
EFFICIENT TREE CONSTRUCTION FOR THE MULTICAST

PROBLEM

Giuseppe Di Fatta-", Giuseppe Lo Rei

iCERE, Centro di Studio sulle Reti di Elaboratori, C.N.R.,

viale delle Scienze, 90128 Palermo, Italy

difatta, lore@cere.pa.cnr.it

2ICSI, International Computer Science Institute,

1947 Center Street, Suite 600, Berkeley, CA 94704-1198, USA

difatta@icsi.berkeley.edu

Resumo - Apresenta-se uma nova heurfstica para 0 pro­
blema de mores de Steiner minimas. 0 metodo proposto
baseia-se na detecao de classes particulares de nos, os conjun­
tos de "nos quentes", que sao usados para uma melhor aproxi­
macae das solucoes otimas. Propoe-se um algoritmo capaz
de melhorar 0 desempenho de solucoes heurfsticas classicas.
Comparacoes sao feitas com um metodo enumerativo e com
metodos heurfsticos classicos,

Abstract- A new heuristic for the Steiner Minimal Tree
problem is presented here. The method described is based on
the detection of particular sets of nodes in networks, the "Hot
Spot" sets, which are used to obtain better approximations of
the optimal solutions. An algorithm is also proposed which
is capable of improving the solutions obtained by classical
heuristics, by means of node rearrangements in the solution
tree. Classical heuristics and an enumerative method are
used as comparison terms in the experimental analysis which
demonstrates the goodness of the heuristics discussed in this
paper.

Keywords: Steiner Tree Problem, Multicast Routing,
Minimum Path Heuristics.

1. INTRODUCTION

New distributed applications, such as video-conference,
and voice and video distribution, require simultaneous
transmission of data to multiple destinations [1J. The network
load caused by multimedia applications can be reduced using
ad hoc multicast techniques, that is, by sending a message to
its intended receivers, whenever possible through common
paths. New standards for packet switched networks, such
as Asynchronous Transfer Mode (AlM) and Frame Relay
provide already support for multicasting.
A problem arises from these new exigencies, namely, to
identify the best path capable of connecting source and
destinations, minimising its total cost. This problem is
well known under the name of Steiner Tree Problem [2,
8, 13J, and in its classical formulation has been proved to
be NP-complete. Many heuristics [9, 11, 13J, capable of
isolating sub-optimal solutions in polynomial time have been
proposed in the past years. In this paper we present a
new algorithm, which is capable of minimising the cost of
the solution tree found by classical heuristics, and which

improves the solution tree by arranging nodes and edges in
the tree according to a minimisation criterion. The main
topic of this paper is represented by a new heuristic for
the Steiner Tree Problem in Networks (SPN) [13]. The
heuristic proposed uses a particular set of nodes, the Hot
Spot set. A hot spot vertex is a node which has intrinsic
proprieties derived from network topology and terminal node
distribution. An algorithm was designed with the aim of
using effectively the Hot Spot set. This algorithm is based
on the same incremental tree construction strategy as the
Minimum Path Heuristic (MPH) algorithm [l l], but it adopts
a different metric and makes use of a temporary insertion
of the hot spot nodes during the tree growing phase. The
terminology and notation used here are described in Section
2, and some classical heuristics are summarized which will
be used as comparison terms. Their performance guarantees
and complexities are also presented. Section 3 deals with
the process which improves the trees generated by classical
heuristics (the "stirring" process). Section 4 defines the Hot
Spot characteristics and section 5 describes the Hot Spot
detection process, the tree construction and the complexity
of our algorithm. The final part of the paper (section 6) is
devoted to the experimental analysis, based on the results of
a wide range of tests.

2. STEINER TREE HEURISTICS

In this section a short summary of previous Steiner Tree
Heuristics is presented, and some basic notations and terms
are introduced.
Given a graph G = (V, A) with node set V (IVI = n) and
edge set A (IAI = a), we will use Z C V (IZI = m)
to indicate the subset of terminal nodes, S = V - Z to
indicate non-terminal nodes, and ZQ E Z the source node.
Given a cost function cost(e) with e E A, we want to find
a tree T = (VT,AT) with VT ~ V and AT ~ A, which
spans the terminal nodes and has a minimal overall cost.
The Steiner Tree Problem, as defined here, has been proved
to be NP-complete. Many heuristics proposed in the past
years have been capable of identifying sub-optimal solutions
with polynomial complexities. Among these, the Pruned
Dijkstra Heuristic (pDH) [13J, the Minimum or Shortest
Path Heuristic (SPH or MPH) [l l], the Distance Network
Heuristic (DNH) [13J, the K-Shortest Path Heuristic (K-SPH)

22

Revista da Sociedade Brasileira de Teleccmunlcacces
Volume 14, Numero 1, junho 1999

[9], and so on. Some of the heuristics which we used as bases
for our algorithm are briefly described here.
The simplest heuristic PDH comes from Dijkstra's Shortest
Path Tree algorithm [5] which is capable of isolating the
shortest paths from a given source to all the other nodes on
the network. The PDH simply prunes all the S-vertices of
degree one (one at time) from the shortest path tree (SPT)
until none are left.
The DNH builds the distance network K; induced by Z.
It constructs the minimum spanning tree (MST) on the K z

network and replaces the virtual links with the real paths
(the nodes and links of the initial network), thus obtaining
Gz , a subgraph of the initial network. It then computes the
minimum spanning tree (MST) on Gz and finally prunes all
the S-vertices of degree one. The:MPH builds a subtree of
G in an incremental fashion: it starts off by selecting an
arbitrary node among the terminal nodes (typically the source
node) and then progressively adds the terminal node nearest
to the tree, including the nodes and edges of the connecting
path. The K-SPH is an improvement of the :MPH algorithm.
It builds a forest of subtrees joining together the closest nodes
or subtrees until a single solution tree has been obtained.
The efficacy of these heuristics can be measured in terms
of the ratio between the cost of the solutions they are able
to identify, and the cost of the optimal solutions. Many
algorithms capable of identifying the optimal solution tree
have been proposed in the past. All of them are characterised
by an exponential complexity. Among these, the Spanning
Tree Enumeration Algorithm (STEA) [13] has been adopted
to produce the optimal solution tree we have considered as
comparison term.
Table 1. summarises the complexities and performance for
the algorithms discussed above.

Algorithm Performance Complexity
[. Guarantee

PDH m O(n)
DNH 2 O(mn2)

:MPH (SPH) 2 O(mn2)

K-SPH
STEA

2
1

O(mn2)

O(m22 (n - m) + n3)

Table1. Performance Guarantee and Complexity

3. "rHE STIRRING PROCESS

The tree construction process of the :MPHalgorithm involves
the addition of the nearest Z-node z; to the transitory sub-tree
Tc Nevertheless, the minimum path between the selected
node Zi and the successive sub-trees Tj (with j > i) does
not remain constant during the tree growing process, because
the insertion of further nodes into the tree could reduce the
cost of the connecting path of a previously inserted node.
For this reason, we considered the possibility of recalculating
the "grafting" point of each node of the tree at the end
of the :MPH algorithm. By the term "grafting point" of a
node ni in a tree, we mean the closest ancestor of ni which

has at least two children (degree 2: 3). For any node
ni, we check the existence of a node nk in the tree with
d(ni' nk) < d(ru, n a) where na is the current grafting point,
and nk does not belong to the path < ni, n a > and is not
a descendant of ru. If such a node nk is found in the tree,
the path < ni, n a > is replaced by the < ni, nk > one.
This procedure is executed for each node which is a leaf of
the tree (degree = 1) or a grafting point (degree 2: 3).
Path replacement may provoke the insertion of new nodes
into the tree. Increasing the subset of nodes extends the
solution space explored by the heuristic. The stirring process
is repeated until no further improvement can be obtained in
the solution tree. The process described here has been used
in an improved version of the MPH algorithm, which will
be referred to below as S:MPH. In section 6.2 a comparison
is made between the results obtained by the S:MPH and the
ones obtained by classical heuristics.

4. HOT SPOT DEFINITION

Classical heuristics use the terminal node set as their starting
point in the construction of the solution tree. The solution
trees generated by the various heuristics reveal significant
differences in internal nodes. Most of the terminal nodes
are leaves in the tree, i.e. they are nodes of degree one
in the solution tree. Some of the nodes in networks have
a high probability of representing relevant switching points
to cover the multicast subset. In other words, such a node
allows lots of terminals in a solution tree to be reached.
If we could define a value for each node in a network,
providing a measure of the number of terminal nodes which
can be efficiently reached through it, then high value nodes
would have a high probability of being present in the optimal
solution tree. The definition of the characteristics of this
kind of node is important in identifying them in the network.
where each node can generally be used to reach any other,
even if not very conveniently. The value attributed to each
node should be related to the number of terminal nodes
accessible from it at low cost, and this can be done using
the sum of all the shortest path costs towards each terminal
node. Value attribution determines node classification in the
network. Nodes which have the highest values are selected to
act as switching points, and they will be referred to below as
"Hot Spots" (HS). The definition given above means that the
Hot Spot set is heavily dependent on the terminal node set.
Different terminal sets will generate different Hot Spot sets.
In Figure 1., a simple example is shown in which the classical
heuristics :MPH and KSPH fail to find the optimal solution,
whilst the usage of Hot Spot nodes is shown to be effective.
The network has four nodes, the source is the node s and the
terminals are the nodes i and j. The execution of :MPH on
this network yields a solution tree with a cost equal to 200.
However, if we consider the node h as Hot Spot, and require
its inclusion in the solution tree, we obtain a lower cost, equal
to 153. Other similar situations can obviously be imagined
in more complex networks and topologies. In the following
section we will discuss a method employed to detect and use
the Hot Spot nodes.

23

Giuseppe Oi Fatta and Giuseppe Lo Re
EFFICIENT TREE CONSTRUCTION FOR THE MULTICAST PROBLEM

Figure 1. A four node graph and two different multicast trees

5. THE HOT SPOT HEURISTIC

The idea which is the foundation stone for our heuristic is
based on the concept of score propagation among the nodes
of the whole network. The concept which inspired this
approach is related to the diffusion of a message from some
intensive producers (sources) towards other network entities.
These target entities receive messages from all sources and
collect them to determine their own score. The nodes with
the biggest scores will be eligible as Hot Spots. This simple
idea has been adapted to suit network characteristics, and to
the SMT problem. In this case, the terminal nodes represent
the sources which generate the signals. The signal intensity I
of the terminal nodes is determined as the maximum among
the costs of the shortest paths between each terminal and all
the other nodes of the network. Basically, signal propagation
from the terminal m to the generic node v is carried out
decreasing the source signal intensity by the cost of the
shortest path between m and v. The score of the generic node
l' is evaluated as the collective strength of the signals from all
the Z-nodes:

score(v) = L 1- d(v,m) (1)
mEZ

where: I = max {d(m, v)}
mEZ,vEV

and d(v, m) is the cost of the shortest path from node v to
node m. In this way, a node which is powerfully influenced
by lots of other terminal nodes can collect a high score, and
this implies a high probability of being a critical switching
point towards its nearest terminal nodes. Of all the nodes,
we identify a subset of those which have the first highest h
scores in the network. The h value depends on the number of
terminal nodes and the network size. This method produces
a sequence of Hot Spots (HS) which can be used in the
construction of the solution tree. It should be noted that
some of the selected Hot Spots may belong to the same
neighborhood of the network because such an area might
be characterised by the strong influence of lots of multicast
nodes. The selection of more HS belonging to the same
neighborhood allows more accurate scanning of the space of
local solutions.

5.1. TREE CONSTRUCTION

In the previous section we discussed Hot Spot detection
in a network. Now we are going to define a method for
establishing a solution tree using these particular points. We

adopted an incremental construction method as used by the
Minimum Path Heuristic. Let E be the set of points given
by the union of Z and H, where Z is the set of multicast
nodes and H is the set of the Hot Spot points. We call E
the set of the multicast nodes expanded by means of the H
set. First, the algorithm selects an arbitrary node among the
nodes of the expanded set E (typically the source) and then it
progressively adds the other nodes of E to the tree according
to the rule of the closest node. When a node is selected
to be included into the transitory solution tree, a different
approach is followed for the Z and the H-nodes. Terminal
nodes mi are inserted on a permanent basis. In contrast, the
H-nodes hi are inserted on a temporary basis. Analogously,
the nodes and the edges of the respective connecting paths are
considered either permanent or provisional. When a terminal
node mi is inserted into the tree by means of a grafting point
hi which is a temporary node, this latter node hi becomes
permanent together with all its temporary ancestors (Figure
??). In this way, the permanent setting of a H-vertex depends
on its current usage in the solution tree. The insertion of
a temporary node is not immediately advantageous for the
transitory solution tree T. Nevertheless, there is a high
probability of using that node as the grafting point for lots
of terminal nodes. However, when a terminal node is added
to the tree through a temporary node, the computation of
its insertion cost must also take into account the cost of the
temporary path. The adopted metric M performs this job, and
defines the insertion cost of a node v through a temporary
node has:

d(v,T) = d(v, h) + f(h) (2)

where f (h) depends on the cost of the temporary path
connecting h to the tree. The insertion overcost f (h) due
to the temporary path avoids the usage of H-vertices which
aren't actually cost-effective.
As previously discussed, the H-nodes have a high probability
of reaching lots of terminals in a solution tree with a low
cost path. In order to exploit this characteristic, we assume
a value, called HIT, which is an estimation of the minimal
number of terminal nodes reached through each of them in
the final solution tree. This means that we expect a minimal
performance from the Hot Spot vertices. The greater the
value of HIT, the greater the risk of an over-valuation. We
adopt the metric M to detect the next closest node to insert
during tree construction. In order to take advantage of the H­
vertices, the metric M uses the HIT constant. The temporary
path overcost of the H-node h has to be subdivided among the
Z-vertices we expect to reach through it, and it is expressed
by:

f(h) = d(h,T) (3)HIT .

Consequently, to calculate the distance between a node v
and the tree T we need to calculate the minimum between
two different distances d: and d2 (4). The first one, d1, is the
classical node-to-tree distance calculated between the node
v and the subset of the permanent nodes in the tree (5); the
other one, da, is the distance calculated between the node v

24

Revista da Sociedade Brasileira de Telecomunicac;oes
Volume 14, Numero 1, junho 1999

mi (source) mi (source)

f:
p_

t' ""I ,­vs /' hI~!i!(~ll!(

V(ih21111; 112 !Iii
ms

V4 /'"
;!li(

./'/ I

Figure 2. Permanent and temporary nodes in transitory trees

and the subset of the temporary nodes, as in (6).

where:

(5)

and

(6)

i; ~ T is the subset of the permanent nodes in T; Tt c T

is the subset of the temporary nodes in T; Pt is the closest

permanent ancestor of the temporary node t. The value of

:"'1e constant HfT can be selected from the range between 2

::..:::d the number of all the terminal nodes, because a value

:i 1 would mean no actual usage of Hot Spots (as SMPH

s.gorithm).

The insertion process ends when all the terminal vertices in

::ne extended set E have been included. The construction

;rocess continues with the stirring phase, as described for

the SMPH algorithm in section 3. In this case, the stirring

;;rocess adopts the metric M and propagates the permanent or

.emporary node state at each change of the tree. Finally, all

.emporary nodes are pruned, thus obtaining the final solution

.ree.

The algorithm of the Hot Spot Heuristic (HSH) is presented

15 pseudocode in the next section.

5.2. HOT SPOT HEURISTIC ALGORITHM

Input:
a graph G = (V; A),
a terminal node set Z C V with IZI = m,
a source Zo E Z.

Output:
a Steiner Tree T = (VT,AT) rooted at zoo

1. Score Propagation
Determination of the Hot Spot set H (IHI = h)
from the graph G and the terminal set Z.

2. Tree Construction
Let be E = Z U H;
Init VT ~ {zo} and AT ~ {};
while E n Z =f. {}

find vEE, d(v, T) = min{d(e, T)}eEE;

if (v E Z) then insert in T nodes and edges

of ShortestPath(v, T) as "permanent";

else insert in T nodes and edges

of ShortestPath(v, T) as "temporary";

E~E-{v};

end while.
3. Stirring

while some change in T = (VT 1 AT) occurs
for each node v E VT where degree(v) =f 2

let be n a its current grafting point
if a better grafting point nk exists: i.e.

d(v,nk) < d(v,na)

then replace the path < v, n a > with < v, nk .>;
end for;

end while.
4. Pruning

while some change in T = (VT, AT) occurs
for each node v E VT

if (degree(v) = 1) and (v 't. Z)
then delete v from VT and its edge from AT;

end while.

5.3. HOT SPOT HEURISTIC COMPLEXITY

Here we consider the operational complexity of the Hot
Spot Heuristic algorithm. The Hot Spot generation process
involves computation of the shortest path from each terminal
to every vertex in the network. This can be done by
computing a priori the SPT rooted in each terminal, in
O(mn2) .

The score propagation process involves a complexity of
The tree construction phase involves a complexity which is
similar to the MPH one. The set of nodes to be inserted is
expanded by the h Hot Spot nodes, so we obtain O((m +
h)2n + a) .

The last phase in the algorithm is the stirring process. As
described in the pseudocode, it searches for a better grafting
point among the tree nodes (at most n). This is done for each

25

Giuseppe Di Fatta and Giuseppe La Re
EFFICIENT TREE CONSTRUCTION FOR THE MULTICAST PROBLEM

node in the tree which has not degree equal to two, i.e. in
leaves and grafting points, which are at most (2(m + h) - 1)
nodes. The whole process is repeated until no further changes
occur (in the worst case n times). This results in O((m +
h)n2) , which is also the main complexity of the algorithm.

6. EXPERIMENTAL ANALYSIS

To generate the networks for our experiments we adopted the
Tiers [6, 7] tool. It is capable of randomly generating graphs
whose characteristics are those of real computer networks. It
is important to ensure that the network models being used to
test the algorithm bear some resemblance to the real networks
for which the algorithm is designed.
The Tiers tool uses the classical Waxman model [12] for
generating graphs, i.e. the nodes in the network are
distributed at random across a Cartesian coordinates grid.
The generic nodes u and v are connected by a link which
is set according to the following probability law:

P(u v) - (3 -dCu,v), _ e La. (7)

where d(u, v) is the Euclidean distance between u and v, L
is the maximum distance between two nodes, and a and {3
are parameters in the range a < a, {3 < 1. A large value
of a increases the number of connections to nodes further
away, whilst a large value of {3 increases the number of
edges from each node. Furthermore, a series of modifications
to the Waxman model make the generated networks more
similar to real networks by using different hierarchies of
nodes. Parameters are required to define the topological
characteristics, such as the number of WAN, MAN and LAN,
the number of nodes in each subnetwork, and the different
connection degrees [7].
We generated different network sets to test our algorithms.
These sets are characterised by different sizes (from 200 to
1000 network nodes), different topologies (only a wide WAN
and multiple LAN), and different link redundancies. A high
redundancy degree involves the presence of more complex
solutions. We tested different terminal node locations
choosing them from nodes with high or low connectivity
degrees.

6.1. ENUMERATION METHOD

The knowledge gained about the optimal solution allows us
to make a precise comparison of the different heuristics.
This is necessary to understand how many times the classical
heuristics fail in terms of optimal solution detection, meaning
the times when it is possible to obtain better solutions.
We therefore implemented the Spanning Tree Enumeration
algorithm [13]. Furthermore, because the NP-complete
nature of the Steiner Minimal Tree problem makes the
optimal solution search a computationally heavy task, we
used the reduction rules, as described in [13], in order to
increase the size of the explored networks. By means of these
rules a particular instance of the STP can often be reduced to
a smaller one by examining local properties of the networks.
Networks with two hundred nodes and ten terminal nodes

are reduced to networks with 50 nodes and 8 terminals on
average.

6.2. THE STIRRING PROCESS AND THE HOT SPOT
HEURISTIC VS CLASSICAL HEURISTICS

The first experiment was devoted to determining the
actual performance gain over the Minimum Path Heuristic
introduced by the Stirring process, as described in section 3.
Furthermore, we tested the performance of the Hot Spot
Heuristic in comparison with the :MPH and S:MPH. We
selected networks and terminal sets for which we were able
to find the optimal solution in a short time. We carried out
a series of tests over three hundred networks, each with 200
nodes and 10 terminal nodes. Among the classical heuristics
to be found in the literature, we chose and implemented
the following three: the Distance Network Heuristic (DNH),
the Minimum Path Heuristic (:MPH) and the Kruskal-based
Shortest Path Heuristic (KSPH).

The experiment shows that our Stirring method as applied
to the :MPH algorithm (S:MPH) and the Hot Spot heuristic
(HSH) give the best results of all heuristics considered in
the most of cases. The results are summarized in Figure 3..
The left bars were obtained considering only the optimal
solutions for each heuristic. The right ones were obtained
taking into consideration the sub-optimal ones, where the
sub-optimal is the minimal cost solution among those found
by the heuristics. As shown in the chart, the Stirring method
(S:MPH) was able to find the optimal solution in 72% of the
cases as compared with the 53% :MPH score and the 58%
KSPH score. In 19% of the cases, S:MPH manages to find
the optimal solution which the :MPH couldn't identify, and
to improve the :MPH solution in about 27% of the tested
networks. These differences are to be attributed exclusively
to the Stirring process. HSH computed and adopted a set of
special nodes in the network, the Hot Spot node set. In this
case we used at most 20 Hot Spot nodes and HIT = 3. As
clearly shown by the histograms in the Figure 3., the HSH
algorithm was able to isolate the optimal solution in 879c
of the sample networks, which means the HSH algorithm
detected the optimal solution 34% more often than MPH. In
other words, our heuristic failed to find the optimal solution
in only 13% of the tested networks. We have to take into
account that the HSH algorithm is an intrinsic improvement
of the :MPH and S:MPH. To enlarge the space of the sub­
optimal solutions found, we also considered the KSPH and
the DNH algorithms. Because of the different approach used,
these algorithms were able to find a better solution than HSH
in 4% of the tested networks. Nevertheless, HSH achieved
a sub-optimal solution in a good 96% of the cases against
the KSPH's 64%, which is the best result among the classical
heuristics we tested.

6.3. THE HOT SPOT NUMBER

In the chart in Figure 4., the results obtained when the
number of the Hot Spot nodes adopted is varying in the set
{O, 5, 10, 20} are shown. Optimal and sub-optimal cases are
plotted.

The more effective improvement 9% (from 72% to 81%)

26

Revista da Sociedade Brasileira de Telecomunlcaeces
Volume 14, Numero 1, junho 1999

96%100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

DNH KSPH MPH SMPH HSH

Figure 3. dnh, ksph, mph, smph and hsh optimal and
suboptimal solutions

Figure 4. Varying the Hot Spots number: optimal and
suboptimal solutions

was achieved by using the five HS node set (HSHS), while
further improvements were respectively 14% (from 72% to
86%) and 15% (from 72% to 87%).
The experimental results show that the usage of a few Hot
Spot nodes is sufficient to achieve a high percentage of
-=;.'rovedcases.

6.4. THE NETWORK SIZE

The previous experiments have been carried out over
networks of limited complexity due to the small number
(200) of nodes and terminals in the networks. Their main
aim was to compare the optimal solution with the heuristic
ones.
Heuristic performances in more realistic networks,
characterised by a bigger size, are compared here. Obviously,
in such a case we are not able to find the optimal solution, so
only sub-optimal solutions are compared.
In this experiment we varied the network size from 200
to 1000 nodes, and the terminal node number from 10 to
50. We fixed the value of Hl'I' to 3 and the maximum HS
number to 20. The results related to these tests are reported
in Figure 5,. The Hot Spot Heuristic performance was almost
constant when the network size increased, whilst the classical

95% 95% 97%100%

90%
III..
:!

80%

70%~ DDNH
~
III 50% lJKSPH
';; 50% • MPH e .SMPH

'" 30%

:;:: 40%
.HSH0

I

"" 0 20%
III

10%

0%

200 500 1000

Network: si211

Figure 5. Suboptimal solutions in 200, 500 and 1000 node
networks

heuristics showed a severe failure in the bigger networks.
When the network size increased, both the contribution of
the Stirring process and Hot Spot insertion became more
effective.
The big gap (7%-63%) between :MPH and S:MPH in the
1000 node networks provides excellent evidence of the
effectiveness of the Stirring method. However, since HSH
finds better solutions than SMPH in 34% of cases, it seems
clear that HSH is particularly suitable for real networks.

6.5. THE HOT SPOT GOODNESS

Given the intrinsic nature of the Hot Spot nodes, there is a
high probability that they belong to Minimal Steiner Trees.
The detection of such nodes prior to the tree construction
process is the basis of our heuristic. To verify the validity
of the Hot Spot detection process, and therefore the actual
effectiveness of the Hot Spots, we carried out the following
experiment to determine how many Hot Spots were present
in the optimal solution tree. The network size is 200 nodes,
for which we are able to find the optimal tree by means of
the enumeration method. In the test, we varied the size of
the Hot Spot set from 1 to 20 nodes. The different lines in
the chart represent the different sizes tested (see Figure 6.).
The x axis represents the actual number of Hot Spots found
in the optimal tree. The y axis represents the percentage of
cases where the optimal tree contains that number of Hot Spot
nodes. For example, the "3HS" line shows that in 80% of the
cases, all three Hot Spot nodes were found in the optimal
tree, in 19% only two of the three nodes were found, and in
a percentage near to zero only one node was found, whilst a
situation in which none was present in the solution tree never
occurred.

Looking at the chart in Figure 6. it is easy to observe that in
the smaller Hot Spot sets (until "9HS") there is a probability
not equal to zero that all the nodes in the set are present in
the optimal tree. This is not true in the bigger sets, where
the probability of a high number of nodes belonging to the
optimal tree is null.
The HSH algorithm can be considered merely as an
improvement of the SMPH one because it introduces new
nodes during the tree construction phase. A test of Hot Spot
goodness is to use this algorithm with a set of randomly

27

9070

Giuseppe Oi Fatta and Giuseppe La Re
EFFICIENT TREE CONSTRUCTION FOR THE MULTICAST PROBLEM

100"

r
 -+-lH5

___ 3H5

-A-SH5
= ;07,

,~7H3

:: 60~

:s
~

~

':;~
..
lOr. I. .

0;;;: , ' I - tIl
o - N M ~ ~ ~ ~ ro ~ 0 - N ~ ~ ~ ~ ~ ro ~ 0

- - - - - - - - - - N
Hot Spot in the optimal tree

Figure 6. HS distribution in the optimal solution trees.

generated nodes. The next experiment was carried out
running the SMPH and two versions of the HSH. The first
one generated the Hot Spot set according to the propagation
method (see section 5), whilst the second one produced the
Hot Spot set in a random way. The columns in Figure 7.
show the percentage of the SMPH solutions which were
improved by the two different versions (HSH and Random).
The lower areas indicate the cases improved by the random
set, the middle areas illustrate the cases where both found the
same sub-optimal solution, and the upper areas those cases in
which the Hot Spot set involved the best solution detection.
Finally, we determine the influence of a Hot Spot node with
respect to its position in the Hot Spot set. The propagation
method generated the Hot Spot set as an ordered list of nodes
according to their scores (see section 5). The chart (Figure 8.)
shows the percentage of SMPH solutions improved by the
hot spot in the position reported along the x axis. The figure
highlights the performance of the first hot spot vertex which
alone would guarantee a good percentage of improvements.
The result reported above confirms the effectiveness of the
Hot Spot set detection process and allows the usage of few
nodes to improve the solutions of previous heuristics.

7. CONCLUSIONS

We have performed experimental investigations into the
problem of multicast tree generation by introducing a new
heuristic. It introduces the concept of the Hot Spot node
which is a point of the network with a relevant topological
role. A selection method for such nodes and a tree
construction process capable of taking advantage of them
are proposed. We carried out comparative experiments and
the results demonstrated the goodness of the method. The
effectiveness of the Hot Spot selection process has been
demonstrated by means of an "a posteriori" analysis of their
presence in the optimal solutions and also by means of a
comparison with the solutions obtained using random sets of
nodes.

REFERENCES

[1]	 K. Bharath-Kurnar and Jaffe, "Routing to Multiple
Destinations in Computer Networks", IEEE Trans on

100%

90% .."' .. 80% t 47 "'
70%

."".. 60%

..~
50%

~

...
,Ii 40%

::: 30%

c.
I:	 20%
VJ

10%

0%

200 500 1000

1 % I I 161%171'7£

Network size

Figure 7. Hot Spot set vs random set.

40%

1,0\ 35%..
~ 30%

-: 25%

>­e20%
...
.! 15%

il: 10%
I: • •

VJ 5% .1.11.1.• 1 .•. 1 •.• ,1 •.1
0%

3 5 7 9 1 t 13 15 17 19

nod .. position

Figure 8. Effectiveness distribution in the Hot Spot set.

Commun. vol. COM-31, n.3, pp.343 - 351, Mar. 1983

[2]	 F. Bauer, A. Varma, "Distributed Algorithms for
Multicast Path Setup in Data Networks", IEEEJACM
Transactions on Networking, Vol.4, N. 2, pp. 181- 191,
April 1996

[3]	 F. Bauer, A. Varma, "ARIES: A Rearrangeable
Inexpensive Edge-Based On-Line Steiner Algorithm",
IEEE Journal on Selected Areas in Communications,
vol. 15, N.3, pp. 382 - 397, April 1997

[4]	 S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.
G. Liu, L. Wei, "The PIM Architecture for Wide­
Area Multicast Routing", IEEEJACM Transactions on
Networking, Vol. 4, N. 2, pp. 153 - 162, April 1996

[5]	 E.W. Dijkstra, "A Note on Two Problems in Connection
with Graphs", Nurner. Math., vol. 1 1959,269 - 271

[6]	 M. B. Doar, I. Leslie, "How Bad is naive multicast
routing?", Proc. of IEEE Infocom, pp. 82 - 89, San
Francisco CA, Apri11993,

[7]	 M. B. Doar, "TIERS User Manual", v. 1.1
(ftp://ftp.nexen.com/pub/papersl)

[8]	 V. P. Kompella, J. C. Pasquale, G. C. Polyzos,
"Multicast Routing for Multimedia Communication",
IEEEJACM Transactions on Networking, Vol. 1, N. 3,
pp. 286 - 292, June 1993

28

Revista da Sociedade Brasileira de Teleccmunlcacces
Volume 14, Numero 1, junho 1999

[9]	 J. Kruskal, "On the Shortest Spanning Subtree of a
Graph and the Traveling Salesman Problem", Proc,
Amer. Math. Soc., vol. 7, pp. 48 - 50, 1956.

[10]	 S. Ramanathan, "Multicast Tree Generation in
Networks with Asymmetric Links", IEEEJACM
Transactions on Networking, Vol. 4, N. 4, pp. 558 ­
568, August 1996

[11]	 H. Takahashi, A. Matsuyama, "An Approximate
Solution for the Steiner Problem in Graph", Math.
Japonica, vol. 24, n. 6, pp. 573 - 577,1980.

[12]	 B. Waxman, "Routing of Multipoint Connections",
Journal on Selected Areas in Communications, vol. 6,
N.9, pp. 1617 - 1622, Dec. 1988.

[13] P. Winter, "Steiner Problem in Networks:	 A Survey",
Networks vol. 17 (1987) pp. 129 - 167

Giuseppe Di Fatta received the Laurea degree in electronic
engineering with specialization in computer science from
the University of Palermo, Italy, in 1995. In 1996 he
received a two years grant from the Italian National Research
Council. Presently, he is affiliated as research fellow
at the International Computer Science Institute, Berkeley
California, and he is also working toward a Ph. D. at the
University of Palermo. His research interests are in Network
Protocols, Distributed Systems, and Multicast Routing.

Giuseppe Lo Re received the Laurea degree in computer
science from the University of Pis a, Italy, in 1990, and
the Ph.D. degree in Electronic, Computer Science and
Telecommunication Engineering at the University of Palermo
in 1999. In 1991, he joined the Italian National Research
Council (CNR) at the "Study Centre for Computer
Networks" of Palermo, where he currently holds a researcher
position. His current research interests are in the area of
computer communication networks and distributed systems.
He is a member of the Association for Computer Machinery
CACM), and of the Institute of Electrical and Electronics
Engineers (IEEE).

29

