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Abstract A low-complexity joint position and amplitude > 

search algorithm is proposed for deterministic sparse code­
books to be used in code-excited linear predictive coders. The 
conventional multipulse search is presented as an extension 
of a general two-stage sequential search, leading to a clas­
sification of multistage sequential searches according to the 
extent that orthogonality constraints are applied throughout 
the search stages. After its classification, an efficient imple­
mentation of the joint search is derived which incorporates 
backward filtering of the residual target vector and precorn­
putation of autocorrelation elements, bringing about a reduc­
tion in complexity of approximately one third in compari­
son to the focused search within the G.723.1 codec. In par­
ticular, considering an extensive speech database, a floating­
point version of the joint search method reduces down to one 
third the number of comparisons per subframe relative to the 
focused search. Moreover, the joint search performs about 
one thirtieth as many comparisons as the position-exhaustive 
search. Further, the complexity of a fixed-point implementa­
tion of the joint search is below one quarter that of the focused 
search and stands below those of the G.729A and lS-64l-A 
coders. Listening tests indicate an equivalence in perceived 
quality. 

Keywords: Speech coding, CELP, ACELP, algebraic multi­
pulse, multistage searches, sparse excitation. 

Resumo - Propoe-se 0 algoritmo de busca conjunta de 
posicao e amplitude em dicionarios deterministicos espar­
sos para uso em codificadores preditivos lineares excitados 
por c6digo. A busca multipulso convencional e apresentada 
como uma extensao de uma busca sequencial generica de 
dois estagios, levando a uma classificacao das buscas sequen­
ciais multiestagio segundo a intensidade da aplicacao das 
restricoes de ortogonalidade durante os estagios da busca. 
Ap6s sua classificacao, deriva-se uma implementacao efi­
ciente da busca conjunta que incorpora filtragem regres­
siva do vetor-alvo residual e precompute dos elementos de 
autocorrelacao, ocasionando uma reducao de complexidade 
de aproximadamente urn terce em comparacao com a busca 
focalizada no codec G.723.1. Em particular, usando-se uma 
base de dados extensa, 0 metodo de busca conjunta reduz a 
urn terce 0 mimero de comparacoes por sub-bloco em relacao 
a busca focalizada. Alem disso, a busca conjunta executa 
aproximadamente urn trigesimo do mimero de comparacoes 
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da busca exaustiva em posicoes, Finalmente, a complexidade 
de uma implementacao em ponto fixo da busca conjunta e 
menor do que urn quarto da complexidade da busca focali­
zada e situa-se abaixo daquelas dos codificadores G.729A e 
IS-641-A. Em testes de audicao verifica-se uma equivalencia 
na qualidade percebida. 

Palavras-chave: Codificacao de voz, CELP, ACELP, 
multipulsos algebricos, algoritmos de busca multiestagios, 
excitacao esparsa. 

1. INTRODUCTION 

The original CELP speech coding model, introduced by 
[I, 2, 3], has ever since undergone a series of changes de­
signed to reduce its complexity and improve the quality of 
its reconstructed speech signal. At first, transform domains 
were explored for the fixed random codebook, resulting in ef­
ficiency gains under some constraints as a trade-off between 
speed and memory occupation of the transformed codebook 
[4]. 

An important development was the design of sparse ran­
dom codebooks and attendant search algorithms that could 
bring about both a quality improvement and a reduction in 
complexity over random Gaussian codebooks at rates around 
8 kbit/s [5]. For example, sparse random codebooks were 
used to bring CELP coding down to the 4.8 kbit/s rate as long 
as a moderate decrease in quality could be allowed for [6]. 

Moreover, structured sparse codebooks also gave rise to 
a toll quality speech coder at 8 kbit/s [7, 8], which is a 
conjugate-structure algebraic (CS-ACELP) coder. In this 
case, the codebook has a multipulse structure [9] that is cou­
pled with an efficient, suboptimal CELP search algorithm. 
By the way, both the multipulse and the algebraic CELP 
(ACELP) [10] structures had been previously used at higher 
bit rates and complexities. Other developments can be found 
in [15, 16] that present recent reviews and advances in multi­
pulse coders. 

It should be stressed that the search algorithm associated 
to the structured sparse codebook plays an important role in 
the achievement of efficiency and may by itself make the 
difference for a given application as in the case of a multi­
media speech coder for digital simultaneous voice and data 
(DSYD) [11, 12]. Therefore, the availability of reduced com­
plexity search algorithms could lead to new applications for 
the ACELP coder. 

Additionally, one should observe that structured sparse 
code books may be searched in multistage schemes in much 
the same way that the usual adaptive and fixed codebooks in 
a CELP coder may be searched sequentially in a suboptimal 
two-stage procedure. Such procedures are important to keep 
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the overall complexity within bounds at a small penalty in 
performance over an unfeasible joint optimal search. 

Furthennore, it is worth noting that in a CELP coder 
the fixed codevector has a great influence on reconstructed 
speech quality despite its apparently residual contribution. 
Consequently, the improvement of fixed algebraic codebook 
searches and algorithms is essential to the development of 
coders wirh greater quality/complexity ratios [13]. 

Motivated by all this reasoning, this work presents a 
low-complexity search algorithm for algebraic multipulse 
codebooks that has been implemented within the reference 
G.723.1 [14] and G.n9 [7] coders as examples of target 
speech coders, but may be applied to other coders with de­
terministic sparse codebooks. 

This paper has two main goals. The first is the descrip­
tion of multistage codebook searches under a classification 
that encompasses the basic idea of CELP two-stage searches 
and optirnizing orthogonalizations, all the way through mul­
tipulse searches and leaving room for new efficient algebraic 
multipulse codebook searches. 

The second and foremost goal is the presentation of a novel 
joint position and amplitude search (JPAS) algorithm of alge­
braic multipulse codebooks which builds upon well-known 
multipulse search procedures. TIns joint search algorithm 
is introduced in a conceptual formulation involving dynamic 
autocorrelation elements in such a way that the main notion 
of a chain of two-dimensional optimizations can be prop­
erly appreciated. In the sequel the joint search algorithm is 
elaborated to the point that an efficient implementation is de­
rived. Thereby a foundation is laid for the development of 
low-complexity multistage search algorithms of determinis­
tic sparse codebooks. 

In the following section, notation is established for the 
basic CELP code book search. Then, sequential searches in 
two codebooks are classified in three categories according to 
their joint degree of optimality. Next, the standard multi pulse 
search is presented as an instance of a multistage sequential 
search and algebraic codebooks are introduced. Then, the 
proposed joint position and amplitude search is introduced 
as a multistage search using dynamic autocorrelations and 
its complexity is analyzed. Finally, a low-complexity algo­
rithm is derived for the joint search as a function of pre­
computed autocorrelation elements, and its complexity and 
performance are measured and compared with standard algo­
rithms. 

2. BASIC CELP SEARCH 

For a given target vector u. a standard CELP search algo­
rithm tries each codevector c.. i = 1. 2..... ill. in its code­
book producing, after scaling and filtering, reconstructed vec­
tors 

U; = 7);Hc;. (1) 

where 7); are suitable gain factors and matrix H. the impulse 
response matrix, is given by 

H(i,j) = h(i - j). (2) 

is the impulse response of the weighted synthesis filter trun­
cated to the subframe length L. 

The reconstruction error vectors 

(3) 

are used for the selection criterion of the codevector by its 
index as 

~ = argrnin {lIc;/12
} . (4) 

;=1.2 ..... ,\{ 

An alternative search criterion may be derived by observ­
ing Figure 1. By minimizing iIe; 11 2 • the squared norm of the 
reconstructed target vector u, is maximized over the indices 
i in the code book, i. e., the index of the selected codevector 
can be found as 

~ = argmax {llu;11 2 } . (5) 
i=1.2 ..... M 

Writing out the squared norm of u, as a function of the 
weighted codevector q; = Hc., we have 

(6) 

where 
(7) 

is the squared norm or energy of the weighted codevector and 

(8) 

is the zero-lag crosscorrelation, or simply correlation, be­
tween the weighted codevector and the target vector. 

u 

• 

Ci 

u; q; 

Figure 1. Geometrical representation of the codebook search 
in a CELP coder (index k is a better choice than index i). 

The important point about the correlation is that it may be 
efficiently determined by a single inner product as 

(9) 

where 
(10) 

is the backward-filtered target vector [17, 18]. However, 
really efficient computations of the squared norm given by 
Equation (6) will ultimately depend on structuring or simpli­
fying the calculation of the energy, expressed by Equation 
(7). When the codevectors are sparse, it is very convenient to 
express their weighted energies as 

2 T T Twhere h(n) = 0 for n < 0 and h(n) for n = 0.1. .... L - 1 (J; = c; H He, = c; .pC;. (11 ) 
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where 

(12) 

is the autocorrelation matrix of the impulse response matrix. 
A CELP coder usually makes use of two codebooks at 

least, namely, an adaptive codebook and a fixed codebook, 
which are suboptimally searched as a two-stage codebook. 
Adaptive codevectors are lagged vectors extracted from the 
past composite excitation sequence and fixed codevectors are 
innovations. Usually, the adaptive codebook is searched first 
and then the fixed codebook is searched for a match of the 
residual target vector 

Uf = U - u.,,	 (13) 

where u, is the reconstruction of the target vector provided 
by the adaptive codebook. 

3.	 SEARCHING TWO CODEBOOKS 

Speech coders provided with two codebooks require a 
much higher complexity search than those provided with a 
single codebook if the aim is an optimal search [3]. 

.In an optimal search of two codebooks every pair of code­
vectors in their Cartesian product must be searched, causing 
the total number of levels in the compound codebook to be 
the product of the levels in the single individual codebooks. 
In practice, an exhaustive search over such a codebook is 
prohibitively expensive. Therefore, sequential searches are 
usually used instead. Most often, corrections are effected in 
order to get closer to the optimal solution. 

In the following, three search procedures in two codebooks 
are examined: 

• Plain sequential searches; 

• Sequential searches with final joint gain calculation; 

• Orthogonal sequential searches. 

The final joint gain calculation is an enhancement of plain 
sequential searches that lends itself to implementation with 
little additional complexity as it must be carried out just once 
per subframe. On the other hand, in the case of nonstruc­
tured fixed codebooks, orthogonal sequential searches have 
a higher complexity since they require one orthogonalization 
per codevector searched. However, when fixed codebooks are 
structured as in the VSELP coder [19], whose codevectors 
are defined as sums of basis vectors, the number of required 
orthogonalizations is reduced. For instance, in the VSELP 
coder only 14 basis vectors should be filtered instead of the 
whole set of 256 codevectors resulting from the sequential 
composition of the two fixed codebooks. 

The next three subsections will deal with each one of the 
three sequential search procedures in turn. Without loss of 
generality, it is assumed that the first codebook to be searched 
is an adaptive codebook and that the second one is a fixed 
codebook. Actually, the framework built in these sections 
will be applied in later sections to the case when both code­
books are stages of a multistage fixed codebook. 

3.1	 PLAIN SEQUENTIAL SEARCHES 

A plain sequential search consists of two operationally in­
dependent searches, where each one spans its own codebook 
once. 

The first search uses target vector U shown in Figure 2 and 
delivers the reconstructed target vector 

(14) 

Figure 2. Geometrical representation of sequential search for 
target vector U and residual target vector U f . 

The second search takes as its target vector the residual 
error after the first search, which is given by Equation (13). 

The searches follow the process described in Section 2 and, 
at the end of the two searches, target vector U may be recon­
structed by applying the composite excitation 

(15) 

to the weighted synthesis filter to get the reconstruction of the 
target vector 

UQ = 17aqa + IUqf. (16) 

where the adaptive codevector gain is 

uTqa 
I)a = -T- (17) 

qa qa 

and the fixed codevector gain is 

T u f qf 
Ilf = -T-'	 (18) 

qfqf 

3.2	 SEQUENTIAL SEARCHES WITH FINAL 
JOINT GAIN CALCULATION 

The following orthogonality relations are sufficient to es­
tablish the orthogonality of the final error vector e f to the 
plane [qa qf] (see Figure 2) 

(19)Ef .L qf 

(20)e f .L qa 

Upon reconsideration of the procedure of plain sequential 
searches seen in Section 3.1, the reconstruction represented 
by Equation (16) can be improved if, instead of taking the 
gain factors T)a and T) f from Equations (17) and (18), respec­
tively, their values are set free for a while by using expression 
(16). Thereby, the target vector is decomposed as 

(21 ) 
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as depicted in Figure 2. 
Taking inner products of both sides of Equation (21) by qa 

and qJ in tum. we get 

n; (q;;qa) + 17f (qJ qa) + (€Jqa) (22) 

Ila(q;;qf) +17f(qJqf) + (€JqJ). (23) 

respectively. 
Using orthogonality conditions (19) and (20). Equations 

(22) and (23) reduce to the following system of linear equa­
tions 

(24) 

which may be solved for the final gains. 

3.3 ORTHOGONAL SEARCHES 

The procedure of sequential searches with final joint gain 
calculation presented in the previous section just constrains 
the enol' vector to be orthogonal to plane [qa qf] a pos­
teriori. Sequential searches can be drawn a little closer to 
the joint optimal search if the second search is carried out 
by enforcing orthogonality throughout. This can be done as 
follows. 

Initially. the adaptive search with target vector U is car­
ried out as in Section 3.2. yielding filtered codevector qa and 
initial gain 17a. Next. the orthogonal search of the fixed code, 
book is performed through the following set of operations 
(see also Figure 3): 

•	 each codevector Cf.i. i = L 2..... Jlf' is filtered, re­
sulting in the corresponding weighted codevectors 

(25) 

•	 plane [qa qf.i] is represented by an orthogonal ba­
sis by determining the component w, of qf.i which is 
orthogonal to qa as 

(26) 

•	 the projection of target vector U upon orthogonal vector 
w, produces vector 

WIu 
t , = -T-'-Wi. (27) 

Wi w. 

whose squared norm is given by 

Iitil1 
2 = (w~u)2: (28) 

Wi w, 

•	 codevector CJ.I:, is selected such that 

~ = argmax {lltiI1 
2

} ; (29) 
i=1.2 ..... M f 

•	 joint computation of the final gain factors 17a and 17f by 
solving the System of Equations (24) with qf =~ He f.t:,. 
so that the total composite excitation e is obtained as 

u 

I 

G 
iii 

Figure 3. Geometrical representation of vectors involved in 
an orthogonal sequential search. 

4. MULTIPULSE SEARCHES 

Multipulse excitations are sparse signals whose nonzero 
samples are isolated from one another. They may be de­
scribed in general as 

M-1 

e(n) = C	 ~ Gk6(n - Inl,,). ri = O. L .... L - 1. (31) 
k=O 

where M is the number of pulses, 5(n) is the unit pulse, L 
is the subframe length. Gk and Ink are pulse amplitudes and 
positions. respectively, and C is the overall excitation signal 
gain. 

Following the search method of Section 3.1, multipulse 
codebooks are usually searched in 11/ sequential stages [15, 
16]. In this case, at stage j the available subcodevectors are 

(32)e/() =1(:,i). 

where 1(:. i) represents the ith column of the L x L identity 
matrix, and the corresponding filtered subcodevectors are 

(33)q~j) = H(:. i). 

where H(:. i) stands for the ith column of the impulse 
response matrix defined by Equation (2) and IU) 

{O.l. .... L - I} - {lno.TI71 ..... lnJ-d. The set 
{Ina. III 1, ... . m) -d is the set of all the previously chosen 
pulse positions. 

For searching purposes, it is convenient to rewrite the ex­
citation given by Equation (31) as 

111 -1 

e(n) =	 ~ Ak5(n - tni. (34) 

k=O 

where individual pulse amplitudes are independently denoted 
as A k = CGk. Using this notation, the reconstructed vector 
component contributed by stage j is given b~ 

(35) 

The weighted reconstruction error vector at stage j is de­
fined as 

e - u (36)(j) - Ui -v u , . 
f 

where 

(30)	 j = 1:1 
U.(fj) = { ufo	 (37)

€(j-l) . j == :.~ .... _'_ -1 
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stands for the target vector at stage j in an extension to the 
procedure outlined in Section 3.2. 

The multi pulse excitation search criterion is the minimiza­
tion of the squared norm of the error vector, just as described 
in Section 2, which leads to pulse position 

(38) 

and amplitude 

A.} = tf(mj) (39) 
iiH(:.mj)11 2 

for the jth pulse, where t f (mj) is a sample of the backward­
filtered target vector defined by Equation (10). Therefore, in 
Equation (39) A j is computed in a similar way to the gain 
factors determined by Equations (17) and (18). 

Finally, at the end of stage j = !If -1 the whole set of pulse 
amplitudes is recalculated by a higher-dimensional extension 
to the procedure developed in Section 3.2. Taking into ac­
count Equation (33), Matrix Equation (24) may be translated 
into 

:1~ j r~~~;~~~~
 (40) 

r:4.\[-1 = ~f(m.\[-d 
where the ~ystem matrix .p.\[ = [o(m;. mj)];\~:~ on the left­
hand SIde IS an M A Jf submatrix of the L x L impulse re­
sponse autocorrelation matrix given by Equation (12). A pre­
vious derivation of Equation (40) from a different standpoint 
may be found in [20]. 

5. THE ALGEBRAIC MULTIPULSE 
CODEBOOK 

Algebraic multipulse excitation satisfies the same forma­
tion rule as the more general multipulse excitation described 
in Section 4 with the additional constraint that algebraic mul­
tipulses take on positive or negative unit values only, that is, 
O:k = ±1. In the following, the number of pulses in Equation 
(31) will be Jf = -4 and the subframe length will be either 
L = 40 or L = 60 samples, respectively for the G.729 and 
G.723.1 coder, which are values commonly adopted. Exten­
sion to other values is straightforward. 

Additionally, the algebraic multipulses to be considered 
[14] have each pulse position taken from interleaved se­
quences of equidistant pulses. Each sequence, therefore, has 
a different phase, which contributes with one and only one 
position to the excitation signal. Further, even and odd po­
sitions are kept separate in two different grids. The set of 
positions spanned by the even grid is 

Phase PositionsI 

0 0, 8,16,24,32,40,48,56 
2 2,10,18,26,34,42,50,58 
4 4,12,20,28,36,44,52,(60) 
6 6,14,22,30,38,46,54,(62) 

Table 1. Even ACELP position grid for the G.723.1 coder. 

Therefore, a pulse position Ink may be decomposed as 

(43) 

where S = 8 is the spacing between successive pulses in a 
row, Ak is the position of pulse ni; in its row, ek is the phase 
of pulse tru. or its row identifier and I'k is the pulse position 
parity or its grid identifier. 

As displayed in Table 1, the phases e= 4 and e= 6 hold 
one position each beyond the subframe length. Some search 
methods consider these virtual positions while others do not 
(Section 6). If only actual subframe positions are considered, 
then the number of pulse positions of phases ej E {4. 6} is 
Nj = 7 whereas N) = 8 holds for phases ej E {0,2}. 

6. JOINT POSITION AND AMPLITUDE 
SEARCH 

The proposed joint position and amplitude search (JPAS) 
[21] is described in this section for fixed algebraic multipulse 
codebooks such as the one presented in Section 5. 

The reconstructed residual target vectors are composed of 
shifted impulse responses as 

M-l 

uf(n)=GLO:kh(n~mk)' n=O,L ... ,L-l (44) 
k=O 

and this composition has motivated the JPAS algorithm which 
selects one by one the 11f shifted impulse responses which 
jointly define a partial direction along which the residual tar­
get vector provides its greatest projection. It selects one pulse 
position and amplitude at each one of J11 iterations. 

The search process starts by determining the projections of 
the residual target vector U f along the partial projection di­
rections defined by the shifted impulse responses for the first 
iteration. Positions searched in previous iterations are kept 
constant while corresponding amplitudes are jointly read­
justed. resulting in the determination of the next partial pro­
jection direction. 

The first iteration in a JPAS algorithm selects position 
i = 1710 which maximizes the squared norm of the projec­
tion along the shifted impulse responses 

Ge = {O, 2, ... , L - 2} (41) 
(uJH(:, i)) 2 

and the corresponding collection of positions in the odd grid (45)
T;= .p(i,i)

is 
Go={1.3, ... ,L-l}. (42) 

where H is the impulse response matrix of the weighted syn­
The even grid is represented in tabular form in Table 1, where thesis filter and .p is its autocorrelation matrix given by Equa­
each row is a different phase track. tion (12). 
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Let the filtered subcodevector selected in iteration j - 1 be 

(46) 

Due to its algebraic structure, pulse amplitudes in the ACELP 
codebook are restricted to ±1 so that, considering a new pulse 
at position Tn J . only four new filtered subcodevectors are pos­
sible 

qy) = ± (±H(:. 777 J ) + q;J-1)) . (47) 

Therefore, considering a new pulse at position i in iteration 
i. only two partial projection directions are admissible, 

pU)(:.i) = H(:.i) +q;j-1), (48) 

which is called the primary partial projection direction and 

SU)(:, i) = H(:. i) _ qY-1). (49) 

which defines the secondary partial projection direction I. In 
Equations (48) and (49) pU)(:, i) and SU)(:. i) indicate the 
ith columns of matrices pU) and Su). respectively, whose 
columns comprise all the primary and secondary projection 
directions at iteration j. respectively. 

In the following, the selected vectors and signs are identi­
fied after each iteration of the search process. Details about 
the search process follow at the end of this section. 

Let the selected partial projection direction for iteration j 
be 

f U) = H(:. 777j) + J U- l1 q ;J- 1). (50) 

where 

J(j-1) = { L 
-1. 

if primary projection 
if secondary projection 

(51) 

is the sign of the selected projection direction on the plane de­
fined by the jth pulse and the available filtered subcodevector 
qY-1). which is given by 

(j-1) ~ H U-1)
qf - cf . (52) 

The projection of the residual target vector along the se­
lected partial projection direction fU) yields the partially re­

constructed target vector as 

• U) - 4U )f U)U f -. . (53) 

where AU) is a signed gain factor whose sign is 

(54) 

while its absolute value 

CU) = 1.1(j) I (55) 

will become the gain only after the last iteration j = .1I ­
1. Thus, the weighted subcodevector at the end of the jth 
iteration is 

(56) 

j The opposite directions could be chosen as well. However, this choice 
leads to simpler expressions of the ensuing equations. 

Using this notation it results that the weighted subcodevec­
tors are defined by the chosen shifted impulse responses and 
by the corresponding signs as 

(57) 

for the first iteration and as 

J-1j-1

qy) = j(j)H(:.mj) + .sU)L IT J(k)j3(k)H(:,mz) (58) 

1=0 k=Z 

for the remaining iterations. 
(AI-1)

Consequently, the selected codevector. C f = C f ' can 
be expressed as 

Ai-1 

cf = L (XjM-1)I(:, mj) (59) 

J=O 

and the resulting weighted codevector is 

AI-1
 
'\~ (M-1) )


qf=~(Xj H(:,77lj' (60) 

j=O 

where 

/3(1) if 1= j 
(j) j-1 

(61)
Q/ =

{ 
IT J(k) ;S(k) otherwise. 
k=/ 

Equation (61) describes the resulting pulse signs after each 
iteration j and can be derived by comparison of Equations 
(60) and (58). 

Finally, in completion of the description of the JPAS algo­
rithm, the procedure for selection of the projection directions 
for iteration j will be explained. 

As indicated in Equations (48) and (49), the primary and 
secondary partial projection directions for iteration j are col­
lected in matrices pU) and SUi. respectively. Further, for 
the computation of their corresponding projections below, we 
will define the primary autocorrelation matrix 

(62) 

and the secondary autocorrelation matrix 

sU) = (SU)fSU). (63) 

For iterations j = 1. 2, ... ,i1I - 1, the squared norms of 
the projections along the primary partial directions are com­
puted according to 

(uJP(j)(:,i)f 
T U) = (64)z 1'U) (i, i) 

and the squared norms of the projections along the secondary 
partial directions are determined by 

(ufSU)(:·i)f 
(65)

S(j)(i,i) 

This procedure closes with the selection of position 777 j which 
satisfies 

162 



Revista da Sociedade Brasileira de Telecomunlcacoes 
Volume 16, Nurnero 2, Dezembro 2001 

2. K =argmax {v}.7)} : 
iEI(j) 

if Ty) = max{Ty). v;~)} 
otherwise 

In addition, the set IU) of shift indices i for the search 
depends on the order j of the iteration. For the first itera­
tion (j = 0), every shift index within the subframe range is 
searched, i.e., 

IIO) = {a. 1. .... L -I}. (66) 

Furthermore, the grid parity is defined as ~iO by the parity of 
the pulse at position 010 = 8Ao+ eo + ;0 selected in the first 
iteration, whose position has been decomposed according to 
Equation (43). Accordingly, if ~(O = O. the even grid Go = 
Ge is selected (see Section 5) and otherwise, if;o = 1. the 
odd grid Go = Go is selected. 

For the following iterations U = 1. 2..... JI -1), only the 
phases not yet selected are actually searched so that a row in 
the position grid (Table 1) is eliminated from the search do­
main after each pulse selection and the set of indices searched 
IS 

IU) = Go - 90 - 91 - '" - 9j-1 (67) 

with 

9i = {e i + rOo 8i + ~IO + 8..... ei + ~IO + 8 (hI - IJ) 

where hi stands for the number of pulses in the chosen grid 
with the same phase as pulse position in, as pointed out in 
Section 5. 

Summing up, the JPAS algorithm is a kind of orthogo­
nal search (see Section 3.3) where optimizations are carried 
out in planes or two-dimensional subspaces defined by each 
shifted impulse response whose phase track has not yet been 
selected together with the current filtered subcodevector. It 
should be noticed that these optimizations do not involve or­
thogonalizations but rather an exhaustive test of all the ad­
missible new partial projection directions as summarized by 
Equation (47). Further, the position and amplitude searches 
are conjugated by step 3 of the closing procedure of the al­
gorithm, described just below Equation (65). Therefore, the 
JPAS algorithm is less suboptimal than the standard multi­
pulse search [15, 16] which determines pulse positions by 
means of Equation (38) before using Equation (39) to find 
their amplitudes (see Section 4). 

The number of searches in a subframe distributes over six 
classes identified by the number of subcodevectors searched 
along each individual search path as listed in Table 2. One 
should consider that each one of the six search paths in Ta­
ble 2 may occur as one of four permutations because there 
are two phase tracks with 8 positions and two phase tracks 
with 7 positions (see Section 5). Considering equiprobable 
permutations, one arrives at an average of 150 searches per 
subframe. 

The joint search, as opposed to both the focused and the 
position-exhaustive searches, does not use any elements off 

Search path class I Comparison count 

(8,8,7,7) 60+2(22+14+7) = 146 
(8,7,8,7) 60+2(22+15+7) = 148 
(8,7,7,8) 60+2(22+15+8) = 150 
(7,8,8,7) 60+2(23+15+7) = 150 
(7,8,7,8) 60+2(23+15+8) = 152 
(7,7,8,8) 60+2(23+16+8) = 154 

Table 2. Breakdown of the number of comparisons per search 
path for the JPAS algorithm. 

the main diagonals of its autocorrelation matrices as shown 
by the denominators of Equations (64) and (65). The diago­
nal elements are taken from the autocorrelation matrix 4> of 
the impulse response of the weighted synthesis filter during 
the first iteration. For the remaining iterations, they come 
from the autocorrelation matrices pU) and SU) of the pri­
mary and secondary projection directions, respectively. The 
next section describes how these elements can be efficiently 
computed. 

7. EFFICIENT JOINT SEARCH 

The correlation elements involved in the joint search (Sec­
tion 6) are dynamic values in the sense that they are com­
puted along the search path. As shown below, it turns out 
that the dynamic correlations may be computed as functions 
of precalculated autocorrelations of the impulse response ma­
trix and samples of the backward-filtered residual target vec­
tor. 

Using Equations (56), (48), (49) and (0), it is possible to 
express the correlation in the primary and secondary partial 
projection directions, pU)(:. i) and SU)(:, i), used in Equa­
tions (64) and (65), as follows 

C~J; ~ uJpU) (:, i) = t f(i) + ;3U-1)CY-1) (68) 

C U) ~ uTSU)(. i) = t '(i) _ 3(j-1)CU-1) (69)
S.7 f "' j , f' 

where 

C U - 1) 
'f (70)-2)C(j-2) 

f 

is the correlation chosen in iteration j - 1 using the procedure 
described in Section 6. In Equations (68) to (70) t f (i) is the 
i-th sample of the backward-filtered target vector defined by 
Equation (10). 

Using Equations (12), (48), (49), (46), (62) and (63), it is 
possible to express the dynamic autocorrelations of the pri­
mary and secondary partial projection directions, pU)(:.i) 
and SU) (:, i), used in Equations (64) and (65), as follows 

j-1 

pU)(i,i) = dJ(i.i) +2I>:r;.7- 1)dJ (i ,?Tiz) +EU-1) (71) 

z=o 
)-1 

s» (i. i) = o( i. i) - 2 L Q;j-1) ¢(i,?TiI) + EU-1), (72) 

1=0 
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!Search PCl PC2 Ncor 
I Algorithm ET (%) I ETf (o/c) ET(o/c) ETf(%) 

I Focused 17.0 I 100.0 17.7 100.0 416 
I Joint I 

1l.5 
I 

67.6 11.6 65.5 -148 

PCl (PC2): Personal computer with a 133-MHz (lOO-MHz)
 
Pentium processor under the Windows 95 (Windows NT) op­

erating system.
 
ET: execution time as a fraction of real time (the duration of
 
the speech signal under coding).
 
ETr execution time of given search algorithm as a fraction
 
of the execution time of the focused search algorithm.
 
Ncor: number of precomputed autocorrelation elements.
 

Table 3. Measure of complexity of floating-point versions of
 
two ACELP search algorithms over the test partition of the
 
TIMIT database.
 

where E(j-l) is the squared norm of qy-l), the previous
 
weighted subcodevector.
 

As the joint search does compute the autocorrelation ele­
ments for both the odd and even grids, an additional number 
of precomputed autocorrelation elements would be necessary 
besides those used for the focused search. At first glance. 
it would seem that the number of autocorrelation elements 
would double, resulting in a total of 832 elements. But only 
the number of main diagonal autocorrelation elements dou­
bles. as they are needed for determining the grid parity based 
on the pulse position selected in the first iteration as pointed 
out in Section 6. The remaining off-diagonal autocorrelation 
elements necessary for the following iterations may be com­
puted just after the decision about the grid parity is made, and 
they must extend just over the concerned all-even or all-odd 
lag pairs. Therefore, only 32 diagonal autocorrelation ele­
ments are necessary in addition, making up for a total of 448 
elements as shown in Table 3. 

8.	 COMPLEXITY AND PERFORMANCE 
MEASUREMENTS 

In this section, results of complexity measurements of the 
joint search are presented and compared first to both the fo­
cused search (FOCS) and the position-exhaustive search by 
means of floating-point implementations. Secondly, the re­
sults of extensive complexity measurements and performance 
tests of a fixed-point version of the JPAS algorithm and equiv­
alent procedures in recent standard speech coders are pre­
sented and contrasted. The focused search [22. 8] is con­
sidered as implemented in the reference ITU-T 5.3 kbit/s 
G.723.1 codec [14]. This implementation includes some 
suboptimal simplifications in the operations determining the 
signs of the pulses of the chosen codevector. referred to as the 
signal-selected pulse amplitude approach [12]. These sign 
simplifications are kept up in the position-exhaustive search, 
which only differs from standard FOCS in that it searches all 
the 4096 combinations of 4 pulse positions in the grid of the 
chosen parity. 

The average number of comparisons per codevector search 
is estimated at the end of Section 6 for the dynamic autocor­
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Search I Minimum Mean [Maximum 

Focused 72 458.48 2040 
Position-exhaustive 4096 4096.00 4096 
Joint 146 149.62 154 

Table 4. Statistics about number of comparisons per sub­
frame for three search algorithms over the test partition of 
the TIMIT database. 

Search I Minimum Mean I Maximum I 

Focused 416 416.00 416 
Position-exhaustive 416 416.00 416 
Joint 146 149.62 154 

Table 5. Statistics about number of computed autocorrelation 
elements per subframe for three search algorithms over the 
test partition of the TIMIT database. 

relation version of the JPAS algorithm. Also, this number of 
comparisons was measured over the whole collection of 1680 
signals in the test partition of the TIMIT database [23] for a 
total of Ih 26min 27s of speech and 688.244 subframes. The 
measurements were also performed for the reference focused 
search and for the position-exhaustive search. The results are 
shown in Table 4. Overall, the average number of searches 
per subframe for the joint search algorithm is one third as 
many as that of the focused search algorithm and slightly 
less than 4% the number of position-exhaustive searches. 
Further, the number of autocorrelation elements demanded 
per subframe was averaged for the three search algorithms. 
As shown in Table 5, the joint search displays a consider­
able decrease in the number of these elements. Finally, as 
shown in Table 6, objective performance measurements car­
ried out with the segmental signal-to-noise ratio (SNRSEG) 
and the perceptual speech quality measure (PSQM) [24] de­
tect a small decrease of 0.25 dB in SNRSEG and an added 
distortion of approximately 0.06 units of PSQM incurred by 
the joint search as compared to the focused search when both 
are implemented in floating point at 5.3 kbit/s, 

Clearly, the position-exhaustive search is equivalent to the 
focused search and the focused search seems to perform a 
little better than the joint search on objective grounds. The 
practical significance of these results, therefore, will depend 
upon the results of subjective listening tests which have been 
performed for the fixed-point versions of coders operating at 
8 kbit/s. These tests are described at the end of this section 
and their results are commented upon. 

For the floating-point version of the JPAS algorithm, the 
measure of complexity used is the execution time expressed 
as a fraction of real time, which is taken to be the duration of 

Search ~ SNRSEG (dB) [PSQMJ
I 

I Position-exhaustive 9.45 I 2.07 I 

9.19 I 2.14 I 

9.44 I 2.08 l 

I Joint 

I Focused 

Table 6. Performance of three floating-point ACELP search 
algorithms over the test partition of the TIMIT database. 
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Search 
Algorithm 

AOC 
(WMOPS) 

ROC 
(%) 

Ncor 

Focused 6.31 100.0 616 
Joint 1.54 24.4 616 
Depth-first 1.89 30.0 616 
Enhanced 3.41 54.0 1600 

Search SNRSEG PSQ:-l 

Algorithm AV.(dB) N(+) 
s 

N(-) 
s Av, Nh - ' 

p -; -

Focused 11.35 0 0 1.66 0 C' 
1'­" 
54': 

Joint 11.07 5 1675 1.72 1547 
Depth-first 11.26 279 1400 1.68 1138 
Enhanced 11.14 188 1492 1.65 853 826 

AOe: absolute operational complexity.
 
ROe: relative operational complexity which assigns unity to
 
the focused search
 
NCOl< number of precomputed autocorrelation elements.
 

Table 7. Measure of worst-case complexity of fixed-point 
versions of four ACELP search algorithms over the test par­
tition of the TIMIT database. 

the speech signal under coding. Both the joint search and the 
focused search execute on two personal computers, coding 
the whole test partition of the TIMIT database. The execution 
times displayed in Table 3 show that the joint search takes 2/3 
as long to execute as the focused search. 

Inside the reference G.723.1 ACELP coder the focused 
fixed search algorithm takes up over 17% of processing time 
while the fixed search share falls below 12% when the joint 
search algorithm is used instead [25]. 

It must be pointed out that for other CELP coders the com­
plexity share of the fixed search is higher as, for instance, 
for the G.729 CS-ACELP reference coder. wherein the fixed 
search takes up about 40% of the whole complexity [12]. 
Consequently, the impact of a lower-complexity fixed search 
would be greater in this coder and a fixed-point implementa­
tion of the JPAS algorithm has been tested against equivalent 
standard coders. A more detailed operational account of the 
JPAS algorithm may be found in [26]. 

Specifically, the fixed-point implementation of the JPAS 
algorithm has been inserted in the reference implementation 
of G.729 coder and is compared to the focused search al­
gorithm as implemented in this reference coder [7] as well 
as to the depth-first tree search (DFTS) algorithm [27] and 
the fixed search algorithm of the IS-641-A enhanced full-rate 
(EFR) voice codec [28]. The DFTS algorithm was taken from 
the G.729A reference coder and inserted into the reference 
G.n9 coder. 

The operational complexities of the fixed-point implemen­
tations are measured in worst-case weighted million opera­
tions per second (WMOPS) with results given in Table 7. The 
joint search algorithm actually confirms its lower complexity 
which stands below 25% that of the focused search. 

Furthermore, this complexity ratio achieves to advantage 
the estimate of 1/3 derived in terms of a comparison count 
in Section 6 (see also [29]). The depth-first tree search ranks 
close behind in complexity at a mark of 30% while the en­
hanced full-rate search stands halfway at 54%. 

On the other hand, speech quality is highest and best dis­
tributed over the signals in the database for the enhanced full­
rate search as measured by the PSQM whereas the best results 
in terms of SNRSEG are those of the depth-first tree search 
as seen in Table 8. 

Further, subjective quality has been assessed by having 10 

Av.: Average. 

N~+): number of signals whose reconstruction by the given 
search algorithm has SNRSEG above that of the reconstruc­
tion by the focused search algorithm. 

N~- ): number of signals whose reconstruction by the given 
search algorithm has SNRSEG below that of the reconstruc­
tion by the focused search algorithm. 

N~+): number of signals whose reconstruction by the given 
search algorithm has PSQM above that of the reconstruction 
by the focused search algorithm. 

N~-): number of signals whose reconstruction by the given 
search algorithm has PSQM below that of the reconstruction 
by the focused search algorithm. 

Table 8. Performance of fixed-point versions of four ACELP 
search algorithms over the test partition of the TIMIT 
database. 

female and 10 male listeners evaluate five versions of four 
sentence pairs played through headphones in randomized or­
der for each speaker. Each stimulus consists of two short 
sentences of about 3 seconds with an intervening 0.5 sec­
ond silence gap and all the sentences were extracted from the 
Polidata Speech Database created by the Man-Machine Com­
munication Group (MMC) in 1997 at the University of Sao 
Paulo. The same Portuguese text was uttered by two male and 
two female speakers in an office environment. The format of 
the test was an absolute category rating (ACR) with as-point 
scale where 5 is excellent and I is bad [30] and the results 
are shown in Table 9. The joint search algorithm is perceived 
as equivalent to the other search procedures and, surprisingly, 
the three efficient search methods have performed better than 
the more extensive focused search. It has been previously 
pointed out that sparse excitation can have a superior percep­
tual effect [5] but not associated with reduced search algo­
rithms. Therefore, the degradation detected by the objective 
measures has gone unperceived, or rather has possibly been 
compensated for by other perceptual characteristics. Actu­
ally, some subjects have reported a more pleasing experience 
listening to some stimuli despite their lower sharpness. 

9. CONCLUSION 

The features of deterministic sparse codebooks have been 
analyzed and exploited to derive the joint position and am­
plitude search (JPAS) algorithm. A three-tiered classifica­
tion of multistage searches is presented which encompasses 
standard CELP two-stage adaptive-fixed codebook searches 
as well as multistage multipulse searches. Thereafter, the 
JPAS innovation search has been described and classified as 
a two-dimensional optimized sequential search. The JPAS 
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I Listen. I Speak. ~ Oriz. I FOCS I JPAS I DFTS I EFR I
~ 

Female Female 3.50 3.30 3.50 3.40 3.55 
Male Female 4.45 3.55 3.55 3.70 3.90 
Female Male 3.70 3.75 3.90 3.70 3.75 
Male Male 3.60 3.80 3.75 3.95 3.75 
Female All 3.60 3.52 3.70 3.55 3.65 
Male All 4.03 3.68 3.65 3.82 3.82 
All All 3.81 3.60 3.68 3.69 3.74 

-

Table 9. Subjective quality of fixed-point versions of four 
ACELP search algorithms in ACR tests from recordings 
taken with environmental office noise. 

algorithm has been tested within both the G.723.1 and the 
G.729 reference coders in floating-point and fixed-point im­
plementations, respectively. For the fixed-point versions. the 
operational complexity of the joint search is lower than one 
quarter as many operations as the focused search algorithm 
without incurring in any perceptual degradation. Further, for 
the floating-point versions, it takes the joint search just two 
thirds as long as the focused search to execute. Such reduc­
tions in complexity may enable new applications for CELP 
coders with deterministic sparse codebooks. 
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