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Resumo - Apresenta-se uma nova heurfstica para 0 pro
blema de mores de Steiner minimas. 0 metodo proposto 
baseia-se na detecao de classes particulares de nos, os conjun
tos de "nos quentes", que sao usados para uma melhor aproxi
macae das solucoes otimas. Propoe-se um algoritmo capaz 
de melhorar 0 desempenho de solucoes heurfsticas classicas. 
Comparacoes sao feitas com um metodo enumerativo e com 
metodos heurfsticos classicos, 

Abstract- A new heuristic for the Steiner Minimal Tree 
problem is presented here. The method described is based on 
the detection of particular sets of nodes in networks, the "Hot 
Spot" sets, which are used to obtain better approximations of 
the optimal solutions. An algorithm is also proposed which 
is capable of improving the solutions obtained by classical 
heuristics, by means of node rearrangements in the solution 
tree. Classical heuristics and an enumerative method are 
used as comparison terms in the experimental analysis which 
demonstrates the goodness of the heuristics discussed in this 
paper. 

Keywords: Steiner Tree Problem, Multicast Routing, 
Minimum Path Heuristics. 

1. INTRODUCTION 

New distributed applications, such as video-conference, 
and voice and video distribution, require simultaneous 
transmission of data to multiple destinations [1J. The network 
load caused by multimedia applications can be reduced using 
ad hoc multicast techniques, that is, by sending a message to 
its intended receivers, whenever possible through common 
paths. New standards for packet switched networks, such 
as Asynchronous Transfer Mode (AlM) and Frame Relay 
provide already support for multicasting. 
A problem arises from these new exigencies, namely, to 
identify the best path capable of connecting source and 
destinations, minimising its total cost. This problem is 
well known under the name of Steiner Tree Problem [2, 
8, 13J, and in its classical formulation has been proved to 
be NP-complete. Many heuristics [9, 11, 13J, capable of 
isolating sub-optimal solutions in polynomial time have been 
proposed in the past years. In this paper we present a 
new algorithm, which is capable of minimising the cost of 
the solution tree found by classical heuristics, and which 

improves the solution tree by arranging nodes and edges in 
the tree according to a minimisation criterion. The main 
topic of this paper is represented by a new heuristic for 
the Steiner Tree Problem in Networks (SPN) [13]. The 
heuristic proposed uses a particular set of nodes, the Hot 
Spot set. A hot spot vertex is a node which has intrinsic 
proprieties derived from network topology and terminal node 
distribution. An algorithm was designed with the aim of 
using effectively the Hot Spot set. This algorithm is based 
on the same incremental tree construction strategy as the 
Minimum Path Heuristic (MPH) algorithm [l l], but it adopts 
a different metric and makes use of a temporary insertion 
of the hot spot nodes during the tree growing phase. The 
terminology and notation used here are described in Section 
2, and some classical heuristics are summarized which will 
be used as comparison terms. Their performance guarantees 
and complexities are also presented. Section 3 deals with 
the process which improves the trees generated by classical 
heuristics (the "stirring" process). Section 4 defines the Hot 
Spot characteristics and section 5 describes the Hot Spot 
detection process, the tree construction and the complexity 
of our algorithm. The final part of the paper (section 6) is 
devoted to the experimental analysis, based on the results of 
a wide range of tests. 

2. STEINER TREE HEURISTICS 

In this section a short summary of previous Steiner Tree 
Heuristics is presented, and some basic notations and terms 
are introduced. 
Given a graph G = (V, A) with node set V (IVI = n) and 
edge set A (IAI = a), we will use Z C V (IZI = m) 
to indicate the subset of terminal nodes, S = V - Z to 
indicate non-terminal nodes, and ZQ E Z the source node. 
Given a cost function cost(e) with e E A, we want to find 
a tree T = (VT,AT) with VT ~ V and AT ~ A, which 
spans the terminal nodes and has a minimal overall cost. 
The Steiner Tree Problem, as defined here, has been proved 
to be NP-complete. Many heuristics proposed in the past 
years have been capable of identifying sub-optimal solutions 
with polynomial complexities. Among these, the Pruned 
Dijkstra Heuristic (pDH) [13J, the Minimum or Shortest 
Path Heuristic (SPH or MPH) [l l ], the Distance Network 
Heuristic (DNH) [13J, the K-Shortest Path Heuristic (K-SPH) 
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[9], and so on. Some of the heuristics which we used as bases 
for our algorithm are briefly described here. 
The simplest heuristic PDH comes from Dijkstra's Shortest 
Path Tree algorithm [5] which is capable of isolating the 
shortest paths from a given source to all the other nodes on 
the network. The PDH simply prunes all the S-vertices of 
degree one (one at time) from the shortest path tree (SPT) 
until none are left. 
The DNH builds the distance network K; induced by Z. 
It constructs the minimum spanning tree (MST) on the K z 

network and replaces the virtual links with the real paths 
(the nodes and links of the initial network), thus obtaining 
Gz , a subgraph of the initial network. It then computes the 
minimum spanning tree (MST) on Gz and finally prunes all 
the S-vertices of degree one. The:MPH builds a subtree of 
G in an incremental fashion: it starts off by selecting an 
arbitrary node among the terminal nodes (typically the source 
node) and then progressively adds the terminal node nearest 
to the tree, including the nodes and edges of the connecting 
path. The K-SPH is an improvement of the :MPH algorithm. 
It builds a forest of subtrees joining together the closest nodes 
or subtrees until a single solution tree has been obtained. 
The efficacy of these heuristics can be measured in terms 
of the ratio between the cost of the solutions they are able 
to identify, and the cost of the optimal solutions. Many 
algorithms capable of identifying the optimal solution tree 
have been proposed in the past. All of them are characterised 
by an exponential complexity. Among these, the Spanning 
Tree Enumeration Algorithm (STEA) [13] has been adopted 
to produce the optimal solution tree we have considered as 
comparison term. 
Table 1. summarises the complexities and performance for 
the algorithms discussed above. 

Algorithm Performance Complexity 
[. Guarantee 

PDH m O(n ) 
DNH 2 O(mn2 ) 

:MPH (SPH) 2 O(mn2 ) 

K-SPH 
STEA 

2 
1 

O(mn2 ) 

O(m22 (n - m ) + n3 ) 

Table1. Performance Guarantee and Complexity 

3. "rHE STIRRING PROCESS 

The tree construction process of the :MPHalgorithm involves 
the addition of the nearest Z-node z; to the transitory sub-tree 
Tc Nevertheless, the minimum path between the selected 
node Zi and the successive sub-trees Tj (with j > i) does 
not remain constant during the tree growing process, because 
the insertion of further nodes into the tree could reduce the 
cost of the connecting path of a previously inserted node. 
For this reason, we considered the possibility of recalculating 
the "grafting" point of each node of the tree at the end 
of the :MPH algorithm. By the term "grafting point" of a 
node ni in a tree, we mean the closest ancestor of ni which 

has at least two children (degree 2: 3). For any node 
ni, we check the existence of a node nk in the tree with 
d(ni' nk) < d(ru, n a ) where na is the current grafting point, 
and nk does not belong to the path < ni, n a > and is not 
a descendant of ru. If such a node nk is found in the tree, 
the path < ni, n a > is replaced by the < ni, nk > one. 
This procedure is executed for each node which is a leaf of 
the tree (degree = 1) or a grafting point (degree 2: 3). 
Path replacement may provoke the insertion of new nodes 
into the tree. Increasing the subset of nodes extends the 
solution space explored by the heuristic. The stirring process 
is repeated until no further improvement can be obtained in 
the solution tree. The process described here has been used 
in an improved version of the MPH algorithm, which will 
be referred to below as S:MPH. In section 6.2 a comparison 
is made between the results obtained by the S:MPH and the 
ones obtained by classical heuristics. 

4. HOT SPOT DEFINITION 

Classical heuristics use the terminal node set as their starting 
point in the construction of the solution tree. The solution 
trees generated by the various heuristics reveal significant 
differences in internal nodes. Most of the terminal nodes 
are leaves in the tree, i.e. they are nodes of degree one 
in the solution tree. Some of the nodes in networks have 
a high probability of representing relevant switching points 
to cover the multicast subset. In other words, such a node 
allows lots of terminals in a solution tree to be reached. 
If we could define a value for each node in a network, 
providing a measure of the number of terminal nodes which 
can be efficiently reached through it, then high value nodes 
would have a high probability of being present in the optimal 
solution tree. The definition of the characteristics of this 
kind of node is important in identifying them in the network. 
where each node can generally be used to reach any other, 
even if not very conveniently. The value attributed to each 
node should be related to the number of terminal nodes 
accessible from it at low cost, and this can be done using 
the sum of all the shortest path costs towards each terminal 
node. Value attribution determines node classification in the 
network. Nodes which have the highest values are selected to 
act as switching points, and they will be referred to below as 
"Hot Spots" (HS). The definition given above means that the 
Hot Spot set is heavily dependent on the terminal node set. 
Different terminal sets will generate different Hot Spot sets. 
In Figure 1., a simple example is shown in which the classical 
heuristics :MPH and KSPH fail to find the optimal solution, 
whilst the usage of Hot Spot nodes is shown to be effective. 
The network has four nodes, the source is the node s and the 
terminals are the nodes i and j. The execution of :MPH on 
this network yields a solution tree with a cost equal to 200. 
However, if we consider the node h as Hot Spot, and require 
its inclusion in the solution tree, we obtain a lower cost, equal 
to 153. Other similar situations can obviously be imagined 
in more complex networks and topologies. In the following 
section we will discuss a method employed to detect and use 
the Hot Spot nodes. 
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Figure 1. A four node graph and two different multicast trees 

5. THE HOT SPOT HEURISTIC 

The idea which is the foundation stone for our heuristic is 
based on the concept of score propagation among the nodes 
of the whole network. The concept which inspired this 
approach is related to the diffusion of a message from some 
intensive producers (sources) towards other network entities. 
These target entities receive messages from all sources and 
collect them to determine their own score. The nodes with 
the biggest scores will be eligible as Hot Spots. This simple 
idea has been adapted to suit network characteristics, and to 
the SMT problem. In this case, the terminal nodes represent 
the sources which generate the signals. The signal intensity I 
of the terminal nodes is determined as the maximum among 
the costs of the shortest paths between each terminal and all 
the other nodes of the network. Basically, signal propagation 
from the terminal m to the generic node v is carried out 
decreasing the source signal intensity by the cost of the 
shortest path between m and v. The score of the generic node 
l' is evaluated as the collective strength of the signals from all 
the Z-nodes: 

score(v) = L 1- d(v,m) (1) 
mEZ 

where: I = max {d(m, v)} 
mEZ,vEV 

and d(v, m) is the cost of the shortest path from node v to 
node m. In this way, a node which is powerfully influenced 
by lots of other terminal nodes can collect a high score, and 
this implies a high probability of being a critical switching 
point towards its nearest terminal nodes. Of all the nodes, 
we identify a subset of those which have the first highest h 
scores in the network. The h value depends on the number of 
terminal nodes and the network size. This method produces 
a sequence of Hot Spots (HS) which can be used in the 
construction of the solution tree. It should be noted that 
some of the selected Hot Spots may belong to the same 
neighborhood of the network because such an area might 
be characterised by the strong influence of lots of multicast 
nodes. The selection of more HS belonging to the same 
neighborhood allows more accurate scanning of the space of 
local solutions. 

5.1. TREE CONSTRUCTION 

In the previous section we discussed Hot Spot detection 
in a network. Now we are going to define a method for 
establishing a solution tree using these particular points. We 

adopted an incremental construction method as used by the 
Minimum Path Heuristic. Let E be the set of points given 
by the union of Z and H, where Z is the set of multicast 
nodes and H is the set of the Hot Spot points. We call E 
the set of the multicast nodes expanded by means of the H 
set. First, the algorithm selects an arbitrary node among the 
nodes of the expanded set E (typically the source) and then it 
progressively adds the other nodes of E to the tree according 
to the rule of the closest node. When a node is selected 
to be included into the transitory solution tree, a different 
approach is followed for the Z and the H-nodes. Terminal 
nodes mi are inserted on a permanent basis. In contrast, the 
H-nodes hi are inserted on a temporary basis. Analogously, 
the nodes and the edges of the respective connecting paths are 
considered either permanent or provisional. When a terminal 
node mi is inserted into the tree by means of a grafting point 
hi which is a temporary node, this latter node hi becomes 
permanent together with all its temporary ancestors (Figure 
??). In this way, the permanent setting of a H-vertex depends 
on its current usage in the solution tree. The insertion of 
a temporary node is not immediately advantageous for the 
transitory solution tree T. Nevertheless, there is a high 
probability of using that node as the grafting point for lots 
of terminal nodes. However, when a terminal node is added 
to the tree through a temporary node, the computation of 
its insertion cost must also take into account the cost of the 
temporary path. The adopted metric M performs this job, and 
defines the insertion cost of a node v through a temporary 
node has: 

d(v,T) = d(v, h) + f(h) (2) 

where f (h) depends on the cost of the temporary path 
connecting h to the tree. The insertion overcost f (h) due 
to the temporary path avoids the usage of H-vertices which 
aren't actually cost-effective. 
As previously discussed, the H-nodes have a high probability 
of reaching lots of terminals in a solution tree with a low 
cost path. In order to exploit this characteristic, we assume 
a value, called HIT, which is an estimation of the minimal 
number of terminal nodes reached through each of them in 
the final solution tree. This means that we expect a minimal 
performance from the Hot Spot vertices. The greater the 
value of HIT, the greater the risk of an over-valuation. We 
adopt the metric M to detect the next closest node to insert 
during tree construction. In order to take advantage of the H
vertices, the metric M uses the HIT constant. The temporary 
path overcost of the H-node h has to be subdivided among the 
Z-vertices we expect to reach through it, and it is expressed 
by: 

f(h) = d(h,T) (3)HIT . 

Consequently, to calculate the distance between a node v 
and the tree T we need to calculate the minimum between 
two different distances d: and d2 (4). The first one, d1, is the 
classical node-to-tree distance calculated between the node 
v and the subset of the permanent nodes in the tree (5); the 
other one, da, is the distance calculated between the node v 
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Figure 2. Permanent and temporary nodes in transitory trees 

and the subset of the temporary nodes, as in (6). 

where: 

(5) 

and 

(6) 

i; ~ T is the subset of the permanent nodes in T; Tt c T
 
is the subset of the temporary nodes in T; Pt is the closest
 
permanent ancestor of the temporary node t. The value of
 
:"'1e constant HfT can be selected from the range between 2
 
::..:::d the number of all the terminal nodes, because a value
 
:i 1 would mean no actual usage of Hot Spots (as SMPH
 
s.gorithm).
 
The insertion process ends when all the terminal vertices in
 
::ne extended set E have been included. The construction
 
;rocess continues with the stirring phase, as described for
 
the SMPH algorithm in section 3. In this case, the stirring
 
;;rocess adopts the metric M and propagates the permanent or
 
.emporary node state at each change of the tree. Finally, all
 
.emporary nodes are pruned, thus obtaining the final solution
 
.ree.
 
The algorithm of the Hot Spot Heuristic (HSH) is presented
 
15 pseudocode in the next section.
 

5.2. HOT SPOT HEURISTIC ALGORITHM 

Input: 
a graph G = (V; A), 
a terminal node set Z C V with IZI = m, 
a source Zo E Z. 

Output: 
a Steiner Tree T = (VT,AT) rooted at zoo 

1. Score Propagation 
Determination of the Hot Spot set H (IHI = h) 
from the graph G and the terminal set Z. 

2. Tree Construction 
Let be E = Z U H; 
Init VT ~ {zo} and AT ~ {}; 
while E n Z =f. {} 

find vEE, d(v, T) = min{d(e, T)}eEE;
 
if (v E Z) then insert in T nodes and edges
 

of ShortestPath(v, T) as "permanent";
 
else insert in T nodes and edges
 

of ShortestPath(v, T) as "temporary";
 
E~E-{v}; 

end while. 
3. Stirring 

while some change in T = (VT 1 AT) occurs 
for each node v E VT where degree(v) =f 2 

let be n a its current grafting point 
if a better grafting point nk exists: i.e. 

d(v,nk) < d(v,na ) 

then replace the path < v, n a > with < v, nk .>; 
end for; 

end while. 
4. Pruning 

while some change in T = (VT, AT) occurs 
for each node v E VT 

if (degree(v) = 1) and (v 't. Z) 
then delete v from VT and its edge from AT; 

end while. 

5.3. HOT SPOT HEURISTIC COMPLEXITY 

Here we consider the operational complexity of the Hot 
Spot Heuristic algorithm. The Hot Spot generation process 
involves computation of the shortest path from each terminal 
to every vertex in the network. This can be done by 
computing a priori the SPT rooted in each terminal, in 
O(mn2 ) . 

The score propagation process involves a complexity of 
The tree construction phase involves a complexity which is 
similar to the MPH one. The set of nodes to be inserted is 
expanded by the h Hot Spot nodes, so we obtain O((m + 
h)2n + a) . 

The last phase in the algorithm is the stirring process. As 
described in the pseudocode, it searches for a better grafting 
point among the tree nodes (at most n). This is done for each 
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node in the tree which has not degree equal to two, i.e. in 
leaves and grafting points, which are at most (2(m + h) - 1) 
nodes. The whole process is repeated until no further changes 
occur (in the worst case n times). This results in O((m + 
h)n2 ) , which is also the main complexity of the algorithm. 

6. EXPERIMENTAL ANALYSIS 

To generate the networks for our experiments we adopted the 
Tiers [6, 7] tool. It is capable of randomly generating graphs 
whose characteristics are those of real computer networks. It 
is important to ensure that the network models being used to 
test the algorithm bear some resemblance to the real networks 
for which the algorithm is designed. 
The Tiers tool uses the classical Waxman model [12] for 
generating graphs, i.e. the nodes in the network are 
distributed at random across a Cartesian coordinates grid. 
The generic nodes u and v are connected by a link which 
is set according to the following probability law: 

P(u v) - (3 -dCu,v), _ e La. (7) 

where d(u, v) is the Euclidean distance between u and v, L 
is the maximum distance between two nodes, and a and {3 
are parameters in the range a < a, {3 < 1. A large value 
of a increases the number of connections to nodes further 
away, whilst a large value of {3 increases the number of 
edges from each node. Furthermore, a series of modifications 
to the Waxman model make the generated networks more 
similar to real networks by using different hierarchies of 
nodes. Parameters are required to define the topological 
characteristics, such as the number of WAN, MAN and LAN, 
the number of nodes in each subnetwork, and the different 
connection degrees [7]. 
We generated different network sets to test our algorithms. 
These sets are characterised by different sizes (from 200 to 
1000 network nodes), different topologies (only a wide WAN 
and multiple LAN), and different link redundancies. A high 
redundancy degree involves the presence of more complex 
solutions. We tested different terminal node locations 
choosing them from nodes with high or low connectivity 
degrees. 

6.1. ENUMERATION METHOD 

The knowledge gained about the optimal solution allows us 
to make a precise comparison of the different heuristics. 
This is necessary to understand how many times the classical 
heuristics fail in terms of optimal solution detection, meaning 
the times when it is possible to obtain better solutions. 
We therefore implemented the Spanning Tree Enumeration 
algorithm [13]. Furthermore, because the NP-complete 
nature of the Steiner Minimal Tree problem makes the 
optimal solution search a computationally heavy task, we 
used the reduction rules, as described in [13], in order to 
increase the size of the explored networks. By means of these 
rules a particular instance of the STP can often be reduced to 
a smaller one by examining local properties of the networks. 
Networks with two hundred nodes and ten terminal nodes 

are reduced to networks with 50 nodes and 8 terminals on 
average. 

6.2. THE STIRRING PROCESS AND THE HOT SPOT 
HEURISTIC VS CLASSICAL HEURISTICS 

The first experiment was devoted to determining the 
actual performance gain over the Minimum Path Heuristic 
introduced by the Stirring process, as described in section 3. 
Furthermore, we tested the performance of the Hot Spot 
Heuristic in comparison with the :MPH and S:MPH. We 
selected networks and terminal sets for which we were able 
to find the optimal solution in a short time. We carried out 
a series of tests over three hundred networks, each with 200 
nodes and 10 terminal nodes. Among the classical heuristics 
to be found in the literature, we chose and implemented 
the following three: the Distance Network Heuristic (DNH), 
the Minimum Path Heuristic (:MPH) and the Kruskal-based 
Shortest Path Heuristic (KSPH). 

The experiment shows that our Stirring method as applied 
to the :MPH algorithm (S:MPH) and the Hot Spot heuristic 
(HSH) give the best results of all heuristics considered in 
the most of cases. The results are summarized in Figure 3.. 
The left bars were obtained considering only the optimal 
solutions for each heuristic. The right ones were obtained 
taking into consideration the sub-optimal ones, where the 
sub-optimal is the minimal cost solution among those found 
by the heuristics. As shown in the chart, the Stirring method 
(S:MPH) was able to find the optimal solution in 72% of the 
cases as compared with the 53% :MPH score and the 58% 
KSPH score. In 19% of the cases, S:MPH manages to find 
the optimal solution which the :MPH couldn't identify, and 
to improve the :MPH solution in about 27% of the tested 
networks. These differences are to be attributed exclusively 
to the Stirring process. HSH computed and adopted a set of 
special nodes in the network, the Hot Spot node set. In this 
case we used at most 20 Hot Spot nodes and HIT = 3. As 
clearly shown by the histograms in the Figure 3., the HSH 
algorithm was able to isolate the optimal solution in 879c 
of the sample networks, which means the HSH algorithm 
detected the optimal solution 34% more often than MPH. In 
other words, our heuristic failed to find the optimal solution 
in only 13% of the tested networks. We have to take into 
account that the HSH algorithm is an intrinsic improvement 
of the :MPH and S:MPH. To enlarge the space of the sub
optimal solutions found, we also considered the KSPH and 
the DNH algorithms. Because of the different approach used, 
these algorithms were able to find a better solution than HSH 
in 4% of the tested networks. Nevertheless, HSH achieved 
a sub-optimal solution in a good 96% of the cases against 
the KSPH's 64%, which is the best result among the classical 
heuristics we tested. 

6.3. THE HOT SPOT NUMBER 

In the chart in Figure 4., the results obtained when the 
number of the Hot Spot nodes adopted is varying in the set 
{O, 5, 10, 20} are shown. Optimal and sub-optimal cases are 
plotted. 

The more effective improvement 9% (from 72% to 81%) 
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Figure 3. dnh, ksph, mph, smph and hsh optimal and 
suboptimal solutions 

Figure 4. Varying the Hot Spots number: optimal and 
suboptimal solutions 

was achieved by using the five HS node set (HSHS), while 
further improvements were respectively 14% (from 72% to 
86%) and 15% (from 72% to 87%). 
The experimental results show that the usage of a few Hot 
Spot nodes is sufficient to achieve a high percentage of 
-=;.'rovedcases. 

6.4. THE NETWORK SIZE 

The previous experiments have been carried out over 
networks of limited complexity due to the small number 
(200) of nodes and terminals in the networks. Their main 
aim was to compare the optimal solution with the heuristic 
ones. 
Heuristic performances in more realistic networks, 
characterised by a bigger size, are compared here. Obviously, 
in such a case we are not able to find the optimal solution, so 
only sub-optimal solutions are compared. 
In this experiment we varied the network size from 200 
to 1000 nodes, and the terminal node number from 10 to 
50. We fixed the value of Hl'I' to 3 and the maximum HS 
number to 20. The results related to these tests are reported 
in Figure 5,. The Hot Spot Heuristic performance was almost 
constant when the network size increased, whilst the classical 

95% 95% 97%100% 
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III.. 
:! 
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70%~ DDNH 
~ 
III 50% lJKSPH 
';; 50% • MPH e .SMPH 

'" 30% 

:;:: 40% 
.HSH0 

I 

"" 0 20% 
III 

10%
 

0%
 

200 500 1000
 

Network: si211 

Figure 5. Suboptimal solutions in 200, 500 and 1000 node 
networks 

heuristics showed a severe failure in the bigger networks. 
When the network size increased, both the contribution of 
the Stirring process and Hot Spot insertion became more 
effective. 
The big gap (7%-63%) between :MPH and S:MPH in the 
1000 node networks provides excellent evidence of the 
effectiveness of the Stirring method. However, since HSH 
finds better solutions than SMPH in 34% of cases, it seems 
clear that HSH is particularly suitable for real networks. 

6.5. THE HOT SPOT GOODNESS 

Given the intrinsic nature of the Hot Spot nodes, there is a 
high probability that they belong to Minimal Steiner Trees. 
The detection of such nodes prior to the tree construction 
process is the basis of our heuristic. To verify the validity 
of the Hot Spot detection process, and therefore the actual 
effectiveness of the Hot Spots, we carried out the following 
experiment to determine how many Hot Spots were present 
in the optimal solution tree. The network size is 200 nodes, 
for which we are able to find the optimal tree by means of 
the enumeration method. In the test, we varied the size of 
the Hot Spot set from 1 to 20 nodes. The different lines in 
the chart represent the different sizes tested (see Figure 6.). 
The x axis represents the actual number of Hot Spots found 
in the optimal tree. The y axis represents the percentage of 
cases where the optimal tree contains that number of Hot Spot 
nodes. For example, the "3HS" line shows that in 80% of the 
cases, all three Hot Spot nodes were found in the optimal 
tree, in 19% only two of the three nodes were found, and in 
a percentage near to zero only one node was found, whilst a 
situation in which none was present in the solution tree never 
occurred. 

Looking at the chart in Figure 6. it is easy to observe that in 
the smaller Hot Spot sets (until "9HS") there is a probability 
not equal to zero that all the nodes in the set are present in 
the optimal tree. This is not true in the bigger sets, where 
the probability of a high number of nodes belonging to the 
optimal tree is null. 
The HSH algorithm can be considered merely as an 
improvement of the SMPH one because it introduces new 
nodes during the tree construction phase. A test of Hot Spot 
goodness is to use this algorithm with a set of randomly 
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Figure 6. HS distribution in the optimal solution trees. 

generated nodes. The next experiment was carried out 
running the SMPH and two versions of the HSH. The first 
one generated the Hot Spot set according to the propagation 
method (see section 5), whilst the second one produced the 
Hot Spot set in a random way. The columns in Figure 7. 
show the percentage of the SMPH solutions which were 
improved by the two different versions (HSH and Random). 
The lower areas indicate the cases improved by the random 
set, the middle areas illustrate the cases where both found the 
same sub-optimal solution, and the upper areas those cases in 
which the Hot Spot set involved the best solution detection. 
Finally, we determine the influence of a Hot Spot node with 
respect to its position in the Hot Spot set. The propagation 
method generated the Hot Spot set as an ordered list of nodes 
according to their scores (see section 5). The chart (Figure 8.) 
shows the percentage of SMPH solutions improved by the 
hot spot in the position reported along the x axis. The figure 
highlights the performance of the first hot spot vertex which 
alone would guarantee a good percentage of improvements. 
The result reported above confirms the effectiveness of the 
Hot Spot set detection process and allows the usage of few 
nodes to improve the solutions of previous heuristics. 

7. CONCLUSIONS 

We have performed experimental investigations into the 
problem of multicast tree generation by introducing a new 
heuristic. It introduces the concept of the Hot Spot node 
which is a point of the network with a relevant topological 
role. A selection method for such nodes and a tree 
construction process capable of taking advantage of them 
are proposed. We carried out comparative experiments and 
the results demonstrated the goodness of the method. The 
effectiveness of the Hot Spot selection process has been 
demonstrated by means of an "a posteriori" analysis of their 
presence in the optimal solutions and also by means of a 
comparison with the solutions obtained using random sets of 
nodes. 
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