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Coded Multi-dimensional Spreading System using
the Discrete Fourier Transform
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Abstract—In this paper a novel coded multi-dimensional
spreading technique using the Discrete Fourier Transform (DFT)
is introduced. It exploits the DFT characteristic of spreading one
symbol in one domain to all the symbols in the corresponding
transform domain. Frequency domain channel estimation is
performed at the receiver. The performance of a coded two-
dimensional (2D) DFT spreading communication system is in-
vestigated and simulation results are presented, using first a 2D
DFT time-frequency system and then a 2D DFT space-frequency
system. The proposed 2D DFT system shows good immunity
to narrowband interference and impulse noise and exhibits a
significant performance improvement when compared with a
coded conventional OFDM system of equivalent size.

Index Terms—Discrete Fourier Transform, Coded systems,
OFDM, Multi-dimensional spreading.

I. INTRODUCTION

H IGH speed communication systems such as ADSL [1],
IEEE 802.16 [2], IEEE 802.11 [3], to mention a few

cases, have adopted the discrete Fourier transform (DFT) [4],
[5] for multi-carrier transmission. Each point of a DFT acts
like a subcarrier in a multi-carrier communication system. In
practice, it is much easier to generate subcarriers using the
DFT rather than conventional local oscillators. However, there
is one more important characteristic of the DFT which is to
spread one point to a whole block of points. We notice that
although orthogonal frequency division multiplexing (OFDM)
systems [6], [7] basically use the DFT for multi-carrier trans-
mission, they also simultaneously spread one symbol to a
whole block of points. In this manner OFDM systems natu-
rally provide a diversity gain. The one-dimensional spreading
technique is widely used in modern communication systems
because it allows multiple-access and offers diversity gain.
For example, code division multiple access (CDMA) systems
[8] assign specific codes such as a direct sequence code or
a frequency hopping code [8] to each mobile station and
each base station for sharing a limited resource. In case the
spreading technique is used for diversity gain, a distorted
symbol can still be recovered from the other non-distorted
remaining symbols.The 2-dimensional fast Fourier Transform
(2D FFT) technique [4] is not a new technique and is widely
used in the area of image signal processing [11]. However
its application as a modulation technique is fairly recent and
has been investigated in [16], where an uncoded version of it
has been shown to performs well under jamming and impulse
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noise environments. In [17] an uncoded 2D FFT application
for relay communications has been investigated.

In this paper we propose a coded multi-dimensional spread-
ing system using the multi-dimensional DFT and demonstrate
its usefulness by means of examples. A coded 2-dimensional
time-frequency spreading system, as the first example, is
constructed and evaluated following WiMAX specifications
and a 2-dimensional space-frequency spreading system is
constructed as the second example. As a particular case, the
performance of a coded two-dimensional DFT (2D DFT)
spreading system is evaluated and compared to that of a con-
ventional 1-dimensional spreading system based on OFDM.
In Section II the multi-dimensional DFT is reviewed and
its spreading properties are illustrated for the 2-dimensional
case. In Section III we propose a coded two-dimensional
time-frequency spreading [9] and in Section IV we propose
and discuss a coded 2-dimensional space-frequency spreading
system. It Section V computer simulation results are presented
and the paper ends in Section VI with closing remarks.

II. THE MULTI-DIMENSIONAL DISCRETE FOURIER
TRANSFORM

The conventional 1-dimensional DFT, which is described by
a single variable, admits a natural generalisation in more di-
mensions [10]. The multi-dimensional DFT has an associated
representation by a multi-dimensional array such that for a d-
dimensional DFT, one element of the corresponding array is
denoted as xn1,n2,...,nd

, with discrete variables n1, n2, . . . , nd,
0 ≤ n` ≤ N` − 1, where N` denotes a positive integer
and 1 ≤ ` ≤ d . The multidimensional DFT [10] having d
dimensions is defined as follows.

Xk1,k2,...,kd =

N1−1∑
n1=0

(
ωk1n1

1

N2−1∑
n2=0

(
ωk2n2

2 . . .

. . .

Nd−1∑
nd=0

ω
kdnd
d xn1,n2,...,nd


 . . .


 , (1)

where ω` = e
− 2πi

N` , 0 ≤ k` ≤ N` − 1, 1 ≤ ` ≤ d.
It follows from Equation (1) that each element xn1,n2,...,nd

is transformed by the factor ωk`n`

` , 1 ≤ ` ≤ d, and after
the appropriate summations are performed it produces the
transformed multidimensional array with elements denoted as
Xk1,k2,...,kd

in a different domain. Similar to the 1-dimensional
DFT case, the multi-dimensional inverse DFT having d dimen-
sions is defined as follows [10].
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xn1,n2,...,nd =
1∏d

`=1 N`

N1−1∑

k1=0


ω−k1n1

1

N2−1∑

k2=0

(
ω−k2n2

2 . . .

. . .

−Nd−1∑

kd=0

ω
−kdnd
d Xk1,k2,...,kd


 . . .


 . (2)

The calculation process in (2) is analogous to that for
calculating the multidimensional DFT in (1). There is however
a more compact and elegant manner to represent the multidi-
mensional DFT using vectors.

Let n = (n1, n2, . . . , nd) and let k = (k1, k2, . . . , kd)
denote d-dimensional vectors, 0 ≤ n ≤ N− 1, where
0 , (0, 0, . . . , 0), N−1 , (N1−1, N2−1, . . . , Nd−1). When
written in vectorial notation, Equation (1) is, equivalently,
expressed as follows.

Xk =
N−1∑
n=0

e−2πik·(n/N)xn , (3)

where n/N , (n1/N1, . . . , nd/Nd) to be performed element-
wise, and the sum denotes the set of nested summations as
seen earlier in (1).

Applying the vectorial notation to Equation (2) the inverse
of the d-dimensional DFT is expressed as follows.

xn =
1∏d

`=1 N`

N−1∑

k=0

e2πin·(k/N)Xk . (4)

In spite of an apparently more involved formulation, the
multidimensional DFT is amenable to a simple interpretation.
While the one-dimensional DFT (1D DFT) expresses an input
xn as a superposition of sinusoids, the multidimensional DFT
expresses its input as a superposition of plane waves, or
sinusoids oscillating in space along the directions indicated
by k/N and having amplitudes defined by Xk. Such a
decomposition turned out of great importance in practice, for
example, in digital image processing (d = 2) [11, pp.81-125]
or for solving partial differential equations in three or more
dimensions (d ≥ 3) by the spectral method, i.e., a method
by which a linear differential equation is transformed into an
ordinary algebraic equation, easily solved. In computational
terms the multidimensional DFT can be interpreted as resulting
from the composition of a sequence of 1D DFTs along each
dimension.

A. A 2-dimensional DFT Spreading System

In the two-dimensional (2D) case, i.e., where n = (n1, n2),
from xn one can first compute yn′ , which denotes N1 inde-
pendent 1D DFTs of size N2 along n2 (call them rows) to
form a new array, i.e.,

yn′ =
N2−1∑
n2=0

xnωk2n2
2 ,

where n′ = (n1, k2), and then compute Xk, which denotes
N2 independent 1D DFTs of size N1 along n1 (call them

columns), to form the final result , i.e.,

Xk =
N1−1∑
n1=0

yn′ω
k1n1
2 ,

where k = (k1, k2). Since the nested summations in Equation
(1) commute, one can alternately transform first the columns
and then the rows. It follows from this commuting property of
the multidimensional DFT that, once an efficient way is given
to compute a 1D DFT (e.g., an ordinary one-dimensional FFT
algorithm), one immediately has a way to efficiently compute
the multidimensional DFT. In the two-dimensional case this
is known as a row-column algorithm, although there are also
intrinsically multidimensional FFT algorithms available in the
literature [10], [12]. Obviously, the 2D DFT is just a particular
case of the multidimensional DFT and an analogous argument
for computing a d-dimensional DFT follows unchanged.

At this point we would like to call the reader’s attention to
the spreading effect of the multidimensional DFT, as indicated
for example in (3), in the sense that a given value of xn,
which we may call a symbol in the n-domain, is spread by
means of the multidimensional DFT along each dimension of
the corresponding transform domain, or k-domain. In multi-
dimensional spreading, a dimension can designate time, or
frequency, or space, etc. As it is widely known, a diversity
scheme is a method for improving the reliability of a signal by
utilizing two or more communication channels with different
characteristics. This is a very important technique in modern
telecommunications to compensate for multipath fading and
interference, thus combating burst errors. Diversity is based on
the fact that individual channels experience different levels of
fading and interference. Therefore, we can obtain more diver-
sity gain if sending one symbol through a multi-dimensional
channel because the corresponding diversity gain will increase
if the number of dimensions is increased.

As an application of a 2D spreading system, we propose
in Section IV a space-frequency system, where an element of
the data 2D array spreads into the space and the frequency
domains. The space dimensional spreading size is given by
the number of antennas. A space-frequency spreading system
could be useful for relay communication [19] or sensor net-
work [20] which can have many antennas. In particular, it is
more useful for a condition where the signal strengths for each
relay (or sensor) antenna are different and where noise and
interference in independent wireless channels are different.

III. CODED 2D TIME-FREQUENCY SPREADING SYSTEM

In this section we introduce a coded 2D time-frequency
spreading system. The coded 2D time-frequency spreading
transmitter is illustrated in Figure 1, where aij denotes a
symbol at the input to the turbo product code (TPC) encoder
[19]. The TPC is based on the product of two component
codes which are used in a 2-dimensional matrix form [13].
The kx information bits in the rows are encoded into nx bits
using the component (nx, kx) block code specified for the
composite code. After encoding the rows, the columns are
encoded using a block code (ny, ky), where the check bits of
the first code are also encoded. The overall block size n of such
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a product code is n = nxny , the total number k of information
bits is k = kxky and the code rate R is R = RxRy , where
Rx = kx/nx and Ry = ky/ny .

Fig. 1. 2-dimensional (Time-Frequency) spreading transmitter system.

Assuming that xq represents a complex-valued signal point
in an M -ary constellation, for example, assuming it is xq =
a′ij + ia′i+1,j if QPSK modulation is employed. After modula-
tion, the xq values are fed to a buffer of size N2 which stores
the incoming xq symbols, forming blocks of N2 of them which
is the 2D DFT size in the column direction. Therefore, xn1n2

enters DFT block and one element of xn1n2 spreads to a whole
column as follows.

x′n1k2
=

N2−1∑
n2=0

ωk2n2
2 xn1n2 ,

where 0 ≤ k2 ≤ N2 − 1 and 0 ≤ n1 ≤ N − 1.
On the next step, we store the DFT symbol into the buffer

in a column by column basis as illustrated in Figure 2 and
then the pilots, DC, and guard interval are inserted along a
column direction. Therefore, we compute an IDFT of size N1

in the row direction, having for input the symbols x′n1k2
, in a

row by row basis. The IDFT output, denoted as Xk1k2 , is the
time domain OFDM symbol expressed as follows.

Xk1k2 =
1

N1

N1−1∑
n1=0

ω−k1n1
1 x′n1k2

,

where 0 ≤ k1 ≤ N1 − 1 and 0 ≤ k2 ≤ N2 − 1.
After adding to each row a cyclic prefix containing Ng

samples we get,

sk1k2 =
1

Ns

Ns−1∑
n1=0

x′n1k2
ω−k1n1

1 ,

where Ns = N1 + Ng , −Ng ≤ k1 ≤ N1 − 1 and 0 ≤ k2 ≤
N2 − 1. The signal sk1k2 enters the digital to analogue (D/A)
converter to provide the transmit signal s(t).

A 2D time-frequency spreading receiver is illustrated in
Figure 3. After the analogue to digital (A/D) conversion, the
cyclic prefix is removed in the received signal rk1k2 and then
the resulting signal Yk1k2 enters the DFT block, the output of
which is y′n1k2

and is expressed as follows.

y′n1k2
=

N1−1∑

k1=0

Yk1k2ω
k1n1
1 ,

Fig. 2. First buffer block structure (a) and second buffer block structure in
the transmitter.

where 0 ≤ n1 ≤ N1 − 1 and 0 ≤ k2 ≤ N2 − 1. On the next
step, we store y′n1k2

into the buffer in a row by row manner and
then carry out an estimation of the channel frequency response
Hn1k2 based on least squares (LS) estimation (please refer to
Appendix [21]) which is given by

Hn1k2 =
Y p

n1k2

Xp
n1k2

,

where Xp
n1k2

denotes block type pilots we already know and
Y p

n1k2
denotes block type pilots we received. Therefore, we

can compensate the OFDM symbol with channel impairment
by using y′′n1k2

instead of y′n1k2
as follows.

y′′n1k2
= Hn1k2y

′
n1k2

.

After channel estimation, we store y′′n1k2
into the buffer until

it is filled with the IDFT of column size (N2) and we then the
symbol in the buffer is output in a column by column manner.
Therefore, y′′n1k2

enters the IDFT block to produce yn1n2 as
follows.

yn1n2 =
1

N2

N2−1∑

k2=0

y′′n1k2
ω−k2n2

2 ,

for 0 ≤ n2 ≤ N2 − 1 and 0 ≤ n1 ≤ N1 − 1.
After obtaining yn1n2 with the IDFT, we carry out demod-

ulation, i.e., yn1n2 = b′ij + ib′i+1,j if it is QPSK demodulation.
The coded bit b′ij is then obtained. The coded bit b′ij enters
the TPC decoder, and bij is obtained after the TPC decoding.
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Fig. 3. 2-dimensional spreading (Time-Frequency) receiver system.

A. Spreading Effect

1) Signal Model: From the receiver process, yn1n2 is
written as follows.

yn1n2 =
1

N2

N2−1∑

k2=0

y′′n1k2
ω−k2n2

2

=
1

N2

N2−1∑

k2=0

Hn1k2y
′
n1k2

ω−k2n2
2

=
1

N2

N2−1∑

k2=0

Hn1k2

(
N1−1∑

k1=0

Yk1k2ω
k1n1
1

)
ω−k2n2

2

=
1

N2

N2−1∑

k2=0

N1−1∑

k1=0

Hn1k2Yk1k2ω
k1n1
1 ω−k2n2

2 ,

for 0 ≤ n2 ≤ N2 − 1 and 0 ≤ n1 ≤ N1 − 1.
2) Narrowband Interference and Doppler Effect: Narrow-

band interference and Doppler effect are considered within
the transmission bandwidth, assuming that the timing offset
is smaller than the guard interval and that no intersymbol
interference (ISI) occurs. The received signal, denoted by
rn1n2 , with the cyclic prefix removed and including narrow-
band interference and frequency offset caused by the Doppler
effect is given by

rn1n2 = yn1n2e
2πfd + Ik′1 + n0,

where fd, Ik′1 and n0 denote frequency offset, narrowband
interference and additive white Gaussian noise (AWGN) sam-
ple, respectively. Narrowband interference within transmission
bandwidth is expressed as follows.

Ik′1 =
Nnb−1∑

n′1=0

in′1e
2πi
Nnb

n′1k′1 , 0 ≤ k′1 ≤ Nnb − 1,

where Nnb and in′1 denote the number of interfering sig-
nals with same subcarrier bandwidth within the transmission
bandwidth N1 and interference amplitude respectively. Equiv-
alently, the received signal rn1n2 is expressed as follows.

rn1n2 =
1

N2

N2−1∑

k2=0

N1−1∑

k1=0

Hn1k2Yk1k2ω
k1n1
1 ω−k2n2

2 e2πfd

+
Nnb−1∑

n′1=0

in′1e
2πi
Nnb

n′1k′1 + N0, (5)

for 0 ≤ n2 ≤ N2 − 1, 0 ≤ n1 ≤ N1 − 1 and 0 ≤ k′1 ≤
Nnb− 1. It is noticed in Equation (5), that the received signal
Yk1k2 is spread due to the action of the time domain term
ωk1n1

1 and the frequency domain term ω−k2n2
2 . Likewise the

effect of narrowband interference and frequency offset is also
spread in the frequency domain and in the time domain. In
this manner diversity gain is obtained from the time domain
and the frequency domain.

IV. A CODED 2D DFT SPACE-FREQUENCY SPREADING
SYSTEM

We propose a coded 2D space-frequency spreading system,
having one frequency dimension and one space dimension,
based on a MIMO-OFDM system [15]. The coded 2D space-
frequency spreading transmitter is illustrated in Figure 4. It is
similar to the coded 2D time-frequency spreading transmitter
except that it employs a space-time mapping block. After
column spreading, each symbol zn1k2 , 0 ≤ k2 ≤ N2 − 1,
is mapped into a space-time mapping block xs`

n1k2
, 0 ≤ ` ≤

N2 − 1, i.e.,

xs`

n1k2
= M`(zn1k2), 0 ≤ ` ≤ N2 − 1,

where N2 denotes the number of antennas, i.e., the spreading
size, and M` denotes the mapping function. The 2-dimensional
space-frequency spreading receiver is illustrated in Figure 5.
It is also similar to a 2-dimensional time-frequency spreading
receiver except for the space-time de-mapping and combining
block. After row de-spreading, each symbol is de-mapped and
combined, which we denote as follows.

ys`

n1k2
= D`(y′′n1k2

), 0 ≤ ` ≤ N2 − 1,

where N2 denotes the number of antennas and D` denotes the
de-mapping and combining function.

We consider next a two-input single-output (2x1) channel
where a space-time block code [18] is used and z∗ denotes
the complex conjugate of z. Each symbol zn1k2 , 0 ≤ k2 ≤ 1,
is mapped into a space-time mapping block xs`

n1k2
, 0 ≤ ` ≤ 1,

as follows.[
xs0

n10

xs0
n11

]
=

[
zn10

−z∗n11

]
for antenna 1.

[
xs1

n10

xs1
n11

]
=

[
zn11

z∗n10

]
for antenna 2.

The data symbols xn10 and xn11 spread each to both zn10 and
zn11. The latter are encoded by space-time coding, and thus
spread to each antenna. A received symbol at the output of
the channel estimation block in Figure 7, represented by the
pair (y′′n10, y

′′
n11), can be expressed as follows.

y′′n10 = h0zn10 + h1zn11 + n0

y′′n11 = −h0z
∗
n11 + h1z

∗
n10 + n1, (6)

where hi and ni denote, respectively, the channel complex
multiplicative distortion and a complex random variable repre-
senting receiver noise and interference for antenna i, 0 ≤ i ≤
1. A received symbol, represented by the pair (ys

n10, y
s
n11),

after space-time de-mapping can be combined as follows.
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TABLE I
SIMULATION CONFIGURATION FOR 2D CODED TIME-FREQUENCY

SPREADING SYSTEM

Error-Correcting Coding Turbo product code:
23 bytes (data block size)
48 bytes (coded block size)
Component codes (32, 26, 4), (16, 11, 4)
Code parameters `x = 4, `y = 2,

B = 8, Q = 6
Decoder soft quantising: 4 bits
Number of iterations: 3

OFDM parameters QPSK modulation
DFT size: 256
Cyclic prefix: 1/4
Channel bandwidth: 20MHz

Channel Multipath Rayleigh fading: 4 delay vector
Doppler shift: 50Hz, 70Hz
AWGN
Interference: 1.49MHz within WiMAX
bandwidth

Channel estimation Freq. domain: block-type LS estimation
Packet size 256× 64 (IDFT size × DFT size

in the transmitter)

TABLE II
SIMULATION CONFIGURATION FOR 2D CODED SPACE-FREQUENCY

SPREADING SYSTEM

Error-Correcting Coding Convolutional code of rate 1/2
and MIMO Space-time block coding

OFDM parameters QPSK modulation
DFT size: 1024
Cyclic prefix: 1/8
Channel bandwidth: 10MHz

Channel MISO (2× 1) channel
Multipath Rayleigh fading: 6 delay vector
Doppler shift: 70Hz
AWGN
Interference: 1.49MHz and 2.98MHz

Channel estimation Freq. domain: block-type LS estimation
Packet size 1024× 2 (IDFT size × DFT size

in the transmitter)

[
ys

n10

ys
n11

]
=

[
h∗0y

′′
n10 + h1(y′′n11)

∗

h∗1y
′′
n10 − h0(y′′n11)

∗

]
. (7)

Substituting (6) into (7), the pair (ys
n10, y

s
n11) can be expressed

as follows.[
ys

n10

ys
n11

]
=

[
(|h0|2 + |h1|2)y′′n10 + h∗0n0 + h1n

∗
1

(|h0|2 + |h1|2)y′′n11 − h0n
∗
1 + h∗1n0

]
.

(8)

V. COMPUTER SIMULATION RESULTS

A computer simulation has been carried out on a 2D
DFT spreading system following WiMAX specifications. It is
remarked that if the DFT block in the transmitter is removed as
well as the IDFT block in the receiver, the resulting structure
is the same as the WiMAX physical layer structure. The main
parameters employed in the simulation are given in Table I
and in Table II.

Figures 6 and 7 show that the bit error rate performance
of the proposed 2D coded spreading system, under Doppler
effect and narrowband interference, is better than that of a
1D spreading system (conventional OFDM system) of same
size, and presents lower error-floor. For the OFDM in the
first simulation, a symbol encoded by a turbo product code

and modulated by a QPSK has packet size 256x64. Namely,
one symbol is spread to 256 subcarriers in the frequency
domain and to 64 time slots in the time domain. In the second
simulation, a symbol is also encoded and has packet size
1024x2, i.e., one symbol is spread to 1024 subcarriers in the
frequency domain and to two antennas in space domain.

Figure 8 indicates the the proposed 2D coded spreading
system has a slightly better performance than a conventional
1D spreading system with a space-time block code. This
performance gain difference between a 2D Time-Frequency
spreading system and a 2D space-frequency spreading system
is caused by the spreading size. The spreading size for a 2D
space-frequency spreading system is only 2 because it equals
the number of transmitting antennas.

Fig. 4. 2-dimensional space-frequency spreading transmitter system.

Fig. 5. 2-dimensional space-frequency spreading receiver system.

VI. CLOSING REMARKS

We have introduced a coded multi-dimensional spreading
system using the discrete Fourier transform and shown by
example that the 2D coded spreading system has better perfor-
mance than the 1D spreading system of the same size, under
Doppler effect and narrowband interference. In Section V
simulation results of a 2D DFT coded spreading system were
presented. We notice that a multi-dimensional DFT spreading
system has higher diversity gain than a 1D DFT spreading
system. The weak point of the proposed spreading system is
that the multi-dimensional spreading system requires a bigger
packet size and more DFT blocks are needed so that latency
and complexity are increased. The latency and complexity will
be increased with increasing spreading size and number of
DFT blocks, respectively. If one or more symbols are affected
by narrowband interference, deep fading or the Doppler effect,
they can still be recovered from the remaining (unaffected)
symbols because one symbol is spread to multiple dimensions.
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Fig. 6. Comparison of 2-D time-frequency spreading system with 1-D
frequency spreading system under the Doppler effect.

Fig. 7. Comparison of 2-D time-frequency spreading system with 1-
D frequency spreading system under the Doppler effect and narrow band
interference.

In the case of a 2D time-frequency (or space-frequency) DFT
coded spreading system, it spreads not only in the frequency
domain but also in the time (or space) domain. In order
to compensate for possible error bursts, an interleaver can
be used but it is not the same as spreading as meant here.

Fig. 8. Comparison of 2-D space-frequency spreading system with 1-D
frequency spreading system under narrowband interference.

An interleaver changes error locations but effectively does
not reduce the number of errors. Finally, a possible practical
application of coded multi-dimensional DFT spreading can be
in the form of a coded 2D DFT spreading system, applied to
the next generation of WiMAX systems because the 2D DFT
spreading architecture is based on the WiMAX architecture.

APPENDIX A
A COMPACT DESCRIPTION OF THE OFDM TECHNIQUE

An OFDM system converts a serial data stream into parallel
blocks of size N and modulates these blocks using the inverse
fast Fourier transform (IFFT). Time domain samples x(n) of
an OFDM symbol are obtained from frequency domain data
symbols X(k) as follows.

x(n) =
N−1∑

k=0

X(k)ej2πnk/N , 0 ≤ n ≤ N − 1,

where X(k) denotes the data symbol transmitted by the kth
subcarrier of the OFDM system, N denotes the fast Fourier
transform (FFT) size, and K denotes the set of OFDM
subcarriers available for transmission. After the addition of
a cyclic prefix (CP) and digital to analogue conversion, the
signal is sent through the mobile radio channel. The channel
is usually assumed to be constant over an OFDM symbol, but
time-varying across OFDM symbols, which is a reasonable
assumption for low and medium mobility. At the receiver, the
signal contaminated by noise is received. After synchroniza-
tion, down-sampling, and removal of the CP, the simplified
baseband model of the received samples can be represented
as follows.

y(n) =
L−1∑

`=0

x(n− l)h(l) + w(n),
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where L denotes the number of sample-spaced channel taps,
w(n) denotes additive white Gaussian noise (AWGN) samples
with zero mean and variance of σ2

w, and the time domain
channel impulse response for the current OFDM symbol, h(`),
is represented as a time-invariant linear filter. In this case, after
calculating the FFT of the received signal y(n), the samples
in frequency domain can be written as follows.

Y (k) = X(k)H(k) + W (k), k ∈ K, (9)

where H and W denote the FFTs of h and w, respectively.

APPENDIX B
LEAST SQUARES CHANNEL ESTIMATION

The least squares (LS) estimate of the channel frequency
response H [21] can be calculated using the received signal
and the knowledge of transmitted symbols as

ĤLS =
Y (k)
X(k)

= H(k) +
W (k)
X(k)

.

The LS method is the simplest channel estimation method
and it is usually used as an initial step for more advanced
algorithms.
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