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Abstract - The conventional QR Decomposition Recursive
Least Squares (QRD-RLS) method requires the order of X'
multiplications—O[N ?]—per output sample. Nevertheless.
a number of Fast QRD-RLS algorithms have been proposed
with O[N] of complexity. Particularly the Fast QRD-RLS al-
gorithms based on backward prediction errors are well known
for their good numerical behaviors and low complexities. In
such a scenario. considering a case where fixed-point arith-
metic is employed. an infinite precision analysis offering the
mean square values of the internal variables becomes very at-
tractive for a practical implementation. In addition to this. a
finite-precision analysis requires the estimates of these mean
square values. In this work. we first present an overview of
the main Fast QRD-RLS algorithms. followed by an infinite
precision analysis concerning the steady stale mean square
values of the internal variables ol four FQR-RLS algorithms.
We stress the fact that the goal of this paper is the presentation
of the infinite precision analysis results. the expressions for
the mean square values of the internal variables. for all FQR
algorithms based on backward prediction errors. The validity
of these analytical expressions is verified through computer
simulations, carried out in a system identification sctup. In
the appendixes. the pseudo-code detailed implementations of
each algorithm are listed.

Keywords: Adaptive systems. Fast Algorithms. QR decom-
position.

Resumo - O mélodo convencional dos Minimos Quadra-
dos Recursivos usando Decomposicdo QR requer da or-
dem de N2 multiplicacdes—O[ N ?]—por amostra de saida.
Contudo. virios algoritmos QRD-RLS tem sido propostos
com O{N] de complexidade. Particularmente os chama-
dos algoritmos QRD Répidos baseados em erros de predicio
retrograda sdo bem conhecidos por seus bons comportamen-
tos numéricos € por suas baixas complexidades. Em tal
cendrio. considerando o caso onde a aritmética em ponto fixo
¢ empregada. uma andlise em precisdo infinita oferecendo
os valores médios quadrdticos das varidvels internas torna-
se bastante atraente para uma implementagdo pratica. Além
disto. uma analise em precisiio finita requer as estimativas
destes valores médios quadrdticos. Neste trabalho. apresen-
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tamos inicialmente uma recapitulagdo dos principais algo-
ritmos QR Rapidos. seguida por uma andlise em precisdo in-
finita relativa aos valores médios quadraticos em regime esta-
ciondrio das varidveis internas de quatro destes algoritmos.
Ressaltamos quc o objetivo deste artigo € apresentar os resul-
tados da andlise em precisio infinita. as expressdes para os
valores médios quadraticos das varidveis internas. para todos
os algoritmos FQR bascados em erros de predigdo retrograda.
A validacao deslas expressdes analiticas € obtida por meio
de simulagdes em computador conduzidas num ambiente de
identificacao de sistema. Nos apéndices. as implementacdes
detalhadas em pseudo-cédigo de cada algoritmo siio listadas.

Palavras-chave: Sistemas Adaptativos, Algoritmos Répidos,
Decomposicao QR.

1. INTRODUCTION

Since the first QR Decomposition (QRD) based Fast RLS
algorithm introduced by John Cioffi in 1990 [1]. many other
Fast QRD-based RLS algorithms were developed [2. 3. 4,
5. 6]. It can be seen on [5] that Fast QRD-RLS algorithms
can be classified in terms of the type of triangularization ap-
plied to the input data matrix (upper or lower triangular) and
the type of error vector (a posteriori or a priori) involved in
the updating process. It can be seen from the Gram-Schmidt
orthogonalization procedure that an upper triangularization
{notation being the same as in [5]) involves the updating of
forward prediction errors while a lower triangularization in-
volves the updating of backward prediction errors. Table 1!
presents this classification as well as points out how these al-
gorithms will be designated hereafter. Also note that only
for the algorithms [2] and [3]. a formal demonstration of the
numerical stability is known; these algorithms are backward
stable and minimal in the sense of system theory [2. 7].

Prediction
Forward \ Backward
FOR POSE (1] | FQRPOSB [2. 6|
FQR PRLF[5] | FQR_PRLB [3.4]

Error
Type

| A Posteriori
A Priori

Table 1. Classification of the Fast QR algorithms,

This work is focused in the study of the steady state mean
squared value of the internal variables of this class of Fast
QRD-based algorithms which are well known {or their good
numerical behavior and low computational complexity. Since

" Note thal only those based on Backward prediction errors (right sided
column of Table 1) will be addressed hereafter



Revista da Sociedade Brasileira de Telecomunicacoes

Volume 17, Niimero 2, Dezembro de 2002

these algorithms present similar performances in finite pre-
cision, specially when using a reasonably large number of
bits of wordlength, they are all currently subject of research.
Particularly in the case of fixed-point arithmetic implementa-
tions, information about the range of their internal variables—
such as those offered by an infinite precision analysis—is very
interesting for a practical implementation.

It is also worth mentioning that finite-precision analysis re-
quires the estimates of the mean square values found in this
work. some of them obtained here and others collected trom
the technical literature. The relevance of the infinite preci-
sion analysis can be clearly observed in [9]. where the sec-
tion “Quantization Error and Stabiliny Analvsis,” addressing
the finite precision analysis ol the conventional QRD-RLS
algorithm. was only possible with the results of the infinite
precision analysis carried out in the previous section.

Since in an infinite precision environment many variables
are identical for all Fast QR algorithms based on Backward
Prediction Errors mentioned in Table I. the use of resulls
from other works was possible. We have used theoretical
expressions for the mean square values of different variables
from the analysis of the conventional QR-RLS algorithm per-
formed by Diniz and Siqucira in 1995 [9]. We have also
used results for variables of the a Posteriori Fast QR algo-
rithm based on Backward Prediction Errors [2] in paper by
Siqueira, Diniz. and Alwan [10] published in 1994. Finally.
we have used some expressions derived in a work carried by
Miranda. Aguayo. and Gerken in 1997 [11] concerning the
variables of the Fast QR algorithm based on a Priori Back-
ward Prediction Errors [3].

The main contributions of this work, besides the new the-
oretical expressions developed. are concerned to the unified
{framework in which all FQR algorithms based on Backward
Prediction Errors were addressed and all their infinite preci-
sion analysis were presented using the same notation.

This paper is organized as follows. In Section 2. we present
an overview of the Fast QR algorithms based on backward
prediction errors. Then. in Sections 3 and 4. the infinite preci-
sion analysis concerning the steady state mean square values
of each internal variable is presented. In Section 5. the vali-
dation of the analytical results obtained is carried out through
computer simulations. Finally, some conclusions are summa-
rized and the detailed algorithmic implementations are pre-
sented in the appendixes.

2. THE FQR ALGORITHMS BASED ON
BACKWARD PREDICTION ERRORS

The RLS algorithms minimize the following cost function
I3
Sl = YoM = el (Relk) = e(l) [P (1)
i=0

where each component of the error vector” e(4) is the a pos-
teriori error at instant / weighted by A=/ (X is the forget-

*Nole that scalars are represented by italic letters while vectors are wril-
ten in bold face italic.

ting factor). The vector e(k) is given by
e(l) = d{k) — X{Hwlk). (2)
In the equation above, the weighted desired or reference sig-

nal vector d(k). the coefficient vector w(A}. and the input
data matrix X (k) are defined as follows.
d(k) 1
MN2d(k — 1)
d{k) = . (3)

MN2d(0)

U'U(:,li‘)

) wi{k)
wik) = . (4)

wa (k)

T (k)
M2l (k1)
X (k)= . (5)
/\A\/ga',T(())

where N\ is the filter order (number ol coellicients minus
one). (k) is the input signal vector [+(d) (b —1) - a(h —

A)]T (samples before instant 0 are considered equal 10 zero).
and w(k) is the coefficient vector. The premultiplication of
the equation above by the orthonormal matrix Q (k) triangu-
larizes X (&} without affecting the cost function.

e, (k) = Q(klelk) = [ e(ll(’l’t\) 1 _
efm([‘) J (6)
— dt/l(]") 1 _ 0 1 ’
- [ a2 (F) J { Uk) JH(M

The weighted-square error in (1) is minimized by choosing
w(A) such that the term d o (k) — U (k)w(k) is zero. Equa-
tion (6) can be written in a recursive form while avoiding the
ever increasing order for the vectors and matrices involved

[8]:

o (M) 1 (k)
{ dgs (k) | = Dotk [ AV2dy (k= 1) } @

w}g)ere €q, Is the first element of e, and Qulk} =
[T n Qg (k) is a sequence of Givens rotations that anni-
hilates the elements of the input vector & (k) in the equation

J

OT . (ET(/\)
[ U(‘/\‘) } - Qﬁ(/‘) [ /\LQU(//C —1) (8)
and.
cos,(k) 0T —sind,(k) 07
N 0 Iv\'—: 0 0. - 0
Q, (k) = sin0,(k) 07 costi (k) o’ - 0)
0 0---0 0 I;

The following relation which is also used in the con-
ventional QR algorithm is obtained by postmultiplying
ez {(})Q(k) by the pinning vector [L 0 -+~ 0],

N

e(k) = g, (k) [ [ cos (k) = eq, () (k)

=0

(10)
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where (k) is the first element of the first row of Q4 (k).
Matrix Q, (k) in (7) can be partitioned as

LAty = kaT (R
QO(A)4 f(/‘) E(l\) (H)
where, using (11) in (8) and recalling that Q4(k) is or-

thonormal, it is possible to prove that, for the case of lower
triangularization of U{k) (backward prediction errors up-
date), f(k) = [U(k)]"Tx(k) is the normalized a posteri-
ori backward prediction error vector [3], a(k) = U~ " (k —
1) X (k) /+/X is the normalized a priori backward prediction
error vector [3]. and E(k) = AM/2[U (k)" T[U(k - 1)]T.
The update of the a posteriori and the a priori backward
prediction error vectors. f(k) and a(k) respectively, leads
to two different algorithms, the so-called FQR_POS_B and
FQR_PRI_B algorithms. The update equations of these vec-

tors are given by
Jk)
1) [ ¢/ (k+1) (12)

1
He, ALI)\, :Q/ (A'+
{ Flk+1) 1 K Tes T
(13)

(k1) a(k)
M\le, )i € th+1)
a(k + 1) VAle ol

where Q’Hf(k) is a sequence of Givens rotations that gener-

l = Qs (k)

ates || ef'(/v) Il and can be obtained through the following
equation

‘ ) - ‘/]\' 1 42 . l—l'
{ I e+ 1) } Qorlhr ){ lestie+ ) |

3. MEAN SQUARE VALUES OF
COMMON VARIABLES (FQR_.POS B
AND FQR_PRI_.B ALGORITHMS)

The matrix equations of the two implementations of Fast
QR algorithms mentioned before are listed in Tables 4 and
5. As can be scen {rom these tables. several equations arc
exactly the same. In this section. we summarize the mean
square values of all variables found in both algorithms.

Mean Square Values of cos0, (k) and sind; (k)

The following results can be [ound in [9].

Elcos®8; (k)] = X (15)
Elsin®6,(k)] ~1— X (16)
Mean Square Value of ¢/ (k)
The following result was first derived in [10].
( DI
L) 2 ~ 2
E{[(.f(fl(/‘ ” } Ty <1+/\> (17)
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Mean Square Value of d;,» (k)

The following result was obtained from [10].

o2 ax N
E{ldsgo (B)?} o —— | —— 18
{[((7‘(12,< )} } 1+/\<1+/\> (18)
Mean Square Value of | €|/’ (/) |
The following result can be found in [10].
EH\ e(‘i)(k) ‘127 ~ 07) 2\ i (19)
Er I TN
Mean Square Values of cost), (k) and .si‘né"’f/ (k)
The following results were also derived in [10].
9 , 2A
Elcos™0 (k)] = Y (20
5 1—A
Elsin0’; (k)] =~ [ (21)

Mean Square Value of ~ ' (/)

It is known from the (echnical literatre that ~(k) =
H’ g cost (k). If we use (15) and (16). and assume inde-
pendence between cosf; (k) and cost, (k). i # j.itis easy to
find the lollowing expression.

E{[w(k)}f} A\ (22)

The same expression was also obtained in [11] using a differ-
ent approach.

Mean Square Value of d,» (k)

The following result was first introduced in [9].

Eltty, k]~ [2] o)

o 2 o7 N 2
[1—/\“ 0.0t T9X 2omint €

J

where u? . = Elw?(k)]. Observe that although wq ; is not
available. a rough estimate of (r;—), “'g.z can be obtained based
on the power of the reference signal [9].

Mean Square Value of ¢/ (k)

From the joint process estimation part of the FQR_POS_B
algorithm, we take the expressions of f:Efl’(k + 1) and
dy2 Ve .{k41). and use them to derive the expected value of
[eql (k+ D7 +[dg2_,_, (k+1)]?. By assuming stationarily.
we find the following relation.

E{lenipy = B {le o)

(1 NE[,, |, (k)]

FREN
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where E {[cﬁﬁ)(k)}z} = g} = a3 juk, 4 of s the
variance of the reference signal and o7 is the variance of the
measurement noise (it is assumed here that the algorithm is
applied in a sufficient-order identification problem. i.e.. the
unknown FIR system has the same order as the adaptive fil-
ter).

Finally. from the last equation of the algorithm and as-
suming that ¢4, (k) and ~(k) are uncorrelated. we have
E[e*(k)] ~ A TYE[e; (k)]. Since from (24) and (23). as-
suming A 2 1. we have that Efe] (k)] ~ ;. the following
expression results.

J El2 (k)] = AV g2 (25)

4. MEAN SQUARE VALUES OF
SPECIFIC VARIABLES OF EACH
ALGORITHM

4.1 MEAN SQUARE VALUES OF INTERNAL
VARIABLES OF THE FQR_POS_B
ALGORITHM

For this algorithm. from the derivation of (12). it can be ob-

served that the last element of f(k+1), given by He“”—}:l)nu
. LR+

was precalculated in a previous step. This fact leads to (wo
slightly different versions of the same algorithm. The first
one is based on this prior knowledge of the last element
of f(k + 1) while the second is based on the straightfor-
ward computation of f(Ak 4 1) and requires the calculation
e (k1)
e, tk+131
The first version of this algorithm was introduced in [6]
and its detailed description is presented in Appendix A. The
second version of this algorithm was introduced in [2] and 1ts
detailed description 1s given is Appendix B.
For the infinite precision results of the FQR_POS_B Algo-
rithm. all variables have the same notation used in its detailed
description.

of

Mean Square Value of f; (k)

From the implementation of the step “"Obtaining Qy (A + 1)
(see Table 4 and Appendix A or B) we obtain the following
expression.

Irngo b+ 1) =~ + Dsin_1 (k+ 1) (26)
By taking the expected value of (26) squared and using the

approximations (16) and (22), we obtain the following ex-
pression.

E[f2(k)) = A1 -0 (27)
L |

Mean Square Value of aur,

The imptementation of the step “Obtaining f(k 4 1)” can be
carried out in two different ways. as mentioned n the begin-
ning of this section. These implementations can be found in
Appendices A and B. respectively.

In the first version of this algorithm. sincc we take the
expressions for faio (A + 1) and aur, and use them to
caleulate E[f%_ ,_ (k)] 4 Elauxi]. it is straightforward 1o
realize that Elaua?] + E[f3_o_ (b + 1)] = Elauri_ ]+
Elf3o,_ (k)] Since fapi(k +1) = aurg, it is casy 10
figure out that Efaua?] = E[f3. (k)] then, the following
expression results.

liE{a.zufj ~ AL - (28)

For the second version of this algorithm. since we use the
expressions for fi_ | (k=+1) and aur; o calculate E[f7  (k+
DI+ Elawr?]. itis straightforward to show that Efaur?_;| —
Elf2 (k4 1)] = Elaua?]—E[f2(F)]. Since fvoi(k+1) =

aur 1. it follows that Ejaur?] = E[f7(k)]: therefore:

‘ Elauwr?] = AN 01— n) L (29)

4.2 MEAN SQUARE VALUES OF INTERNAL
VARIABLES OF THE FQR_PRI_B
ALGORITHM

For the FQR_PRIB algorithm. it is observed from the
derivation of (13) that the last element of a{k + 1} had been
previously calculated. This observation led to two slightly
different versions of the same algorithm. The first version of
this algorithm is based on the prior knowledge of the last el-

ementola(k 4+ 1) (oraxoq (k41 :,#]—
( Jorax 41 ) aie |

first presented in [4]. The second version of the FQR_PRI_B
algorithm is based on the straightforward computation of
a(k + 1) according to (13) and requires the calculation of

e ik+1)
VAle kil

The first version of the FQR_PRI_B algorithm was intro-
duced in {4] and its detailed description is presented in Ap-
pendix C. The second version of this algorithm was intro-
duced in [3] and its detailed description is given is Appendix
D.

For the infinite precision results of the FQR_PRI_B Algo-
rithm. all variables have the same notation used in its detailed
description.

) and was

Mean Square Value of a, (/)

From the implementation of the step "Obtaining Q(k + 1)
(see Table 5 and appendix C or D). we obtain the following
expression.

Cl?\',x‘.g_LU‘l"i’l) — [A;(i)(/\"f‘].)]_zf [,\“(1*1)([;._*,1”“2 (30)

By taking the expected value of (30). using the approxima-
tion of (22). and employing the averaging principle [12. 13].
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it is possible to obtain

T ATV ). (31

This expression is also available in [1]].

Mean Square Value of ou.,

The implementation of the step “Obtaining a{/ + 1) can
be carried out in two distinct ways. as also discussed in the
beginning of this section. These implementations are detailed
in Appendices C and D. respectively.

In the first version of this algorithm we use the expres-
sions for ax 12 (k+1) and aua; t caleulate E[a3, 5 (k+
1] + Elawa?). Tt is then straichtforward to infer that
Elaua?|+Elo} o (k+1)] = Elaur? ||+ Elad, (k)]
Since ans1{l + 1} = auxg. it is possible to conclude that
Elour?] = Ela%., (k)] leading—see (31)—to the follow-
ing result.

E[au.)ﬂ ~ AT (32)

For the second version of this algorithm we use the ex-
pressions for ¢, (& 4+ 1) and aw.r; to calculate E[a’f*l (A +
)] + Elaua?]. This leads to Elaua® |} + Elai (k)] =
Elaur?) + Ela?_ [ (k +1)]. Since ax o (k + 1) = aur .
it is easy lo conclude that Elaus?] = E[a?(k)]: as a conse-
quence. from (31). the following expression results.

Elaus? s X= 27001 )

L

5. SIMULATION RESULTS

In this section we consider a system identification exam-
ple where the input signal is a zero-mean random Gaussian
process with variance o7 = 1072, the measurement noisc is
Gaussian with variance o> = 107", the desired signal is ob-
tained through a fourth-order filter. In an ensemble of 1000
runs. each with 5000 samples. only the 1000 last output sam-
ples were used to calculate the mean square value. The cho-
sen A was 0.95.

The four algorithms were used in the simulation in order
to compare the simulated with the theoretical results. From
these results, Table 2 shows the total errors between the the-
oretical and simulated values for the non-common variables.
This error was computed. for each algorithm, as the sum of
the absolute value of the difference between the simulated
values (in dB) and the theoretical values (in dB). As can
be seen from this table, the lowest error corresponds to the
FOR_POS_B Version | algorithm. This only means that we
can predict the mean squared values slightly better for this
algorithm than for the others. All detailed results are shown
in Table 3. As can be observed from this table. the predicted
mean square values for all internal variables are very close to
their measured values.

128

Algorithm Error \
FQR_.PRI_B Version 1 2.3415281914
FQR_PRI_B Version 2 2. 5414828614
FQR_POS_B Version | 1.5464361322
FQR_POS_B Version 2 1.6079328534

Table 2. Total error for non-common variables.

\ Simulation ‘ Theoretical \
e (’fq)w (k) e(;(:] (k)
i=0  0.1001463 10— 0.1000000 10~7
i=l  0.0977355 10772 0.0971359 102
i=2  0.0954073 10—32 0.0040375 1072
=3 0.0931882 1077 0.0923032 107
i=4  0.0909946 10~2 0.0901314 1072
=5 0.088%_71 1072 0.0878203 102

diga, (k)
] 0421465501 10773
2 0.133696191 1073
3 0.443879956 107
i=1  0.469505010 L0—3
ﬁ

S dpga, (k)
0462212139 107
0474375616 10~3
0.4363591%5 1072

i 0.499G71269 10~
i= 0477679154 10— 0.312820513 10—3
l‘ G[’,I)(k) H ¥ H e}”(k] H
0.02

i=0  0.020026731
=1 0.019519052
=2 0.019079547
=3 0.018635667
=1 0.018196971
=5 0.017775505

0.019437179
0.018937508
(.013500649
0.018026273
0.017564061

,\“('1\(;1.) -A‘}(H(‘/‘.)
=0 1.001001001 1
=1 0.953151588 0.95
i=2 0.9071438523 0.9025
i=3 0.863791227 0.857375

=4 0.822138108
=5 0.782402799
aua, PRI_BV1
=0 0.055449104
i=1  0.038239702
=2 0.061240073
=3 0.064103535 0.0613306333
=+ 0.067740128 0.064617772

represents common variables

0.81-150625
0773780938
auwr, PRI_BV 1 eq.(32)
0.052631579
0.0551401662
0.058317539

Table 3. Mean Square Values of Internal Variables. (Contin-
ues on pp. 129)

6. CONCLUSIONS

In this paper, [our versions of Fast QR Decomposition al-
corithms based on backward prediction errors have been ana-
lyzed in infinite precision environment. These algorithms are
generally good choices among the Fast RLS algorithms due
to their low computational complexity and proved stability
when implemented with finite precision arithmetic.

Closed-form formulae for the estimation of the mean
square values of the internal variables were obtained and the-
oretical results were compared with computer simulations,
confirming the accuracy of the analysis.

These expressions are keys for a proper implementation
of these algorithms using fixed-point arithmetic processors.
since the number of bits for each internal variable could be
determined by its estimated mean squared value. In addi-
tion, they are required in the finite-precision analysis of the
FQR_PRI_B and FQR_POS_B algorithms which, so far. is not
available in the literature.
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Simulation

Theoretical

J

aux, PRI.BY 2

aur; PRI_BYV 2 eq.(3

0.850300906 103
0.037352799 10—
0.046681956 10~ 1
0.000183571 1073

0.84769230% 10—
0.056962525 10—
0.046251623 102
0.009013137 10—3

=0 0.071272303 0.068018707 ;

i=]  0.067740128 0.061617772

=2 0.064403535 0.061386%33 |

=3 0.061240475 0.0583175339 \

=4 0.038259792 0.053401662 '
| =5 0.055119104 0052631579 |
f ausr; POS_.BV'.2 aur,POS_BY.2 eq.(ZW
I i=0  0.0378R87263 (1.033689047 \

=] 0.039734548 0.040725313

=2 0.041632272 0.042806373

=3 0.043648002 0.015125

i=d  0.045713712 0.0175
} =5 0.047849413 | 0.05
‘\ (](]2,(]"') ” dq-_,)/\]\") J
’7 i=0  0.000182101 ' 0.000180263 ‘

i=1 0.000719:49 0.000744770

=2 0.000213413 ‘ 0.00021421%

i=3  0.01583776G2 0.013811596

i=4 o 000616829 0.000646154 |
\ 411 (I‘¢l) w(.;:\(}\,_k“ Jl

i= 0.851162016 10~ 0881077

0.000077200 8)
costl, (k) " costy (k)
(1977511931 0.9743 8‘)/4

0.977604023
0.978317517
0.978072023
0.973399190

0.971352971
0.974353971
0.974353974
0.97435%8974

sindj (k)

= sindl (k)

=0 0.023189070
=1 0.02339697%
=2 0.022683434
=3 0.022922973
=+ 0.022601811

0.021 1()41() 26
0. 07.)0—11() )(>

0.0256-110- ’(1
0.025641026

a;(kyPRI_B

a; {(k)PRI_E eq.(31)

|

=0 0.0712731G3 0.068013707
=1 0.067741817 0.064617772
=2 0064404320 0.061386883
=3 0.061240011 0.058317539
=l 0058259075 0.055401662
| i=5  0.055449104 0.052631579
| F(KYPOS_B FAKYPOS_B eq.27)
[ i=0  0.037887517 0.033689047
=] 0.039735609 0.040725313
i=2  0.041632819 0.0428G275
=3 0.043647296 0.045125
=t 0.045713065 0.0475
| i=5 0047349413 | 0.05
\ aur, POS.BV.1 | aquw, POS. BV 1eq.28) |
=0 0.047349413 | 0.0475
=] 0.045713712 ‘ 0.045125
=2 0.043648002 0.04236875
=3 0041652272 0.040723313
=1 0.039734548 | 0.038689047 |
cost, (k) ] “cost, (k) i
U953151588 0.95 |
sinb; (k) | s (L) 4[
0.017849413 H 0.0 |
B (k) | etk l
6.0910°F | SR

Table 3

. Mean Square Values of Internal Variables (Cont.).

| FQRPOS B

for each /v

{ I. Obtaming d; ., (k+ 1)

€ro (k -+ 1) Q " (k5 1) }
dqu(]‘A + 1) ot /\1 AdT’/w(A') J
e /. -0

2. Obaining ||
| lesth+ 1) = \/fh (h+1)
3. Obtaining QM(I\' + 1)

A lerlh)|]?

0. Joint Process Estimation:

cqlh+1) | -
{ dg.(k+1) ] = Quth 1)

7. Updalting the output error:
e(h+1)=e, (k+ 1~ (k+1)

}

Table 4. The FQR_POS_B equations.

FQR_PRI_B

| for each &
{ 1. Obtainingd g, (k+1):

Cro (k1) | ‘
{ dyg, (k4 1) } =Qyk) [

gt

al(k+1) }

A d gy ()

; ail } i »
3. Obtaining fj e (b 1) ||
Pesth+ 1= \/ef, (h+ 1)+ A e
4. Obtaining Q’Gj (k+ 1)

0 C o (
e =]

(k)17

6. Joint PI'OCCQ;ES[imaIiOl]Z
Gy, (A + 1)

[ dy(h+1) = Qulh

1 7. Updmng the output error:

e(h+1)=eg (h+ 1)~k +1)

o[tk
Ay, ()

B

Table 5. The FQR_PRI_B equations.
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APPENDICES
A. THE DETAILED FQR_POS_B VERSION 1 ALGORITHM

FQR_POS_B - Version 1 [6]

Initialization:
e = small positive value:
es(hy 1=
dsgo(k) = zeros(N + 1. 1)
dgo (k) = zeros(N + 1. 1)
cos@(k) = ones(N + 1.1);
sin@ (k) = zeros(N" + 1. 1)
(k) = zeros(N + 1. 1);
fork=1.2....
{ e b+ 1) =a(k+1)
fori=1:N+1
{ 6] (k1) = costry (k)elf Mk + 1) = sin_y (A Pdpga,, (K):
rgoe_o (k1) = sin_g () + 1) + coslia (A 2d gy, (h):
t
ek +1) = ey Tk + 1):

| er(h+1) H- \/ 2L A erlh) 5

e k1) =h ep(h + 1) s
for z =1:N4+1

(e v H:\Hef\T“ b+ 1) 2y (b L)
(0.99’/\ ERGEE eﬁwﬂ (B4 1y /1 ef\ e I
.sme_;,\%, (k+1) = dpga, (k+ 1)/ el T+ 1

¥

aury = w(k+1)/ 1 ef "k 1)

Faai(h+1) = auay:

fori=1:N

Fyeao th)y—sin®f (k- Daua, oy

{ frasioth+1) = costy  (k+1)
aux; = fh’mﬁ}/il (h4+ D fni— (K+ 1)+ (5056,//',71 (k+ D)aur;_q:
}
A0+ 1) = 1.
fori=1:N+1
{ sinfi_ (b + 1) = frgpo (b + 1)/~ D0k + 1),
costh_y (b + 1) = /1~ sin?8,_y(k + 1):
SO+ 1) = costi_ [k + 1)~ D (k4 1):

Ak 1) =AU 1
el b+ 1) = dik +1):
fori=1:N+1
{ (k1) = costl_y (b + el 1’(L+1)—51’7791,1(L‘+1)/\1/2(1(13_37,(1;):

dgoy . (k+1)=sinf_y(k+" )(l,'l Ui+ 1)+ costi_y(k + 1AV 3dys ., (k)

eg, (k+1) = (I;T]] k4 1)

e(h+1) =¢cq (h+1)v(k+1):
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B. THE DETAILED FQR_POS_B VERSION 2 ALGORITHM

FQR_POS_B - Version 2 [2]

Initialization:
e = small positive value;
I es(k)li=e
dygo(k) = zeros(tN + 1.1):
dyo(k) = zeros(N + 1, 1);
cos@(k) = ones(N + 1. 1):
sin@(k) = zeros(N + 1.1);
F(k) = zeros(N + 1.1);
fork=1.2....
{ (:521)1(1: +1)=x(k+1)
for i =1:N+1
{ efql (k + 1) = cost_ (k)e! o (A + 1) — sind_ (k)M 2d g, (B):
Afgon ok + 1) = sind,_ 1(1.) Yk +1) + cost_y (k)A/2 dfqg\ o k)

}

erq(k+1) =5+ 1);

| es(k+1) | \/f (h+1)+ X es(k) |2
el k+1) 1=l es(h+1) |1

‘ror/—lzN—l—l

(e kv H*ﬂ el T k+1) 12 +d2 o, (b + 1):
costy  (k+1) =] e k1) /| ef’\“ Dh+1) ||k
3”'”9},\“,.,(A+ 1) =dyg,(k+ 1)/ || ”“ Yk+1) |

}

GUE0 = e (kD]

fori=1:N4+1

{ fica(k+ 1) =costly . (h+ 1) filk) — sz’.nﬁf\lﬂ_’(;“ + Dauz;_1:
aur; = 57‘716)};\,;]7’ (k + 1) filk) + COSQ,}\H,,U\’ T aur

ey = folk +1);

vk +1) = auengg:
OF+1)=1:

fori=1:N+1

{ sindi_1(k+1) = fyaoi(k+ 1)/~ (k4 1)
costli_1(k+1) = /1= sin20;_,(k + 1):
YO (k4 1) = costi_ (kK + D)y D (k4 1);

F(k+1) =N+ 1),
e;‘j (k+1) = d(k +1);
fori=1:N+1
{ el (k+1) = costiy(k+ ey (k4 1) — sind,_y(k + 1A 2dgo, (k)

dgonos, (k+ 1) = sinb_y (k + 1)ell ™V (k1) +cosbyy (k + DAY 2dga , (F);

eq(k+ 1) =e Tk +1);

e(k 4+ 1) = cg, (k + 1)y (k + 1;

131



J. A. Apolinario Jr., C. A. Medina S., and P. S. R. Diniz
Infinite Precision Analysis of the Fast QR Algorithms Based on Backward Prediction Errors

C. THE DETAILED FQR_PRI_B VERSION 1 ALGORITHM

FQR_PRI_B - Version 1 [4]

Initialization:
€= sma]l poqitive value;
| e
Hef H—ﬂ
dfq_(l\) = zeros(N + 1.1):
dgo(k) = zeros(N + 1. 1):
cos@{k) = ones(N + 1. 1):
cos@'y (k) = ones(N + 1.1);
§in@(k) = zeros(N + 1. 1);
sin()}(k) = zeros(N + 1.1);
a(k) = zeros(N + 1, 1);
for A =1.2....
{ ¢ ,q "+ 1) = (b + 1)
forr=1:N+1
[ el (h+1) = costyy (k)elyy V (k + 1) = sindiy (k)N 2dqa, o, (k);
digro o (k+1) = sinfi_ (k) Gk + 1)+ costioy (RINY 2d g, (h):

}
(N+1)
chl(ll—kl)fef (k'+ 1):
aury = #
e Gl
ans1(k+1) = auug:
fori=1:N
U o, (RY—sin (Myaur, _1
{ avprilh+1) = ot T :
i—1
aur; = fAs'},71,6;-’71 (Mans1_(k+1)+ cos@}/il(k)a,u;ri,l:
}

lv

| eslk+1) = /3, G+ 11+ A | es (k) |1

Hefﬂ(k+1HPwefﬂ+lHM
fori=1:N+1
N (N+2—
[ e =00 4y H: I e 200 1) 12 3 O+ 1

costy (b1 = e T ) |/ 1T e+ 1) s
sintly._ (k+1) Adfq) (k+1)/ e ot (k+1):

1/~ +1) =1

fori=1:N+1

{14k +1) = V/[l/«,w—wm U2+ a3 o (k+ 1)
cost_q(k+1) =12 __thtl o0kt

L/~ o (k+1)
o 1. _axao. (kL)
5(7?6,',1(11' + 1) = m

}
(A +1) = 1/[1/v 0k +1)];

eql "k + 1) =d(k+1):

fori=1:N+1

{ ek +1) = costi_1(k +1)el " (A + 1) — sinb_y (k + DAY 2d o, (k)
Ayora (b +1) = sinb_1 (b + 1)elT (k4 1) + cosbiy (k + 1A 2dga ., (K);

}
eq(k+1) =™k + 1)

e(k+1)=eq (h+1)y(k+ 1)

132



Revista da Sociedade Brasileira de Telecomunicacdes
Volume 17, Numero 2, Dezembro de 2002

D. THE DETAILED FQR_PRI_B VERSION 2 ALGORITHM

—

FQR_PRI_B - Version 2 [3]

Initialization:
¢ = small positive value:

el (k) ||= e
I es (k) [|= e
dygo(k) = zeros(lV + 1.1):
dao(k) = zeros(N + 1. 1):
cos@(k} = ones(N + 1.1);
cose'f(k) = ones(N + 1.1);
sin@(k) = zeros(N + 1.1):
sz"nﬁlf(k) = zeros(NV + 1.1);
a(k) = zeros(N +1.1):
fork =1.2....
{ elp (k1) = ok +1):
fore =1: N+1
{ el (k+1) = cost (ke (k+1) — sinfl_y (k)M 2d g2, ., (k):
pgon o, (k1) = sy (R)elrV (k + 1) + cos_y (KA 2dgn ., (k):

}
ek +1) = e Tk +1);

ey ,1(1\+1\ .

A2 ]le s (R)])

fori=1:N4+1

{ aici(h+1)= (:059}-:\,“?’ (Mai(k) — sindy | (k)auzi_1:
aur; = sinfly - (Kai(k)+costy (Faux; i

audy =

e (k+1y . .
—_Al/‘—’ue;,(k)u = a,o(l\ + 1).

ans1 (b =+ 1) = aurnq1;

e+ 1) lI= /3, (k+ 1)+ A | es (k) I

ek + 1) =] ek +1)

fori=1:N+1

() e(_NJrl—i) k+1) = \/’ (N+2—i)<k+ 1) |2 +d2 5 (k + 1);
cose;\ (k1= e“\*? T/ e k1) |1

sind; . (k+1)= dfao (k+1)/ || el 17" (A +1)

1
/4O +1) = 1;
1011—1 N+l

{140 (k1) = ﬂ/mz Dk +1)2 + %y, (F+ 1)

) ’ 1/~ Ukt
costi_1(k +1) W

_ . Naa (k)
sindi-1(k + 1) = 50T

i

(k1) = LA 1)
e+ 1) = d(k + 1);
for z =1:N+1
{ ek +1) = costi_q(k + 1)y (A + 1) = sinf_ (k+ DAY 2d ., (k)

(lqﬁ\ L (k1) = sind_ (b + l)eq1 Dk 4 1) 4 cost; 1 (k + DAY 2dgo, ., (k):

}
eq (k+1) = e\ Tk + 1)
e(k +1) _eql(A + 1)y (k+ 1)

[S——
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