very
close to the curve representing the asymptotic performance
of algebraic soft-decision decoding. Similar results have been
achieved by other authors only for long codes, e.g., by using
the RS (255, 239) code over GF(2%). Another important fact
is that this result was obtained using a low value for the
interpolation cost, A = 4.99, which improves the execution
time of the decoding algorithm. Therefore, at a codeword error
rate of 1073, the algebraic soft-decision decoding with bit
erasures provides a coding gain of about 0.5 dB compared to
the Koetter-Vardy ASD algorithm with A = 4.99. The erasure
decision threshold used was ¢ = 2.10.

Simulation results using the Koetter-Vardy algorithm with
the proposed symbol-erasure modification for the rate R =
0.806, RS (31, 25) code are shown in Figure 9. Again, for the
multiplicity assignment step we used the interpolation cost
parameter A = 4.99. In this case the erasure symbol threshold
was decreased down to t = 2.550. Now it can be noticed
that there is a decrease in the coding gain. The reason of that
behavior is that now, when a symbol is declared as an erasure,
in fact what happens is that an entire column of the reliability
matrix IT*, which corresponds to the position of that symbol in
the codeword, have all its entries with the same value of the a
posteriori probability. As a result, the cost of the multiplicity
matrix M is increased and the score of the received vector
is reduced which will cause decoding failures according to
equation (10).
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V. CONCLUSION

In this paper we showed that the strategy of declaring
unreliable bits received from the channel output as bit erasures
through an alternative mapping of the reliability matrix can
be used with finite-length high-rate Reed Solomon codes in
order to improve soft decision decoding performance. Results
obtained with low-complexity decoding and low-cost interpo-
lation were very close to the performance bounds promised by
the Koetter-Vardy decoding algorithm. These results confirm
the large potential of ASD decoding over binary channels with
erasures.

On the other hand, when we tried to extend the proposed
method by intentionally erasing unreliable symbols (over
GF(2™)) at the channel output we showed that it is not
possible to further improve the coding gain.

There are still some open problems to be investigated. The
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performance analysis of ASD decoding with erasures for long
codes and the use of the proposed decoded procedure in
concatenated coding schemes are interesting subjects that we
recommend for future works.
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