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Abstract - The conventional QR Decomposition Recursive 
Least Squares (QRD-RLS) method requires the order of X 2 

multiplications-O[1\,JJ-per output sample. Nevertheless. 
a number of Fast QRD-RLS algorithms have been proposed 

with O[lYJ of complexity. Particularly thc Fast QRD-RLS al­
gorithms based on backward prediction enol'S are well known 
for their good numerical behaviors and low complexities. In 
such a scenario. considering a case where fixed-point arith­
metic is employed. an infinite precision analysis offering the 
mean square values of the internal variables becomes very at­

tractive for a practical implementation. In addition to this. a 
finite-precision analysis requires the estimates of these mean 
square values. In this work. we first present an overview of 
the main Fast QRD-RLS algorithms. followed by an infinite 
precision analysis concerning the steady state mean square 
values of the internal variables 01" four FQR-RLS algorithms. 
We stress the fact that the goal of this paper is the presentation 
of the infinite precision analysis results. the expressions for 
the mean square values of the internal variables. for all FQR 
algorithms based on backward prediction errors. The validity 

of these analytical expressions is verified through computer 
simulations. carried out in a system identification setup. In 
the appendixes. the pseudo-code detailed implementations of 
each algorithm are listed. 

Keywords: Adaptive systems. Fast Algorithms. QR decom­
position. 

Resumo - () meiodo convencional des Minimos Quadra­
dos Recursivos usando Decomposicao QR requer da 01'­

dem de N J multiplica<;6es-()[~i\-2J-por amostra de saida. 

Contudo, varios algoritrnos QRD-RLS tem sido propostos 
com OlN1 de complexidade. Particularmente os chama­
dos algoritmos QRD Rapidos baseados ern e1TOS de predicao 
retrograde sao bern conhecidos por seus bons comportamen­
tos numericos e por suas baixus cornplexidades. Em tal 
cenario. considerando 0 caso onde a aritmetica ern ponto fixo 
c empregada, uma analise ern precisao infinita oferecendo 
os valores medics quadraticos das variaveis internas torna­
se bastante atraente para uma implemeruacao pratica. Alem 
disto. uma analise em precisao finita requer as estirnativas 
destes valores medics quadraticos. Neste trabalho. apresen-
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tamos inicialmente uma recapitulacao dos principais algo­

ritmos QR Rapidos. seguida por uma analise em precisao in­
finita relativa aos val ores medics quadraticos em regime esta­
cionario das variaveis internas de quatro desies algoritrnos. 
Ressaltarnos que 0 objctivo dcste artigo e apresentar os resul­

tados da analise em precisao infinita. as expressces para os 
valores medics quadraiicos das variaveis internas. para todos 

os algoritmos FQR baseados ern erros de predicao retrograda. 
A validacao destas expressoes analfticas e obtida por rneio 
de simulacces em computador conduzidas nurn arnbiente de 
identificacao de sistema. Nos apendices. as implernentacoes 
detalhadas em pseudo-c6digo de cada algoritrno sao listadas. 

Palavras-chave: Sistemas Adaptativos, Algontmos Rapidos, 
Decomposicao QR. 

1. INTRODUCTION 

Since the first QR Decomposition (QRD) based Fast RLS 

algorithm introduced by John Cioffi in 1990 [1]. many other 
Fast QRD-based RLS algorithms were developed [2. 3. -1-. 

5. 6]. It can be seen on [51 that Fast QRD-RLS algorithms 
can be classified in terms of the type of triangularization ap­
plied to the input data matrix (upper or lower triangular) and 
the type of error vector (a posteriori or ({ priori) involved in 
the updating process. It can be seen from the Gram-Schmidt 
orthogonalization procedure that an upper triangularization 
(notation being the same as in [5]) involves the updating of 
forward prediction errors while a lower triangularization in­
volves the updating of backward prediction enol's. Table 11 
presents this classification as well as points out how these al­
gorithms will be designated hereafter. Also note that only 

for the algorithms [2J and [:1J. a formal demonstration of the 
numerical stability is known; these algorithms are backward 
stable and minimal in the sense of system theory [2. 7]. 

Error Prediction 
Type Forward Backward 

A Posteriori FQR_POSJ:< u FQR-POS_B [2. 61 
A Priori FQR_PRLF [5] FQR-PRLB [3.-1-] 

Table 1. Classification of the Fast QR algorithms. 

This work is focused in the study 01' the steady state mean 
squared value of the internal variables of this class of Fast 
QRD-based algorithms which are well known for their good 
numerical behavior and low computational complexity. Since 

I Note Ihal only those based on Backward prediction errors (right sided 
column of Table 1) will be addressed hereafter 
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these algorithms present similar performances in finite pre­

cision, specially when using a reasonably large number of 

bits of wordlength. they are all currently subject of research. 

Particularly in the case of fixed-point arithmetic implementa­
tions, information about the range of their internal variables­

such as those offered by an infinite precision analysis-is very 

interesting for a practical implementation. 
It is also worth mentioning that finite-precision analysis re­

quires the estimates of the mean square values found in this 

work. some of them obtained here and others collected from 
the technical literature. The relevance of the infinite preci­

sion analysis can be clearly observed in [9]. where the sec­
tion "Quanti.ction Error and Stability Analysis," addressing 

the finite precision analysis of the conventional QRD-RLS 

algorithm, was only possible with the results of the infinite 

precision analysis carried out in the previous section. 

Since in an infinite precision environment many variables 

are identical for a1l Fast QR algorithms based on Backward 

Prediction Errors mentioned in Table I, the use of results 

from other works was possible. We have used theoretical 
expressions for the mean square values of different variables 

from the analysis of the conventional QR-RLS algorithm per­
formed by Diniz and Siqucira in 199!S [91. We have also 

used results for variables of the a Posteriori Fast QR algo­

rithm based on Backward Prediction Enol'S [2J in paper by 

Siqucira, Diniz, and Alwan [1OJ published in 199-1. Finally. 

we have used some expressions derived in a work carried by 

Miranda. Aguayo. and Gerken in H19? [II] concerning the 
variables of the Fast QR algorithm based on a Priori Back­

ward Prediction Errors [3]. 
The main contributions of this work, besides the new the­

oretical expressions developed. are concerned to the unified 
framework in which all FQR algorithms based on Backward 

Prediction Errors were addressed and all their infinite preci­
sion analysis were presented using the same notation. 

This paper is organized as follows. In Section :? we present 
an overview of the Fast QR algorithms based on backward 

prediction errors. Then. in Sections S and -1. the infinite preci­

sion analysis concerning the steady state mean square values 
of each internal variable is presented. In Section S. the vali­

dation of the analytical results obtained is carried out through 

computer simulations. Finally, some conclusions are summa­

rized and the detailed algorithmic implementations are pre­

sented in the appendixes. 

2.	 THE FOR ALGORITHMS BASED ON 
BACKWARD PREDICTION ERRORS 

The RLS algorithms minimize the following cost function 

I. 

E,(k)	 = L )J.-i e2( i ) = eT(),')e(k) =11 e(k) 11 2 (I) 

i=() 

where each component of the error vector" e(k) is the a pos­
teriori enol' at instant i weighted by ),u.--i)/2 (A is the forget­

ting factor). The vector e( k) is given by 

e(k)	 = d(k) - X(k)w(k). (2) 

In the equation above. the weighted desired or reference sig­
nal vector d(k). the coefficient vector w(k). and the input 

data matrix X (k) are defined as follows. 

d(k) 
A1/'2d(k - 1) 

d(k)	 = (3) 

/\I./2d(O) 

IL'o(k) 1 
U'J (k) 

w(),') = (-1-) 

u:\ (), ) r 
IA1/'2~~i~) ­ 1) 

(5 )X(k)	 = 

l AI./2~J (0) 

where S is the filter order (number of coefficients minus 
one). x(k) is the input signal vector [.rl)) ir(k - 1) ... i((I, ­

"YljT (samples before instant 0 are considered equal to zero). 

and 'W(k) is the coefficient vector. The prernultiplication of 
the equation above by the orthonormal matrix Q (),.) triangu­

larizes X (k) without affecting the cost function. 

(6) 

The weighted-square error in (1) is minimized by choosing 

'W(k) such that the term d q2(k) - U(k)w(k) is zero. Equa­

tion (6) can be written in a recursive form while avoiding the 
ever increasing order for the vectors and matrices involved 
[8]: 

(7) 

where is the first element of and Q e(k)e'1, e '1, 

TI;)=J\' Q 0, (k) is a sequence of Givens rotations that anni­
hilates the elements of the input vector ;1;(),) in the equation 

(8 ) 

and. 

cost), (),') OT -s!nB,(k) 01 ­

o I \'_/ o O· .. 0 . (9)Q kJ = 
0, (

[ 
.sin~/(),) OT C:OSBi (k) OT
 

O· .. 0 o Ii
 

The following relation which is also used in the con­
ventional QR algorithm is obtained by posunultiplying 
e~(k)Q(k) by the pinning vector [1 () ... OjT 

y 

CNote that scalars are represented by italic letters while vectors arc writ­ elk) = e'1, (k) II cos ()i(k) = (k)~; (k) (10) f q , 
ten in bold face italic. 

1=0 
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where ~J(k) is the first element of the first row of Qe(!')' 
Matrix Qe(k) in (7) can be partitioned as 

(11 ) 

where, using (11) in (8) and recalling that Qe(k) is or­
thonormal, it is possible to prove that, for the case of lower 
triangularization of U(k) (backward prediction errors up­
date), f(k) = [U(k)]~T x(k) is the normalized a posteri­
ori backward prediction error vector [3], a(k) = U~I(k ­
I)X(k)/v0: is the normalized a priori backward prediction 
enol' vector [3]. and E(k) = A1/2[U(k)]~T[U(k - 1)]T 

The update of the a posteriori and the a priori backward 
prediction error vectors. f( k) and a( k) respectively, leads 
to two different algorithms, the so-called FQRYOS-B and 
FQR_PRLB algorithms. The update equations of these vec­
tors are given by 

",,(1,+1) ] [ f(k) 
(./ (1,+11Ile,,(l,+l)11 = Q~ (k + 1)	 (] 2) 

[ f(l;+I) ./ . Il e l ( I, + ] )11 

a(k) ]
«1,+1) (13) 

vl:\lieJ (i. III 

where Q~ f (I;) is a sequence of Givens rotations that gener­
ates II e/(k) and can be obtained through the following 
equation 

0 ] _Q/ II- 1 I dfq2(l,+I) J (1-1­
[ II e(ti(k+ 1) II - f)fl'+) III edk+ 1) II' ) 

3.	 MEAN SQUARE VALUES OF 
COMMON VARIABLES (FQR_POS_B 
AND FQR_PRLB ALGORITHMS) 

The matrix equations of the two implementations of Fast 
QR algorithms mentioned before are listed in Tables -I- and 
5. As can be seen from these tables. several equations arc 
exactly the same. In this section. we summarize the mean 
square values of all variables found in both algorithms. 

Mean Square Values of cose,(kj and sinfJ,(k) 

The following results can be found in [9]. 

(15) 

(16) 

Mean Square Value of e~I~, (J,:) 

The following result was first derived in [10]. 

(17)E{[r~'~, (/;)]2} ~ (J~ C~ A)' 

Mean Square Value of dfq2, (k) 

The following result was obtained from [10]. 

(18) 

Mean Square Value of II e(/)(k) II 

The following result can be found in [10]. 

( 19) 

Mean Square Values of cose'r, (k) and sine'f , (k) 

The following results were also derived in [10]. 

') / . 2A
E[cos-e f (k)! ~ --	 (20) 

,. 1 + A 

.) / ] 1 - AE [sin-e (k) ~--	 (21 ) 
f. 1 + A 

Mean Square Value of ~;l')(k) 

It is known from the technical literature that -;(k) = 
~	 .n;=0 coseI (k). If we use (] 5) and (16). and assume indc­

pendence between cosil, (k) and cuse)(I,). i ~ j, it is easy to 
find the following expression. 

(22) 

The same expression was also obtained in [II] using a differ­
ent approach. 

Mean Square Value of dq2 (k) 

The following result was first introduced in [9]. 

(23) 
ere 'J er" ;v .) I 

[ 1-')..1('01 + 1+).. =~='+1 (('OJ J 

where (('6., = E[(('f(k)]. Observe that although ((!O.I is not 

available. a rough estimate of (J; [('6., can be obtained based 
on the power of the reference signal [9]. 

Mean Square Value of f~i,\k) 

From the joint process estimation part of the FQRYOS-B 

algorithm, we take the expressions of f.~~) (J,. + 1) and 
dq2 \ -2-; (k +1). and use them to derive the expected value of 

(I) (I I)") [ I (' )") B . . .["a: ;.+ r+ (q2\~2_. /;+1 r· y assummg stationanty. 
we find the following relation. 

E {[e~~i (kW} = E {[cL-1i (k)]"} 
(24) 

-(1 - A)E[d~2\_"_ (k)] 
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where E {[t:;I~)(k)]2} = (J~ = (J~ L;~o uL + (J~ is the 

variance of the reference signal and (J~ is the variance of the 

measurement noise (it is assumed here that the algorithm is 

applied in a sufficient-order identification problem, i.e., the 

unknown FIR system has the same order as the adaptive fil­

ter). 

Finally, from the last equation 01' the algorithm and as­

suming that Cq j (I,) and ~i (~.) are uncorrelated, we have 

E[r2(h'j] ~ ,\;\+1 E[t:~J (1,)]. Since from (24) and (23). as­

suming ,\ ~ L we have that E[e~, (1,)] ~ (J~, the following 

expression results. 

(25) 

4.	 MEAN SQUARE VALUES OF 
SPECIFIC VARIABLES OF EACH 
ALGORITHM 

4.1	 MEAN SQUARE VALUES OF INTERNAL 
VARIABLES OF THE FQR_POS_B 
ALGORITHM 

For this algorithm, from the derivation of (12), it can be ob­

served that the last clement of i (I, + 1), siven bV:,: 1,+-1) , 
. ~ - Ile,lh+] III 

was precalculated in a previous step. This fact leads to two 

slightly different versions of the same algorithm. The first 

one is based on this prior knowledge of the last element 

of i( I, + 1) while the second is based on the straightfor­

ward computation of i(k + 1) and requires the calculation 
. e i i 1,+1 \ 

ot lie, iH1jll' 
The first version of this algorithm was introduced in [6J 

and its detailed description is presented in Appendix A. The 

second version of this algorithm was introduced in [2] and its 

detailed description is given is Appendix B. 

For the infinite precision results of the FQR_POS-B Algo­

rithm, all variables have the same notation used in its detailed 

description. 

Mean Square Value of fi(k) 

From the implementation of the step "Obtaining Qe(I, + 1r 
(see Table 4 and Appendix A or B) we obtain the following 

expression. 

iX+2-,(k + 1) = i i'-ll(k + 1)8in(1'_1 (I, + 1) (26) 

By taking the expected value of (26) squared and using the 

approximations (16) and (22), wc obtain the following ex­

pression. 

E[f,2UJ] ~ XV'+l-i(l --,\) (27) 
L----.	 ---' 

Mean Square Value of OU,7', 

The implementation of the step "Obtaining i(k + 1)" can be 

carried out in two different ways. as mentioned in the begin­

ning of this section. These implementations can be found in 

Appendices A and B, respectively. 

In the first version of this algorithm, since we take the 

expressions for Iv +2-1 (I, + 1) and 0 U.I' I and use them to 

calculate E[f.~+2_ irk)] + E[I/UTf]. it is straightforward to 
21realize that E r

lou.r + E[f2
, . ,(I, + 1)1 = E[nu.I·2 1+l J < j\ -t-J.-i . J I-IJ 

E[f.~+'_l(k)]. Since fY+l (I, + 1) = OU.I.l\, it is easy to 
figure out that E[oUJ'7J = E[f.~'+l_,(k)]: then, the following 
expression results. 

(28)E[U'IeI;] ~ X (1 - ,\) 

For the second version of this algorithm. since we use the 

expressions for f,--d k+ 1) and ClUJ' I to calculate E[f/-l (1,+ 
1)] + E[(((u}] , it is straightforward to show that E[n u·1'7-1] ­

E[H_1(k+1)] = Elou.I'f]-El.t}(k)J. SincefV'+dk+1) = 
aU:TY+I. it follows that E[au.cf] = E[f,2( . therefore: 

(29) 

4.2	 MEAN SQUARE VALUES OF INTERNAL 
VARIABLES OF THE FQR_PRLB 
ALGORITHM 

For the FQRYRLB algorithm. it is observed from the 

derivation of (13) that the last element of ai]: + 1) had been 

previously calculated. This observation led to two slightly 

different versions of the same algorithm. The first version of 

this algorithm is based on the prior knowledge of the last el­
."	 rih+] ,ementoJa("'+1)(orUY+1''''+1)= and was< ",' ) .. \ vA'!ie, 'ihlll 

first presented in [4J. The second version of the FQRYRI-B 

algorithm is based on the straightforward computation of 

at]: + 1) according to (13) and requires the calculation of 
e',II,+l) 

\/'\11 e, (/,) Ii' 
The first version of the FQRYRI-B algorithm was intro­

duced in [4J and its detailed description is presented in Ap­

pendix C The second version of this algorithm was intro­

duced in [3J and its detailed description is given is Appendix 

D. 
For the infinite precision results of the FQRYRI-B Algo­

rithm. all variables have the same notation used in its detailed 

description. 

Mean Square Value of o,(/;) 

From the implementation of the step "Obtaining Qe(~ + 1r 
(see Table 5 and appendix C or D), we obtain the following 

expression. 

o~'+2_,(k+1) = [; (il (/;+ lW2 - h(,-I )(1,+IJr 2 (30) 

By taking the expected value of (30l. using the approxima­

tion of (22). and employing the averaging principle [12. 13J, 
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it is possible to obtain 

(31 ) 

This expression is also available in [1 JJ. 

Mean Square Value of 01/:1' i 

The implementation of the step "Obtaining 0 (I, + 1r can 
be carried out in two distinct ways. as also discussed in the 
beginning of this section, These implementations are detailed 
in Appendices C and D. respectively. 

In the first version of this algorithm we use the expres­

sions for C/iY+2- i (1;+ 1) and aui, to calculate E [O~' +2- i (k+ 
1)] + E[r/Ux7]. It is then straightforward to infer that 

[ ')1 ,.) ( 1 [ 0] [. ') (7 1E ou.rii+Elu\+2_' 1;+1)" = E ClU1i_l +E 0iY+l-i h·)j. 

Since 0;\+1 (I, + 1) = ClUJ:O. it is possible to conclude that 
E[olu}] = E[u~+l_,(k)] leading-see n I)-to the follow­
ing result. 

(32) 

For the second version of this algorithm we use the ex­

pressions for a, -d k + 1) and au.i i to calculate E[u7-I (Ie- + 
1)] + E[ato}]. This leads to E[oUJ'7_1] + E[o;(k)] = 

., 1 [ " 1E [ 011.1·7J + E Ui-l (Ie- + 1). Since 0S+l (I; + 1) = c/Ul'S+l. 
it is easy to conclude that E[mLl'f] = E[OT(Ie-)]: as a conse­
quence. from (31). the following expression results. 

(33 ) 

5. SIMULATION RESULTS 

In this section we consider a system identification exam­
pic where the input signal is a zero-mean random Gaussian 
process with variance (J~ = 10-:3. the measurement noise is 
Gaussian with variance (J~ = 10-'. the desired signal is ob­
tained through a fourth-order filter. In an ensemble of 1000 
runs. each with ')000 samples. only the -WOO last output sam­
ples were used to calculate the mean square value. The cho­
sen ..\ was 0.95. 

The four algorithms were used in the simulation in order 
to compare the simulated with the theoretical results. From 
these results. Table 2 shows the total errors between the the­
oretical and simulated values for the non-common variables. 
This error was computed. for each algorithm. as the sum of 
the absolute value of the difference between the simulated 
values (in db) and the theoretical values (in dB). As can 
be seen [rom this table. the lowest error corresponds to the 
FQRYOS-B Version I algorithm. This only means that we 
can predict the mean squared values slightly better for this 
algorithm than for the others. All detailed results are shown 
in Table 3. As can be observed from this table. the predicted 
mean square values for all internal variables are very close to 
their measured values. 

Algorithm Error 
FQR_PRLB Version ] 2.3-11.:5:28191-1 
FQR_PRLB Version :2 2..')-1·141'128614 
FQR_POS_G Version ] 1.5-1Cj4:361322 

FQR_POS_B Version :2 1.607932853-1 

Simulation Theoretical 

ei/ (AJ 

i=O 
i=l 

1='2 
i=3 
i=4 

i=5 

dtq2,(k) 
i=] 

i=2 
i:::::3 
1=4 

i=5 

Ii cl/)(kJ II 
i=O 
i=l 

i=2 
i=:1 
i=4 
;=5 

,,(,) (k) 

i=O 
i=! 
i::::2 
i=J 
i=4 

i=5 

cilLJ,PJ1LBl -.1 
i=O 

i=l 

i=2 
i=3 
i=4 

Table 2. Total error for non-common variables. 

U.1001-16;) 10 

.. {z ) 
e'f c 

(k) 
- 0.100000010 ­

0.0977555 W- 2 
OU97n')~) 1U-2 

0.09.')-1073 10- 2 UOD-1fH7.:, llJ- 2 

0.U931882 JCJ~2 009:2·,,0,2 10-'0 

U.09099-lJj 10- 2 00,10131-1 JU- 2 

0.081'\1'187-1 10- 2 0.0878:20:3 10- 2 

'dtq2,(k!, .,0.-121-1655U-1 JU O.-1G:2:212U9 1CJ 
0.-1386961 (Jl W- 3 I 017-1:175(;(G 10-:1 

0.-143M7995(j 10-'; Li-1:-iCi8091','5 111 -:j 

O.4GD::;OoOlO W- J O.-FJ9li71:.!CjC) 10-:) 

0.-177G7910-1 W-,\ 0.012",20,:; 13 lU-:) 

'c e~1 i (k) IIII 
O.02UU:.!G7:)1 0.02 

00190-1905:2 0.019·187J 79 
0.019U79 c,-17 0.01M9875U8 

0.018(i:356G7 0.CJl8.:;OUG-1fl 

O.018HJei'J71 0.018U:2G:273 
001777·),305 0.UI7;)(j-1Oli1 

'. ~,(Ii(1;) 

1.001001001 1 
0.9'-i3151588 OD" 
O.9U7-L'85:.!3 0902') 

(1.863791:227 0.85737:) 
0.811;') O(j2.:; 

0.782-102799 

U.822 138-108 
0.77:J780938 

OIl.)',PRI ~Hl -.1 eq.(32) 

O,O-",-1-1'Jl0! 0.0:,)2e;:3 157D 

0,058:2.:;9"12 0.0':,)-+01GCi:2 
[J,OCi12W975 OU:)83]70:)'J 

O,UG-1-10:Y,:·\:" O.O(iH8(j883 

00G77-10U8 OO(i-1G17772 

I cpi esents common \ at iablex 

Table 3. Mean Square Values of Internal Variables. (Contin­
ues on pp. 129) 

6. CONCLUSIONS 

In this paper, four versions or Fast QR Decomposition al­
gorithms based on backward prediction errors have been ana­
lyzed in infinite precision environment. These algorithms are 
generally good choices among the Fast RLS algorithms due 
to their low computational complexity and proved stability 
when implemented with finite precision arithmetic. 

Closed-form formulae for the estimation of the mean 
square values of the internal variables were obtained and the­
oretical results were compared with computer simulations. 
confirming the accuracy of the analysis. 

These expressions are keys [or a proper implementation 
of these algorithms using fixed-point arithmetic processors. 
since the number of bits for each internal variable could be 
determined by its estimated mean squared value. In addi­
tion. they are required in the finite-precision analysis of the 
FQR_PRLB and FQR_POS_B algorithms which. so far. is not 
available in the literature. 

I 

128 



L Simulation Theoretical 

Revista da Sociedade Brasileira de Telecomunicacoes 
Volume 17, Nurnero 2, Dezembro de 2002 

OUT,PRLD\ -.:2 I ou.l,PRLB\ '.:2 eq.(.B) I 

i=O 0.0 11272803 0.Oli8011':707 
1=1 0.OG77401:28 (J.OGW1777L 
i=2 0.06440353°, 0.00131':G883 
i==3 00G1240'J75 0.0583 J7:139 
i=4 0.0)82.59792 O.05540J li6:2 
i=5 CJ.05.5-1491l)J 00:)2031) 79 

om jPOS.B\·.2 ou.cIPOS.B\ '.:2 eq.(29) 
1=0 O.03788726J 0031':089047 
i=1 00:39734548 0.0..l.072:531:3 

Ii=2 0.O-lJ65:2:272 0.0..l.:28Gt<75 
i=3 OO-l3Ci-11':002 O.OIS125 
1=4 0.O-l57t:371:2 O.O·J7:j 
i=5 CJ.CJ-HK-l9..l. 13 o.os 

dq 2 . (Ii) 
~, 

dq >. (k I 
i=O O.LlOO1K2J01 OOOOJ80:2(j:) 
1=1 0.000749849 0,()007..l...l. 770 

I 

1=2 ll.OOO213·JJ3 0.00021..)211': 
i=.~ O.UJ 51'\.j1762 CI.Ol.j,~ll)9G 

i=4 OOOOG1liK2\1 O. 00064Ci15..l. 

E:,~i (k + J ) " ":/,' (/.. + 1 ) 

1=0 0.8811li20lC 10 088 10 ; 

1=] 0.8'.i0:30090G lU-:J CJ.847G9230", 10- 1 

i=2 00:17:3°1279!1 10-:' OO:)G962'i:2S 10-) 

i=3 0.CJ-loG819,)Ci 10-', 004li2.51 Ci23 10-] 

I 
i=4 0.CJ091 S:F,7..l. lO-3 O.0090J:3l:)7 ](I-'j 
i=) 0000017:200 0 

cas8',. (I.) CGs8'f. Ikl 

I 

1=0 CUI7 , ,,1 J'J31 O.97·J),)1'\97-l 
i=l 0.fJ77liO..l.02:3 0.97..l.3S8~i71 

i=2 0.971'::)17:j17 0\)743';897] 

I 
i=.~ O.9780120n 0.97 --!3.jK9i--! 
i=4 0.978399190 0.974:)5"''I7-l 

.sin8'(k) . 87118; (1,) 

i=O OOn11'\!0070 CI.0:2Sb..l.102li 
i=1 00:2:):396978 0.O:!'ili..l.102b 
1=2 0.0226t\:-\48..l. 0.O2?',O110:26 
i=3 0.02:292897S 0.0256]] (J2b 
i=4 (J.0:2:26(J1S11 0.O:2:)li-l10:26 

o,(k)PRLB o,j},:)PRLB eq.(31) 
i=O o Oil 27:.HG3 OCl68018707 
i=l O.OCi7lH"'17 o OC;4611772 
i=2 CI.Ob4..l.CI.J.:320 O.CJ613868S3 

I 

i==] CJ.Ob1:2-1CJClll CJ05S317S3!) 
i=4 Cl.O'iS2')!0(J7'i 0.O;,5WlCiCi:2 
i=5 O.O'55 ....l.'J10-1 CJO.52C;;)].579 

I, (J,)POS'.B J,(J,)P08.B eq.(27) 
i=CJ CI.cnI8S,.517 00:386890-l, 
1=1 UCJ:3fJ735G()C1 O. 0..l.072'):,13 
i=2 0.0..l.1652819 OO-±28Ci87S 
i~3 O.043G..l.I:2% O.04fdT, 
i=4 OOr,7130(i5 ClO475 
i=5 O.Cl47t:..l.9..l.13 0.0:') 

OU.1,POS.Bl.1 a i.lJ' I P():,'.B \ -.1 eq.(28) 
i=O O.O..l.l8-l!J..l.J:3 00-1 1.5 
i=! G.O..l.,) 71:3712 OCl..l.511.j 

I 
i:::,2 o J)43G480CJ2 U0428Cih7'J 
i:::~ O.O-l16,j2:272 U.0-l072.5JJ:3 

~ 003!J73..l.54f\ 0,(n86890-l7 , 

CGslJ , I J,) , 
CC/.,f) I (J,) --j

1 u 95:31'JJ·51'\1' CI.95 
sintJ;(k) " sil/gl(le) 

0.O-1784'J1l3 O.CI;) 

1-­
e(~) , E(k) 

I(;'()9 10 ;-; 7.d 10 
, 

for each l: 
I. Obtall1ingd j<Jc(k+ 1): 

.r(k -: 1)
t.l. 'll (k + 1). ] = Q II (k) r 

[ dt'n(l,+l) IL 
A1'1 d 

tCf1 
(J,) 

1. Obtaining ii ed I, + l ] ii 
ii e/ (k + 1) !!, ~c \/Ir'-:-1'-11-(1,'-.'-+-1)---,-A-i-[-e-r(-1,-)-1-1:2 

3. Obtaining Q~t(J, + I): 

[!ie\UI(~+])i!] =Q~J(I.-+j)[ iid~;l(iJ,+-+l~)11 
1',. 

, . 
--. (; 

1 .: 

(l fl.-II 
6. Joint Process Estimation:
 

dt]: + J)
 
[ 

( 'll (k~ 1) 1= Q A (I; +- l) I' 
d q1 (I, T 1) _ L A li2d'!1 (k) 

7. Updating the output error: 

I } e(1, + 1) = c jj (I, + 1)'" (I, + 1) 

Table 4. The FQRYOS_B equations. 

for each J,­

{ 1. Obtaining d j lJ1(k + 1): 
1'(k+1)CI'll(k+J) ] =Q (I,) r 

1d[ d l ll " (k + 1) 'J I, A1 
i 'l 1 (k) 

3. Obtaining e i i]: +1) [.1'1 

~----'-------

iier(k+1)II=JcLI(k+j)+A ef(l,) 11 2 

4. Obtaining Q~f(k + 1): 

I . 0 . l _Q' (I; 1) r d i 'l 1 (k + 1) 
liiejO'(J,+l)iIJ--Ar + ILilej(J,+1) 
S 1 

Q.' ii n! l: ..+. 
6. Joint Process Estimation: 

cl(/, + 1)
"II l (.k + 1) 1= Q ( I, .i. 1) [
 

[ d l! l (I,. -+- 1) _ H AI. Jd (k)

CJ l 

7. Updating the output error: 
e(J, + 1) = "«: (I, + I )-(k -t- l ) 

} 

Table 5. The FQR_PRLB equations. 
Table 3. Mean Square Values of Internal Variables (Cont.). 
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APPENDICES 

A. THE DETAILED FQR_POS_B VERSION 1 ALGORITHM 

FQR.YOS-.B - Version 1 [6] 
Initialization:
 
f == small positive value:
 

II ef(k) 11= f;
 

d f 'l2(k ) = zerostA' + 1. 1):
 
d'l2(k ) = zeros(X + 1.1):
 
cos(}(k) = ones(;\! + 1. 1):
 

8in(}(k) = zeros(X + 1. 1):
 

f(k) = zeros(N + 1. 1);
 

for l: = 1. 2... ,
 

{ fjO~j (I, + 1) = ri]: + 1); 

for i = 1 : N + 1 

{ fj'~, (k + 1) = cosf)l_dk)ej:(~II(k + 1) - sinf),_dk)x1 -c- (k); 

d j 'l2\ _ 2 _ . (I, + 1) = sinf),_l (k)tji;;,l1 (k + 1) + coSf)i-l (!;) x1/2dj q2\ . c _ (k):
 

}
 
' ) (Y+1) , ,


Cj'l' ( h' + 1 = tf'lj (h' + 1). 
,------------ ­

II ef(/' + 1) 11= Vf j 'l ' (I, + 1) +).. II edl,) 11 2 ;
 

II ej\+ll(k+l) 11= ef(k+l) II:
 

for'i = 1 : "Y + 1
 

I' (Y+l-il(k + 1.11 '- /11 IS-r2-li(1 + 1) :'.2 + 12 .i; 1.)'{ I! ef . I-V ef ' I ( fiJ2. .
 
Y 1- 1
C08f)j\ _1_. (~+ 1) =11 ejY+2-iJ (I, + 1) I e(r + i (k + 1) II: 

sine'r \ ~1- (I, + 1) = elf 'l2, t]: + 1) / II e l/ ~1-i) (k + 1) II:
 
}
 

l 
uu.ru = i1'(k + 1)/ !I e rO) (I, + 1) Ii:
 
fY+l i]. + 1) = mUll:'
 

for i = 1 : lY
 
~) f\~2-,I!.I-si/)e'r._1 (k+l)r1l1:l._1


{ .f,Y+l-,( , + 1 = case' (1.+11 :
 
1,-1 

aux, = -.,i7lf)'r._l (l, + l)h+l-,(k + 1) + cosf)'r._l t]: + I)OIUi_l:
 

}
 
l(k+l)=1:
 

for i = 1 : ;\' + 1
 
{ sinf)i_dl, + 1) = h+2-i(k + l)h 11 

- 1J(k + 1);
 

VI - sin 2f)i_l (k + 1):C08f),_1(k + 1) = 

I) (I, + 1) = cosf) i-1 (I, + 1h Ii-I I (I, + 1): 
}
 
~.(k + 1) = -.(\,+I)(k + 1):
 

(01 
fl)l (k + 1) = rI(k + 1): 
fori=I:N+l 

ii (k + 1) ~~ cosf),-l (k + 1)(~i,-1) (k + 1) - sinf),_l (k + 1) .. l/2d'12 \ _ c _ . (k): 

rl1)2\ -c-. (k + 1) = sinei_Itk + l)e~j~-1 I (k + 1) + cosf),-l (I, + 1 ).. I/2diJ2\ ~2- (I,): 

} 
' ) 1\'+11 I f'IJ (h'+1 =('11 (;'+1); 

et]: + 1) = fIJI (k + 1)~.(k + 1): 
} 
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B. THE DETAILED FQR_POS_B VERSION 2 ALGORITHM
 

FQR-.POS_B - Version 2 [2] 
Initialization: 
E = small positive value; 
II ej(k) ii= e; 

d f q2(k) = zeros(N + L 1): 
dq2(k) = zeros(N + L 1); 
cose(k) = ones(N + 1. 1): 
sine(k) = zeros(N + L 1); 
f(k) = zeros(N + L 1); 
for k = L 2.... 

{ ej~!, (k + 1) = J~(k + 1); 
for i = 1 : N + 1 

{ el/~, (k + 1) = COS(}i_l(k)ejiq~l)(k + 1) - sin(},_1(k) .. 1/2djq2.y+c_, (k): 

d jq2\ + 2 _ ; (k + 1) = sin(},_1 (k)ejq~l) t]: + 1) + COS(}i-l (k) ..1/2djq2N~2_' (k): 
}
 
ej' (k + 1) = eIN+1)(k -l- 1)'
q, fql,--__' _" _
 

II ej(k + 1) II=-c JeJ(JJ (k + 1) +).. Ii ej(k) 2;
11 

II ejN+l)(k + 1) 11=11 ef(k + 1) II;
 
for i = 1 : N + 1
 

{ II e(t+1-iJ(k + 1) II~ VII ejIV+2-'\k + 1) 2 +dJq2, (1.- + 1): 1'1 

cos(}~rN+l_' (1.- + 1) =11 ejV+2-i) (k + 1) '1'1 / Ii ejN+l-i)(k + 1) II: 
sin(}~f\+l" (1.- + 1) =, d rq2,(k + 1)/ 'ii ejN+1-

i\k + 1) II;
 
}
 

'Y(k)ej, (I,+l) 
a:u:l':o = lIej(~"+I)11 ;
 
for i = 1 : N + 1
 
{ fH(k+l)=cos(}/" (k+1)fi(1.-)-sin(}I, (1.-+1)av:.ri.. l:
 

[r. ",1-, ' j t-: + j -,
 

au.x, = sinBfj\~l_' (k + l)li(k) + COS(}}i\+h (k + l)aUX'_l:
 
} 

c/,(k+l) - j' (k I}:
Iledh:+l)ll ~ 0 ,+ ),
 
IN+l(k + 1) = auxN+l;
 
j(O)(k + 1) = 1:
 
for i = 1 : N + 1
 
{ sinB i- 1(k + 1) = fN+2-i(1.- + l)h(i-l)(k + 1);
 

Jl- sin2(}i_l(k + 1):COS(}i-l (k + 1) =
 
1)(k + 1);
r(i)(k + 1) = cos(}i-dk + Ih l i ­

}
 
~((k + 1) = 1,(N+1I(k + 1); 

e~~) (k + 1) = d(k + 1); 
for i = 1 : N + 1 

{ e~~) (k + 1) = COS(}i-l (k + 1)e~~ -1) (k + 1) - sinB'_l (k + 1).. 1/2dq2!\~2 _, (k); 

dq2N+ _ , (k + 1) = 8in8'_I(k + l)e~~-l)(k + 1) + COS(}'_l (k + 1).. 1/2dq2N+ 2.,(k);2 

} 
(P'+l)eq, ( k+l ) =eq, (k+l):
 

ei]: + 1) = eq , (k + Ill(k + 1);
 
}
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c. THE DETAILED FQR_PRLB VERSION 1 ALGORITHM
 

FQR_PRLB - Version 1 [4] 
Initialization: 
f = small positive value: 

II eiO) (k) 11= E: 

II ef(k) 11= E: 

d f q2(k) = zeros(N + 1.1): 
dq2(k) = zeros(N + 1. 1); 
cosO(l,) = ones(N + 1.1): 
cosO'j(k) = ones(N + 1.1); 
slnO(k) = zeros(N + 1.1); 
sinO'j(Ji) = zeros(N + 1.1): 
a(k)= zerosi V + 1.1); 
for k = 1. 2, ' , , 

ej~;j (k + 1) = :r:(k+ 1); 
for i = 1 : N + 1 

{ C(/~, (k + 1) = COSe i- 1(k)ejiq~l)(k + 1) ­ sine i_ 1(k).1/2djq2\~2_' (k); 

d jq2\ ~2-, (k + 1) = sine i_ 1 (k)ejq~l) (k + 1) + cosei-dk).1/2dfq2j\-t2_; (k): 
} 

( 
1 (.7\'+1) (Cfqj r: + 1) = 8 f q, k + 1); 

aul.' = ,r(lc+l) , , ° ,\J,clle''''(lclll'
J 

ON+l(k + 1) = ULC/'O: 

for i = 1 : N 
Ii \~2-,llcl-8i))A'r IIc)a.1I1',_1 

{ ON+l-i(k + 1) = rosA' '(/,\ : 
I, -1 . 

oux, = -8Ine 1
j,_, (k)ON+l-i(k + 1) + cosej'_l (k)au~ri-l: 

} 

II ej(k + 1) 11= JejqJ (k + 1) +). II ej(k) 11 
2: 

II ejN+IJ(J,o + 1) 11=11 ej(k + 1) II: 
forl=1:N+1 

{ IlejN+l-i)(k+1) 11= Jlle~V+2-il(k+1) 11 2+dyq2;(k+1): 

cosej ' (k + 1) =11 e
f(:\+2-i) 

(k + 1) II / II e(N+l-i) (k + 1) II; 
f\ -tl-I 

sinB}\.,.l_. (k + 1) = dfq2,(k + 1)/ II ej!\;+l­ (k + 1) II: 
} 
1/;( 0 ) (k + 1) = 1; 

for i = 1 : N + 1 

{ 

} 

iJ(k + 1) = l[l/,,·('-ll(k + 1)]2 + 0 2 ,(k + 1)' V ,I ']\1+2-/' 
" . _ 1/-.(1-"11.+11,

CObei-dk + 1) - 1/-."'11.+1) , 

'e (k+1) 0\+,)_,11.+11
St.T! i-I: = 1/')'("(/"+1) : 

} 
ilk + 1) = l/[l/;IN+l)(k + 1)]: 

e~~J(k + 1) = d(k + 1): 
for i = 1: N + 1 

{ 8~~) (k + 1) = cosei-dk + l)e~,~-l)(k + 1) ­ sine'_l (k + 1).1/2dq2\ 7 
2 

_ ; (k); 

dq2\ .,. 2 _ , (k + 1) = sine i- 1(k + 1)C~'1-l) (k + 1) + C08e i- 1 (k + 1).1 /2dq2i\ -c-' (k); 
} 

, 1\'+1)
eql(k+1)=e~~ (k+1): 
ei]: + 1) = Cq , (k + 1h(k + 1): 

132 



Revista da Sociedade Brasileira de Telecomunlcacoes 
Volume 17, Nurnero 2, Dezembro de 2002 

D. THE DETAILED FOR_PRLS VERSION 2 ALGORITHM
 

FQR_PRLB - Version 2 [3] 
Initialization:
 
e = small positive value:
 

II ejOJ(k) 11= e;
 

II ef(k) 11= E;
 
dfd!.') = zeros(N + 1.1):
 
d q2(I.') = zeros(N + 1. 1):
 
cose(k) = ones(N + 1.1);
 
cosej(!.') = onesUV + L 1);
 
sine(k) = zeros(N + L 1): 
sinB'r(k) = zeros(N + 1.1); 

a(k) = zerosUV + 1. 1): 
for J. = L 2, , , , 

101 . 
{	 c f q] (I.' + 1) = :c(k + 1): 

for i = 1: N + 1 

{ e~i~, (I.' + 1) = COS8i_l(k)ejiq~l)(J. + 1) - sin8'_J(k)Al/2drq2N~2_' (1.'): 

d rq2\+ 2 _ , (I.' + 1) = sine i - 1 «n;: (I.' + 1) + cos8,_J (k)A1/2drq2\~2_'(1.'): 
} 

1. ) 1!V+l1(J.
E:fq] ( Ii' + 1 = "t, ,+ 1);

.il
 
.. _ er"llk+1\ ,
 

alL.70 - ,(i,J), I i1 lle r lk11'1'
 
fori=1:N+1 
{	 ai-dk + 1) = (;0881 , (1.')0.;(1.') - sin8i,\-cI_' (1.)0.17.£;_1;,\ + 1 _ 

aux, = si77B'h +1- i (1.)0 i (I.') + cos81.\+1-, (k )ou;r'_1; 

}
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