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Abstract - In this paper we descri be the UMMP (Universal 
Multiscale Matching Pursuits), a practical universal 
algorithm for multi-dimensional data lossy compression. 
The method is based on approximate multiscale matching 
of recurrent patterns. It uses a dictionary of basis functions 
in which the data is decomposed in the spirit of Mallat's 
Matching Pursuits (MP). Unlike MP however, UMMP 
builds its own dictionary while encoding the data, instead 
of using a previously defined one. Also, all basis functions 
can be contracted or dilated to better match the input data 
during the expansion. This allows the algorithm to perform 
arbitrarily close to the source's D(R) function when the rate 
goes to zero. Simulation results show that it has good coding 
performance for a large class of data. 

Resumo - Neste artigo nos descrevemos 0 UMMP (Uni
versal Multiscale Matching Pursuits), urn algoritmo pra
tico universal para cornpressao com perdas de dados multi
dimensionais. a metodo e baseado em casamento aproxi

.ado multiescala de padroes recorrentes. Ele usa um di
~.LJnario de juncoes base nas quais 0 dado e decomposto 
';:i=undo 0 algoritmo Matching Pursuits (MP) proposto por 
.'vIallat. Contudo, ao contrario do MP, 0 UMMP constroi seu 
dicionario enquanto codifica 0 dado, ao inves de usar urn di
cionario pre definido. Alem disso, todas as funcoes no di
cionario podem ser contraidas ou dilatadas para que se adap
tern melhor ao sinal de entrada durante a expansao. Isto per
mite ao algoritmo urn desempenho arbitrariamente proximo 
da funcao D(R) da fonte quando a taxa tende a zero. Resul
tados de sirnulacoes mostram que 0 UMMP apresenta born 
desempenho com uma ampla classe de dados, 

Keywords: Universal Lossy Compression, Multiresolution, 
Matching Pursuits. 

1.	 THE COMPRESSION PROBLEM 

When we face the problem of digital signal compression, 
we are lead to question how much one can compress a 
particular signal. In other words, we want to know how 
many bits are necessary to describe a source of data within 

a given reproduction quality. This problem is studied in 
the rate-distortion theory, a branch of the information theory 
[2, 3] introduced by Shannon. In this theory a source is 
characterized by its statistical properties. Over the last 50 
years, rate-distortion theory studies have focused to a large 
extent on the derivation of performance bounds for the trade
off between coding rate and achievable distortion for a given 
source. This trade-off is called R(D) function of the source, 
where R is the average rate required to describe any output 
produced by the source with average distortion at most 
D. One can show that the R(D) function of any source is 
a decreasing and convex function defined over the interval 
[0, Dm Qx ] [4]. Dm Qx is the smallest average distortion that 
can be obtained using zero bits to describe the source (at zero 
rate we use always the same pattern to approximate the actual 
output produced by the source). In other words, if we want 
more quality we have to pay the cost of using more bits. The 
R(Di function defines the achievable performance of any 
compression code, that is, the rate of any compression code 
must satisfy R 2: R(D). 

2.	 CLASSICAL SOLUTIONS TO "rHE 
COMPRESSION PROBLEM 

There are several methods to compress a discrete source with 
zero distortion at rates arbitrarily close to R(O). the entropy 
of the source. A compression with zero distortion is caJled 
lossless. Huffman coding, arithmetic coding and Lempel
Ziv [4, 5J coding are examples of such lossless methods. 
The rate of these codes approaches the source entropy, at 
least when the number of source symbols processed is large. 
Huffman and arithmetic coders require the knowledge of a 
statistic model for the source in order to be implemented. 
This means that they are matched to a particular source and 
only achieve optimum performance for that source. Adaptive 
versions of them start with an initial model that is updated 
as the encoding proceeds. The Lempel-Ziv algorithm on the 
other hand is universal in the sense that no source model is 
required and the code rate equals the source's entropy rate 
when the number of source symbols tends to infinity. 
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2.1. LOSSY COMPRESSION: THE TWO-STEP transformations where a vector X of size N is represented 
APPROACH as a linear combination of .N basis vectors bl,- as: 

A compression scheme with distortion different from zero 
is called lossy. Unlike the lossless compression case, a 
universal method for lossy compression whose performance 
achieves R(D) for any source is unknown. A widely used 
solution to the problem of lossy compression is a two-step 
approach: In the first step, we create a version i' of the 
source x with smaller entropy, H(.T) < H(x). This step is 
called quantization and is done by a non-invertible mapping 
:i: = Q(a;) (If the mapping was invertible, then the entropy 
Hun would necessarily equal H(x)). In the second step, 
the entropy coding step, we apply any lossless compression 
method to i. 

Two basic types of quantizers are the scalar and the 
vector quantizers. A scalar quantizer encodes the source 
in a sample-by-sample basis, while a vector quantizer (VQl 
encodes blocks of jy samples, or vectors, at once. The VQ 
divides the N dimensional space into regions and associates 
one reproduction vector to each region. The theory of scalar 
and vector quantization is well developed an tells us how to 
chose the intervals/regions and reproduction values/vectors to 
maximize different performance criteria. For example there 
are the Loyd-Max quantizers [6] optimized for minimum 
distortion when used with a given source. If we are willing 
to skip the entropy coding step in order to reduce the 
implementation complexity, this can be the best approach. 
However, if we wish a performance closer to R(D), we 
can use the entropy-constrained quantizers [7], optimized to 
minimize distortion while keeping the output entropy fixed. 
Vector quantizers get performance closer (although usually 
not equal) to R(D) than scalar ones, and performance usually 
increases with the number of dimensions. 

2.2.	 LOSSY COMPRESSION: THE THREE-STEP 
APPROACH 

Sometimes, a simpler statistical source model can be found 
if we perform a transformation on the data before we 
apply a compression scheme. This usually leads to better 
performance even if the compression scheme is adaptive 
since simpler statistics tend to be learned faster. For 
example, in image compression applications, almost all high 
performance coders employ such transformation step prior 
to compression. This is called the three-step approach: 
The first step is a transformation step where data from the 
source is transformed to another domain: for example the 
DCT (discrete cosine transform) in the JPEG coder [8] and 
the DWT (discrete wavelet transform) in SPIHT and EZW 
coders [9, 10]. This transformations allow the use of simple 
although useful assumptions on the source model in the 
transformed domain. The second step is the quantization 
step where the entropy of the transformed source data is 
reduced by quantizers optimized for the transformed source. 
The third step is the entropy coding step where redundancy 
on the quantized data is reduced by lossless compression 
algorithms. 

Still-image codecs based on the DWT usually outperform 
those based on the DCI. Both DWT and DCT are linear 

N-1 

X =	 L ,1'kbk (1) 
1.-=0 

The 1\' coefficients XI.' are the components of a vector ,1' 
that is the transformed version of X. The properties of a 
transformation depends on the choice of the basis vectors. 
For example, the DCT basis vectors are well localized in 
frequency but poorly localized in time. If we want to 
represent a vector well localized in time, like an impulse, 
using the DCT, we get a representation where all coefficients 
contain significant energy, because the information we need 
is spread across the hole basis. The DWT basis vectors 
are better spatial localized and can handle vectors like the 
impulse better than the DCT, but for vectors well localized in 
frequency the DCT can perform better than the DWT. 

It would be interesting if we could have vectors well 
localized in time and in frequency in the same basis. One way 
to achieve that is to drop the linear independence constraint 
an move to over-complete expansions using frames instead of 
bases. 

A set of vectors V = {cPdfc'::ol in a Hilbert space H is 
called a frame [1I] if there are two constants A > 0 and 
B < 00. such that for all X E H: 

AIIXI1 2 :s L 1< cPk'X > 12 :s BIIXI1 2 
(2) 

I.' 

where < ., . > denotes inner product. 
The constants A and B are the frame bounds and when 

A = B the frame is tight. 
If ilcPkli = 1 for all k, then the constant A gives the 

redundancy ratio of the tight frame. For example if A = 2 
there are twice as many vectors as needed to span the space 
H. 

A vector X E H can be represented as a linear 
combination of the K > JY vectors cPk E F as: 

K-1 

X=	 L XkcPk (3) 
1.-=0 

The expansion in equation 3 is not unique because the 
vectors in the frame are linearly dependent. In fact, the linear 
dependence means that 'L:f.:r} QkcPk = 0 has a nontrivial 

solution (some o.i. i- 0) so X = 'L:~~o\l'k + ak)cPk is also 
a valid expansion. 

3.	 THE MATCHING PURSUITS 
ALGORITHM 

We can use a subset of JY < K vectors from V to 
approximate X as: 

7\'-1 

x -. Lai.(f)ki	 (4) 
i.=o 
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We would like to minimize the error norm 1IX- XI 12 in the 
approximation of equation 4 by choosing the _Y best vectors 
of V to represent X. Instead of trying to find at once those _Y 
best vectors (it is an NP hard problem [12]) we can find a sub
optimal-N solution by a greedy algorithm called matching 
pursuits [13]. The matching pursuits algorithm attempts to 
optimize the choice of vectors from D one at a time. 

The decomposition begins by choosing the 
/;:0 value that maximizes the inner product 
< <Pho' X >. Then a residue R 1 X is computed as: 

X 

ROX- < <Ph RIlX > <Ph, (5)• u 

This residue R 1x is then expanded in the same way as x. 
At step n we have: 

After N steps, the vector X can be approximated like in 
equation 4 as: 

IV-I 

X = L < <ph,.RiX > <Pic, (7) 

7.=0 

This procedure is quite general and convergence is 
guaranteed for any arbitrary frame as 1V --c> ')C. However, 
if the frame is an orthonormal basis (A = 1 and 1I =I 

1), then the matching pursuits algorithm finds the optimal 
solution in N steps. MP has some useful properties. For 
example it has the energy compaction property since the 
frame elements which are closer to the vector x are chosen 
first. Therefore the vector and the coefficients used in 
the expansion are naturally ordered by importance. In 
[13] a frame of gabor functions (time-scaled, shifted and 
modulated Gaussian functions) was used with matching 
pursuits defining an adaptive time-frequency transform with 
good resolution both in time and frequency. 

The three-step solution for the compression problem has 
some important characteristics: 

• The optimal transform may be data dependent. 

•	 The design of the quantizers rely on optimization 
techniques and are strongly dependent on the source 
model's choice. If the source statistics varies widely or 
is unknown, some kind of adaptive quantization should 
be used. 

•	 The transform, the quantizer and the entropy code can 
be designed independently but the performance usually 
improves if we jointly optimize the three steps. For 
example, in [7] an ECVQ is optimized considering a 
huffman code for entropy coding. 

This characteristics lead us to search for adaptive methods 
for lossy data compression that combine the three steps in 
one. 

In the next section we describe The UMMP algorithm. It is 
based on matching pursuits, but it creates its own frame while 
expanding the data. It also uses string matching to achieve 
entropy coding, merging transformation, quantization and 
entropy coding in a single step. 

4. UMMP DESCRIP1"ION 

The Matching Pursuits algorithm (MP), described in section 
3., operates with an overcomplete fixed dictionary D that is 
known before the expansion of the data begins. In a sense 
the expansion is adaptive since MP explicitly chooses the 
subset D opt of the dictionary V that better fits the input 
data. However, the level of adaptation available depends 
on the amount of redundancy of the dictionary vectors. If 
the dictionary is highly redundant, the expansion is highly 
adaptable but the cost to encode the dictionary indexes 
is also high. It would be interesting to investigate some 
method that, instead of just using a subset D op t of the 
dictionary, attempts to build V opt directly while encoding 
the data. The Lempel-Ziv algorithm [5] is a lossless 
compression algorithm based on matching variable-sized 
vectors extracted from the input signal with variable-sized 
vectors in a dictionary. This algorithm builds its dictionary 
by incl uding in it concatenations of previously encoded 
vectors. Since the algorithm is lossless, the components of 
the vectors constructed by concatenation are likely to form 
typical sequences [4]. Therefore the algorithm performs 
entropy coding because the dictionary is composed by typical 
sequences that become almost equally probable as the size 
of the dictionary vectors increases. We can use the rule 
of concatenation of previously encoded vectors to build a 
lossy compression algorithm based in Matching Pursuits that 
attempts to build a dictionary V opt . 

We now describe UMMP (Universal multiscale Matching 
Pursuits) [1]. an algorithm to lossy compress data from any 
source without previous knowledge of irs statistics. UMMP 
operates on a vector X = (Xo ... XiV-1) T output by a vector 
source x = (:ro ... X'N_l)T It uses: 

I) 

1.	 A dictionary V of vectors, initially set to V o 
{so .... ,SiU-l}, as the frame to expand the data, 

2. A scalar quantizer defined by the	 set of reproducing 
values Q = {o:o .. ·· ,O:K-d and 

3. A target distortion d*. 

The dictionary vectors are not normalized. To begin the 
expansion, all the vectors in V o are initially scaled to size 

N using a transformation s;N) = T,~S,) lSi], where {(S7) 
is the length of S7' The scale transformation is a function 
Tl/ : ]R;.M --c> ]R;.N that maps a vector of size iII into 
a vector of size N. For the sake of simplicity, we will 
drop the superscript C(s;) and write just TN [sd for the scale 
transformation. In the spirit of matching pursuits, UMMP 

searches for the vector s; ,V) which maximizes the inner 

product < S;"\') I i IS;IV) II, X >= siN) T XIII s;N) II. It then 
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chooses Ok E Q to minimize the residue R = X -OkS;'''"). If 
the residue's squared norm i[R! 1 

2 is not greater than the target 
distortion d* times the vector size N, then the expansion is 
finished. Otherwise, the residue R = (Ro ... Rv_dT is 
parsed in two segments R' = (Ro ... Rp_dT and 
RI/ = (R p ... Rx_tlT.p E [0. iV - 2]. 

For example, let 

X=(1 23-1..56 6)T,Do [1},d* 0.5 
and 
o -~ -- {-_.') - 1,--- 0.0.- 0, 0".0. 1,_?}. 

•	 We first scale all vectors in the dictionary to length 7, 
that is,
 

So = T7 [so] = (1 1 1 1 1 1 1) T
 

•	 Then we evaluate the inner product
 
< X.so/llsol! >= 10.2050.
 

•	 To minimize the residue's norm we choose 
X 
, 

= 06So = (2 2 2 2 :2)
T 

. Therefore 

R = X - X = ( -1 o 1 2 3 -1. 4)T and 
IjRli:2 =-1.7. 

•	 Since liRII:2 > Nil" 3.5 the residue is split in two 
segments R' and RI/ . 

The segmentation point p can be chosen to minimize some 
performance criterion. For example, we could choose p 

such that IIR' --- R'il 2 + I[RI/ - RI/ii 2 is minimum, where 
R' and R" are the best approximations to R' and RI/ that 
we can make using the current dictionarv D. In the above 

~ . T 
example, the best p equals 2 so R' = (-1 0) and 

RI/ = (1 2 3 -1. 4) T. This process is illustrated 
in figure I. At this moment we have an integer sequence, 
composed by a scalar quantizer index l: = 6, a dictionary 
index i = 0, a one bit flag 0 to indicate splitting and a 
segmentation point p = 2, representing the encoded data. 

Next, all the vectors in D are scaled to size p using a 

transformation s)1') = T1'[s;J and the same procedure is 
recursively applied to R'. Then the vectors in D are scaled 

to size N - p using a transformation six-1') = Tx-1'[s;J and 
the process is repeated for RI/. After that, we will have two 
approximations R/ and RI/, and we can then form an estimate 

- - T . T 
of the original residue R as R = (R' RI/ )T. Finally, the 

dictionary D is updated by including Rand R + OkS;V) in 
it. In our example, the first segment R' will be parsed in 
two, and each part will be successfully approximated by the 
vectors in the dictionary. After that the algorithm updates 
the dictionary and then proceed to encode R". Figure 2 
illustrates the recursive application of the procedure to R' 
and figure 3 illustrates the procedure applied to RI/. 

The UMMP algorithm has some interesting features: 

i ) 

I.	 Due to the use of the multiscale approach, UMMP can 
perform arbitrarily close to the source R(D) when d" --; 
ex. Other attempts on universal lossy coding, such as the 
Lossy Lernpel-Ziv, usually have performances bounded 
away from the R(D) at these rates [14,15]. 
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Figure 1. Segmentation of the first residue. 

2.	 Fidelity criteria other than the mean squared error can 
be easily accommodated in the algorithm. 

3. It is easily extendable to higher dimensions.	 That is, 
instead of operating on a vector it can operate on a 
matrix or multi-dimensional array. 

4.	 It is fully adaptive and therefore universal at least in 
the sense that no prior knowledge of a source model is 
needed for it to perform best. 

5.	 It merges the transformation, the quantization and the 
entropy coding steps of the three step approach in one. 

We also observed, after some computer simulations, the 
following properties: 

I.	 If we are using log2(N) bits (using for example an 
arithmetic coder with uniform N-level distribution) to 
encode p, we found that it is better, in a rate-distortion 
performance sense, to use a fixed segmentation point 
p = N /2, and encode it with 0 bits. Unless a more 
complex integer code is used for p, the gain we get with 
the better partition is not worth the increase in bit rate. 

')	 Better performance is achieved if the quantizer has one 
reconstruction level. Q = {1}. We observed that 
when the number of quantization level increases, the 
number of segmentations (and therefore the number of 
different vectors learned by the algorithm) decreases 
and vice-versa. In fact. the algorithm learns the same 
basis vectors with several different amplitudes when 
the number of quantization levels is small. Therefore, 
unless a complex joint entropy coding method is used 
to encode both the dictionary indexes and the quantizer 
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Figure 3. Coding of the second segment of the first residue. 

Figure 2. Coding of the first segment of the first residue. 
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indexes, it is better to use a one-level quantizer and allow 
the dictionary to explore the joint statistics. 

5.	 IMPLEMENTATION DETAILS 

We have implemented UMMP in computer programs. 
We wanted to evaluate the rate-distortion performance of 
UMMP when applied to two-dimensional data. specifically 
gray-scale digital images. So we implemented the two
dimensional version of UMMP. the 2D- UMMP, that operates 
on two-dimensional arrays, or matrices, instead of vectors. 
The basic difference to the one-dimensional algorithm is that 

the segmentation point p = (PI Pc) T is a point in a two
dimensional space. We use as the squared norm IIXil2 of a 
matrix X the sum of its squared elements. If we allow generic 
segmentation points, a residue matrix R is segmented in four 
sub-matrixes as: 

R- ( R ' R" ) (8)R'I! RI!I! 

The sub-matrices in equation 8 are of sizes 
PI x Pc· (PI x (M - Pc)' (N - pz) x Pc and 
(N - pI) x (iII - Pc). As in the one-dimensional case 
however, we get better performance if we use a fixed 
partition rule that splits the residue matrix in two. The rule 
we adopted is: 

•	 if R is N x M where N > M; thenpz = _\'1'2 and 
Pc = O. 

•	 else PI = 0 and Pc = M/2. 

We	 have implemented 2D-UMMP with this fixed 

2. find index	 i in the dictionary such that IIX - sVV.iII) II is 

minimum and make X = s~NiII). 

3.	 output index i 

4.	 if N = M = 1 return X.
 
else go to step 5.
 

5.	 if IIX - XW 'S Nl\Id* then output flag '1' and 

return X. 
else go to step 6. 

6. make R = X - X and output flag '0'. 

7.	 if N > M split R = ( ;::, ), 

where R' and RI! are N /2 x !II
 
else split R = (R' RI!)
 
where R' and RI! are N x !lI/2
 

8. compute R' = encodefR'. d*) 

9. compute RI! = encodejR", d*) 

10.	 if N > M make R = ( ::, ), 

else make R = (R' RI!) 

11. make X = X + R. 

12.	 D=DU{X}U{R} 

13.	 return X 

Decoding is easily done following the procedure below: 
segmentation rule. This implementation also used a one Procedure X = decode(N, iII): 
level scalar quantizer Q = {I} because, as in the one-
dimensional case, this lead to better performance. The scale step 1 
transformation in the two-dimensional case is a function 
T~{'jt : Jl{J{L Jl{NM that maps a matrix of size K L----7	 x 
into a matrix of size N x M: We have limited the matrices 
sizes to powers of two, that is, X must be of size (iY x M) = 
(2K X 2L ) with K. L integers. The 2D-UMMP is described 
next. 

Let: 

•	 X be an U\- x M) = (2K 
X 2L ) matrix. 

•	 D = {so, ... , S I _ d. a dictionary with I matrices of 
arbitrary sizes. This dictionary must be initialized to 
D=Do. 

•	 d: be a target distortion. 

•	 TN,iII [X] be a scale transformation that maps the matrix 
X in a matrix of size N x 1\1. 

Procedure X = encode(X. d*): 

step 1 

I.	 scale all matrices in the dictionary D to the size of X, 
that is evaluate s;'\ .M) = TN .J I [Si] for i = O..... IV: 
1. 

1. input index i 

2.	 if }\' = M = 1 return X = TN,J\I[Si]. 

else go to step 3. 

3. input flag. if flag = 1, return X. 
else go to step 4. 

4.	 if N > III make n = IV/2 and m = M, 
else make n = Nand m = M/2. 

5. compute R' = decode(n, m) 

6. compute RI! = decode(n, m) 

7.	 if r: > M make R = 

else make R = (R' 

8. make X = X + R. 

9.	 D = D u {X} U {R} 
_ 

10.	 return X 

( ::, ), 

RI!) 

30 



Revista da Sociedade Brasileira de Telecomunlcacoes 
Volume 15, Nurnero 1, junho 2000 

38 ;::::>:;::::-::>,<f_~J/· 
36 

:E'.. 34 "([ 
z ,;~ 32 

30 20-UMMP-
JPEG-

/28 

26 

I 
24 L1 -~------c~~-c--~-~-'-:---~-~-o----c:' o	 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 22 

Bfbits/ptxelj 

figure 4. Rate x distortion for 2D-UMMP with LENA 512 x 
- - .J 

We used a multiple dictionary approach to speed-up the 
execution of the algorithm as follows: Instead of applying 
the scale transformation TN,M [.J to all matrices s, of the 
dictionary Veach time we want to use it, we keep a copy 
of the dictionary at each different possible scale. Therefore 
we only compute the scaled version of a matrix once, at 
the time of its inclusion in the corresponding copy of the 
dictionary. It should be noted that the decoding algorithm 
is much faster than the encoding algorithm. In fact, most of 
the computational effort at the encoder is on the search for the 
optimum element of the dictionary. The decoder, on the other 
hand, performs simple look-up table and update operations. 

6. EXPERIMENTAL RESULTS 

We used the computer programs to lossy compress the image 
LENA 512 x 512. The image was initially divided in 8 x 8 
blocks that were processed in sequence by the algorithm. 
Figure 4 shows the results for 2D-UMMP. The size of the 
dictionary was limited to !VI :::; 8192 by the use of a 
pruning strategy. Whenever a new element is included in the 
dictionary, the least used element is discarded. The initial 
dictionary was V o = {-128.-12---L ... ,0.4, ... ,+128}, 
of cardinality 64. The transformation TN M [ · ] was a classical 
sampling rate change operation using a linear interpolator as 
the filter [16]. The integers output by the algorithm were 
encoded using an adaptive arithmetic coder with different 
models for the dictionary indexes at each scale. The flags 
were also encoded using the adaptive arithmetic coder with 
independent models for each flag. Also shown are the results 
for JPEG [8] for reference. The performance of UMMP with 
LENA is very good for a universal algorithm, being close to 
JPEG, a still-image-optimized transform coder, 

Figure 5 shows the performance of 2D-UMMP with a 
Gaussian memoryless source. The parameters used in 
the algorithm were the same as in the case of the image 
LENA. The source X was a 256 x 256 matrix of samples 
of a memoryless Gaussian process with mean 128.0 and 
variance 960.0. Also shown are the expected performance 
of a vector quantizer with 8192 samples of a memoryless 
Gaussian vectors with the same mean and variance as X , 
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Figure 5. R(D) curve for 2D-UMMP with Gaussian 
mernoryless source. 

Figure 6. LENA at R = 0.22 bits/pixel and PSNR = 29.73 
dB. 

the performance of the ECVQ, and the optimum theoretical 
R(D). We can see that the performance is not far from the 
ECVQ, that is optimized for this source, and superior to that 
of JPEG, optimized for other type of source. This illustrates 
the universal character of UMMP. 

Figure 6 show the image LENA 512 x 512 at rate R = 0.22 
bits/pixel and PSNR = 29.73 dB. Figure 7 show the image 
LENA 512 x 512 at rate R = 0.55 bits/pixel and PSNR = 

33.93 dB. 

7. CONCLUSION 

We described UMMP, a universal algorithm for multi
dimensional lossy data compression based on approximate 
matching of recurrent patterns with scales. UMMP uses 
concatenations of previously encoded vectors to adaptively 
build a dictionary while encoding the source. The 
vectors in the dictionary can be dilated/contracted and 
are used to expand the input data. UMMP is naturally 
extendable to higher dimensions, effectively exploiting multi
dimensional correlations. When applied to still-image data, 

31 



Murilo B. de Carvalho, Eduardo A. B. da Silva and Weiler A. Finamore 
Universal Multiscale Matching Pursuits 

Figure 7. LENA at R = 0..5.5 bits/pixel and P SJYR = 33.93 
dB. 

the performance of UMMP was close to the image-optimized 
JPEG. When applied to data from a memoryless Gaussian 
source, its performance was not far from that of an ECVQ, 
optimized for that source. This results are very good, 
illustrating the universal character of UMMP. 
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