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Abstract - In this paper, we investigate some advantages 
and limitations of nonlinear architectures on adaptive 
equalization of dispersive and linear channels. The channel 
equalization problem is seen as one of classification, and we 
present some theoretical results which relate the zeros of the 
channel impulsive response and the geometrical dispersion 
of channel states. These theoretical results and some related 
consequences are illustrated by means of simple examples. 

Resumo - Uma discussao e apresentada sobre vantagens 
e limites da aplicacao de estruturas de equalizacao lineares 
e nao-lineares sobre canais lineares e dispersivos. Nesta dis­
cussao, a equalizacao evista como uma tarefa de classifica­
cao, e alguns resultados te6ricos sao apresentados de forma a 
explorar a relacao existente entre os zeros do polin6mio que 
modela 0 canal e a dispersao geometrica dos estados deste 
canal. Estes resultados teoricos e tambem algumas de suas 
consequencias praticas sao ilustradas por meio de exemplos. 

Keywords: Nonlinear equalization, spectral nulls 
revisited. 

1. INTRODUCTION 

Linear equalizers have long been used in digital 
communication systems and their importance is associated 
to their low complexity and theoretical tractability. However, 
nonlinear structures like the decision feedback equalizer 
(DFE) or more complex feedforward devices (e.g. equalizers 
proposed in [1,2, 3, 4, 5]) can outperform linear equalizers. 
Furthermore, Gibson et al have shown [3] that the optimum 
equalizer is nonlinear in all realistic cases where noise is 
present and the channel is non-minimum phase. 

Nevertheless, despite its interesting performance, the 
nonlinear approach is in general strongly limited by the 
inherent equalizer complexity and/or the high convergence 
time needed by most common nonlinear filter adaptation 
techniques. 

In [4], we have proposed a new approach to reduce 
nonlinear equalizer complexity using clustering methods 
over the channel output and a natural consequence of 
such work was the study of the relationship between the 
spectral characteristics of the channel impulsive response and 
the possibility of correct channel states classification (see 
channel state definition in Section 2). Indeed, we have found 
some useful theoretical results regarding the possibility of 
finding a classification boundary which correctly classifies 
the channel states. 

In Section 2, we present the problem formulation and the 
two new theorems followed by their respective proofs. The 
first one states that there is no linear separation between 
state classes when there is an in-band spectral null. The last 
theorem states that when the spectral nulls are in the edge of 
the band, states of different classes are superposed regardless 
of the dimension of the classification projection space. In 
such a situation, even a nonlinear classification boundary may 
not provide a correct state classification. 

In fact, despite the well known impossibility of obtaining 
a zero forcing equalizer when the channel presents an in­
band spectral null, we emphasize that, strictly speaking, 
obtaining linear separation between classes is not equivalent 
to inverting the channel. 

Section 3 presents some noticeable consequences of the 
theorems, while in Section 4, some illustration examples are 
given. Conclusions and remarks are presented in the last part 
of this paper. 

2. EQUALIZATION AND CLASSIFICATION 

In digital communication systems, where a message source 
emits one symbol a(n) every T seconds, with the symbol 
belonging to a finite alphabet of S complex symbols, it is 
possible to associate a received signal to a corresponding 
symbol a(n - d), where d is the decision delay. This 
reasoning can be extended to a sequence of synchronously 
sampled received signals and, in such a way, these sequences 
can be grouped according to their respective "labels" a(n ­
d). 

Then, in an S-ary modulation scheme, we have S classes 
of received sequences and, in an equalization context, it 
is sufficient to find the label of each received sequence to 
estimate the emitted symbol a(ti - d). 

In this paper, we consider a communication scheme where 
digital data a(n) is drawn with equal probability from a 
symmetrical finite alphabet {as : 1 :S s :S S}, forming 
an i.i.d, sequence {a( n)}, with variance a~. Furthermore, 
the sampled noise, ben), is additive white Gaussian with zero 
mean and variance a~, and a(n - d) is a decided symbol 
with decision delay d 2:: O. This means that, at each 
time n, the received signal x(n) corresponds to an emitted 
symbol a(ti - d) = as possibly attenuated and corrupted 
by an additive white noise and by an intersymbol colored 
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interference". 
Figure 1 shows a schematic representation of such a model. 
Furthermore, a shorthand notation is provided by defining 

some column vectors: 

•	 channel vector: f = [fa h ... fN-l JT, where Ii, i = 
O,N - 1, are the coefficients of the FIR channel; 

•	 noise vector: ben) = [b(n) ... b(n- M +1) JT, where 
M is the order of the equalizer; 

•	 input channel vector: 
a(n) = [a(n) ... a(n - d) ... a(n - N - M +2) ]T; 

•	 input equalizer vector: 
x(n) = [x(n) ... x(n-M+1)JT. 

We also define the channel convolution matrix: 

...fa 0 0
 

fl fo
 
...12 h 0 

F=I	 
...12 fo 

...fN-l	 h 

...0 fN-l 12 

... 

...0 0 fN-l J (N+M-l)x(M) 

Thus, we can write: 

xT(n) = xT(n) + bT(n) (1) 

where xT(n) = aT(n).F is the channel state vector. 

Channel b(n) 

a(n) 
fen) 

x(n) x(n-l) ... x(n-M+1) 
~------, 

Equalizer: y(n Decision o(n-d) 

y(n)=T(x(n)) device 

Figure 1. Simple digital communication system model with 
equalizer. 

A classical linear equalizer is a linear projection: y(n) = 
Tl (x(n)) = X T (n) .h, where Tl (.) is a linear transformation 
and h is the vector h = [h o hi ... hM - 1 JT, where, hi, i = 
0, ... ,M -1, are coefficients of a linear transversal equalizer 
(LTE). In such a case, we look for the "best" projection of 
the samples x(n) onto a line in the direction of h. Fig. 2 
illustrates this search for the best direction of h for a BPSK 
modulation scheme (a(n) = ±1) and a two-taps LTE. In this 
illustration, the vector on the left is clearly better than the 
other. 

1Actually, in Theorems 1 and 2, presented in this section, only the 
channel model and the symmetry of the modulation alphabet are taken into 
account. 

In the classification sense, this corresponds to finding 
Fisher's linear discriminant h [6, 4]. So, the linear filter 
and the slicer, play a part of a classification device that 
tries to perform a linear separation between the classes 
corresponding to different labels a(n - d) of x(n). 

x(n-l 

x(n)x(n) 

x(n-l 

Figure 2. Projection of samples (states) on 2 different lines 
(two-dimensional illustration). 

Clearly, for a given M and delay d, if a linear separation 
between classes does not exist, the linear equalizer does not 
have a good performance. Nevertheless. it is possible to 
increase the number of equalizer inputs and/or to change the 
decision delay in order to try to obtain the linear separation 
between classes. In a classification sense. changing the 
number of equalizer inputs corresponds to varying the 
dimensions of the classification space. On the other hand, 
changing the decision delay corresponds to changing the 
label of each sample. Figure 3 illustrates this by means of 
simple examples. In fact, Figures 3a and 3b show that linear 
separation may be obtained by changing M (from 1 to 2, in 
this case) under a fixed delay, and Figures 3c and 3d show 
that changes on d, under a fixed M, affect the state labels 
and, consequently, may also provide a linear separation. In 
Figures 3b, 3c and 3d the lines between the states represent 
one possible decision boundary. 

Unfortunately, it has been observed that for some specific 
channels the states classes remain linearly non-separable, 
whatever the delay d and the equalizer order M. 

In such cases, we should use a nonlinear equalizer which 
can provide a much more complex decision boundary. In fact, 
the main feature of nonlinear equalization is that, if there is 
no superposition of states belonging to different classification 
sets, it is possible to perfectly equalize such channel in a 
noiseless environment even if we utilize a memoryless (i.e. 
M = 1) nonlinear equalizer. Figure 4 illustrates that by 
showing a possible decision function in a one-dimensional 
state projection space for a bipolar modulation case with 
channel f = [ 1 0.80.4 ]T and a decision delay d = O. 

Nevertheless, whatever equalizer structure applied (i.e. 
linear or nonlinear), it is worthwhile to increase its number 
of inputs because it provides an enlargement of distances 
between states of different classes and thus their separation 
becomes "easier". This is illustrated in Figures 4 and 5, 
where the minimal distance between two states of different 
classes increases from 0.4 to 0.6325 when M grows from 
1 to 2. Figure 5 also shows possible linear and nonlinear 
classification boundaries. 

In fact, these distances between state projections also 
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Figure 3. illustrations of the effect of changing M or d. Figures a and b show respectively the channel states when f = 
[10.80.4], d = 0 and a) M = 1, b) M = 2. Equivalently, Figures c and d show the channel states when f = [0.5 1 0.4], 
M = 2 and c) d = 0, d) d = 1. 

d(n ­
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Figure 4. Decision function of an one-dimensional (M = 1) 
equalizer. 

correspond to a measure of performance in the presence of 
noise. For instance, we can easily see that the memoryless 
equalizer illustrated in Figure 4 has good performance only 
if the inequality P(I,b(n) I > 0.2) «P(lb(n)1 < 0.2) holds. 
That is, when the noise dispersion is confined to the between 
state gap. Equivalently, the condition of good performance 
of the two-dimensional equalizer for the same channel (see 
fig. 5) is P(lb(n)[ > 0.3162) « P(lb(n)1 < 0.3162). 
Comparing the two inequalities, we can conclude that the 
two-dimensional (two-taps) equalizer has more "space to 
accommodate the noise". 

Figure 6 shows a comparison of simulation results from 
an optimal one-dimensional Bayes equalizer, a single slicer 
decision device and a two-dimensional linear equalizer. This 
comparison illustrates that if the noise dispersion is high, 
the memoryless equalizer and the single slicer decision 
device have equivalent poor performance. Furthermore, 
the linear Wiener equalizer [7] with two inputs (two­
dimensional state projection space) outperforms the one-

dimensional optimal Bayes equalizer in this example. This 
result is to be expected since the two-dimensional Wiener 
equalizer takes into account the correlation between every 
two consecutive channel outputs. Indeed, we can generalize 
these considerations to an M -dimensional equalizer. 

2.5 

1.5 

0.5 

I 
:::::;-­

~ 
~ 

-Q.5 

-1 

-1.5 

·2 

-2.5 

- - . - . - - . - - - - - - - . - - - - _. - - - - - - - - - ... - - - - . - - - - - - ~. _. - '/- - - - - ••• --/
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-,.... //,> c 

o 
a(n-d)=-l 

o 

o 
i(n-d)=+l 

o 

-2.5 -2 -1.5 -, -Q.5 0.5 1.5 2.5 

x(n) 

Figure 5. Linear and nonlinear decision boundaries in a two­
dimensional projection state space. 

In the previous examples it was sufficient to take M 
2 in order to obtain a linear separation between the two 
classes. In fact, typical communication channels impose 
a minimal value of M for which there is linear separation 
between classes. However, we have observed that there is 
a pathological class of channels for which there is no finite 
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Figure 6. SER comparisons between a slicer equalizer, a 
nonlinear memoryless equalizer and a two-dimensional linear 
equalizer. 

value of M or d which makes a linear separation between 
classes possible. Furthermore, a second class of pathological 
channels causes the superposition of states from different 
classes regardless of the values of M and d. 

Since the linear equalizer provides only a linear 
classification boundary, the first class of pathological 
channels can not be equalized by a linear device. On the 
other hand, it is evident that even a nonlinear equalizer 
cannot provide a classification boundary when two states 
from different classes are superposed. 

In order to analytically investigate such limitations 
concerning the linear and nonlinear equalizers, we have 
studied those pathological channels. That is, we have 
studied some particular relationships between zeros of the 
polynomial channel representation and their corresponding 
state projection features in an M -dimensional space. 

Therefore, we present two new theorems: 
Theorem 1: If the polynomial of a finite length channel 

N-l 
F(z) = I: fi Z- i has, at least, one zero Zusuch as Izul = 1, 

o 
then the state projection classes are not linearly separable for 
all possible delays d and for all M. 
Proof Let us consider the polynomial representation of a 
finite length channel: 

N-l 
1F(z) = :L fi Z- i = P(z) (1 - zu z- ) 

o 

where we have an auxiliary polynomial: 

N-2 N-2 
P(z)=fo II (1-ZiZ-

1
) = :LPiZ-i 

i=O	 0
i¥u 

So, the channel F(z) can be considered as a summation of 
two auxiliary channels: F(z) = P(z) - zuP(z)z-l. Then 

f = [Po PI ... PN-2 of- Zu [0 Po PI ... PN-2f (2) 
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where 

fo = Po;
 

fi = Pi - ZuPi-I, i = 1, 2, . . . ,N - 2
 

fN-l = -ZuPN-2·
 

Since a transversal linear filter followed by a hard decision 
device performs a classification by means of a hyperplan, we 
utilize a linear equalizer in order to try a linear separation 
between classes of states. Therefore, the global impulse 
response before the hard decision device can be calculated 
as a convolution: 

g=F·h (3) 

where g = [gO gl 
response vector. 

Considering Eq. 
rewritten as 

, .. 

(2), 

gM+N-2 ]T is the global impulse 

the convolution matrix F can be 

Po o a o 

Po 
Po 

F= 
PN-2 

-zu Po 

PN-2 PN-2 
o o o PN-2 

v v 
po PI 

or, more concisely, 

F=PO-zuPI (4) 

Defining poT as row i of matrix PO and pIT as row i of 
matrix PI, we have the following properties: 

•	 Prop. 1: ptl, = pli+l for i = 0, 1, ... ,M + N - 3 or 
pOi-l = p l , for i = 1,3, ... ,M + N - 2; 

• Prop. 2: pOL-+N-2 = [0 0 ... a ](1XM); 

• Prop. 3: pl6 = [00 .. . 0]pxM); 

Now, applying (4) in (3), we have g = PO - zuPlh. 
Then, we can calculate each coefficient of g as 

gi = (pOT - zuplf)h (5) 

and considering a certain decision delay d, we have 

Igdl = I(pOI - zuplI)hl (6) 

In order to evaluate the maximum intersymbol interference, 

we define the sum I:~ Igi I = I: Igil- It is evident that if 
i¥d 

I:~ Igil ?: Igdl whatever the adopted modulation scheme, 
then there are at least two states from different classes that are 
incorrectly classified (I:~ Igil > 19d1) or superposed on the 
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classification boundary (2:~ Igil = Igdl). In other words, if 

this inequality is verified for a fixed N, M and d, it is not 
possible to separate the classes by means of a hyperplan in 
the state space. Keeping this in mind, we can investigate 
the case when Zu is complex and IZU I, = 1, regarding the 
coefficients of vector g. Then, from Eq. (5) and for I Zu I = 1 
or, equivalently, Zu = ej<f>, we have 

Igil =	 [lpO[hI 2 + Ipl[hl2 

-ej<f>(pOf)*h*pITh - e- j <f>pO[ h(pl f) *h*F/2 

One possible way of investigation at this point consists of 
analyzing the maximum and minimum values of Igil- In 
order to do this, we calculate the partial derivative of Igi I with 
respect to ¢ and we make this derivative equal to zero. The 
maximum and minimum values of Igil are given by: 

Applying these results in (6) and (5), we have Igdl m ax = 
IpOrhl + Ip1rhl. Furthermore, we can assert that 

2:~ Igi I :2: 2:~ jgi Imin' Expanding this last inequality, 

we have 2:~ Igil :2: 2:~ IlpoThl-lpl[hll and, applying 

the triangle inequality, it follows that 2:~ [gil :2: 

12:~ IpO[hi -lpI[hl/· At this point, a particular algebraic 
manipulation is necessary: 

Finally, applying Prop. 1-3, almost all terms are canceled and 
we can simplify the last inequality to: 

,	 I 

L)gi! :2: IIp1rhi + IpOrhl1 '* L)gil :2: Igdl m ax 

Therefore, we can conclude that if the channel polynomial 
has at least one zero on the unitary circle, the inequality 

2:~ Igil :2: Igdl holds for all d or M, and the classes of states 
are not linearly separable 0 

Theorem 2: Since the modulation alphabet {as : 1 :::; s :::; 
N-I 

5} is symmetrical, ifthe polynomial F(z) = 2: fiZ-i has 
o 

at least one zero Zu E a:c and 'zu I = 1, then there are at least 
5 states, belonging to 5 different state classes, superposed at 
the origin of the state projection space for any d and M. 
Proof Considering again the polynomial representation of 

N-I 
a finite length channel: F(z) = 2: fiZ-i, we can use the 

o 
same formulation as Theorem 1. Thus, the channel states are 

given by xT(n) = aT(n)F, where each vector component is 
given by: 

x(n-j) = [a(n-j) ... a(n-j-N+2)].p 
- Zu [	 a(n - j - 1) . .. a(n - j - N + 1) ] . p 

where j = 0,1, ... ,M - 1 and p = [po PI ... PN-2 V. 
Then, when Zu = ±1, a symbol vector a(n) satisfying the 
property: 

[a(n-k) a(n-k-N+2)] = 
±[ a(n-k-l) a(n-k-N+1)], \fk E {O, ... ,M -I} 

is projected on the origin of the M-dirnensional state 
projection space. Indeed, there are at least 45 symbol vectors 
having such a property. namely: 

aT± =	 [+as - as + as - as ... (-I)N+M-2 as]',s

T = [+ as as + as ... (-I)N+M-I as]'as,!, -as -	 , 

where as± = -as,!, and then these vectors are mapped 
on two overlapping states at the origin when Zu = +1. 
Equivalently, we have also a s + = -as- and these vectors are 
mapped on the origin when Zu = -1. Furthermore, for each 
vector pair, we can observe that as ± =J- as'f" where as± = 
a(n - d)la(n) = as± and as'f' = a(n - d)la(n) = as,!,; 
and that as+ =J- as- where as+ = a(n - d)la(n) = as+ and 
as- = a(n - d)la(n) = as-, for all possible delay d :2: 0. 
Therefore, for each symbol sequence pair, the superposed 
states have different labels 0 

3. DISCUSSIONS AND CONSEQUENCES 

Theorem 1 states that a linear equalizer cannot provide a 
linear separation between classes if the channel has, at least, 
one zero on the unitary circle. In turn, Theorem 2 shows that 
even by use of a nonlinear equalizer, a zero error probability 
is not attainable when the channel has, at least, one zero equal 
to +1 or-1. 

In conventional communication jargon, "the eye is open" 
when the classes are linearly separated. Evidently, even a 
channel without in-band spectral nulls may cause a closed 
eye but, in such cases, it is enough to change M and/or d in 
order to open the eye. 

What is more, it is well known that a channel having 
spectral nulls cannot be perfectly equalized since H(z) = 
1/ F(z) is undetermined. However, obtaining linear 
separation between classes is not equivalent to obtaining the 
zero forcing equalizer. Actually, since zero forcing equalizers 
recover correct symbols by means of a linear transformation, 
this corresponds to linearly mapping each class of states into 
one single point. Clearly, it is more restrictive than mapping 
the classes into linearly separable regions. 

An interesting consequence of the results presented 
concerns the use of a mix strategy. That is, to split the 
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equalization task into two parts: a linear projection which 
groups the states belonging to a same class, and a nonlinear 
classification, which is simpler as long as the linear part does 
its work well. 

This mix strategy is well known in the classification 
context but, despite its advantages concerning task 
simplification, our results show that it is not always a 
good idea to place a linear Wiener equalizer before a 
nonlinear one. Indeed, taking into account theorems 1 
and 2, if the channel has zeros on the unitary circle, the 
Wiener equalizer tends to map close to the origin some 
states of different classes. Consequently, this reduces the 
mean distance between states and even a nonlinear equalizer 
placed after this linear equalizer will not be robust regarding 
the noise level. 

This consequence can also be understood by analyzing 
the resulting polynomial transfer function: since an FIR 
equalizer tends to compensate for a channel zero on the 
unitary circle by placing several other zeros around this 
circle,· even if Is« I = ± 1 and Zu is not real, the 
resulting polynomial G(z) = F(z)H(z), where H(z) = 
E~~1 hiz- i , "tends" to have one or several zeros equal to 
+1 or -1. From Theorem 2, this can be understood as a 
tendency of the nonlinearly separable states to go towards the 
origin as long as the linear equalizer order increases. 

4. ILLUSTRATION EXAMPLES 

In this section, we present some examples to illustrate the 
former results. For simplicity, these examples are carried out 
with a BPSK (as = ±1) modulation scheme. 

First, we consider the channel model f 1 = [1.000 ­
1.9708 1.3308 - 0.3600 ]T, which has one zero on the 
unitary circle. Figure 7 shows the location of these zeros. 

'.5 

1m 

0.5 f I 
0 Vu =1 

t 
'j-­

Re 
0 

-0.5 

-, 

-'.5 
-1.5 -, -0.5 0 0.5 1 1.5 

Figure 7. Complex zeros of the first channel fl. 

From Theorem 2, we have two symbol sequences: a s + 

[llll]T andas - =[-1 -1 -1 -ljTsuchas: 

a;+ f1 = a;-f1 = 0 

Figure 8 shows these two one-dimensional superposed states. 
Such states cannot be correctly classified even by an one­
dimensional Bayes equalizer. 

Deliberately forgetting Theorem 2, we may try to separate 
these states by increasing the projection space dimension M. 
But, according to Theorem 2, this procedure will not work 
well for this particular channel. 

superposition 

I 
~ x*"xo e xoo 0 o 0 ~ 

5 
I 

x(n)-5 a 

Figure 8. Superposition of two l-dimensional states. 

Just to illustrate that superposition remains even if we 
change the equalizer order, we show the superposed states 
in a two-dimensional projection by means of the convolution 
matrix F: 

1.0000 0.0000 
-1.9708 1.0000 

F= 1.3308 -1.9708 
-0.3600 1.3308 
0.0000 -0.3600 

and the same two symbol sequences as- and as-: asT = 
[11111 JT, as- = [ -1 -1 -1 -1 - 1 and a;+ . F = 
a;_ .F = [00 J. 

Figure 9 shows the resulting two-dimensional state 
projection. In such a figure, we can also observe the 
superposition, as expected. 

x(n -1) 

4r , 

2 

-3 

-4 

-2 

-, 
e 
o 

o 
o 

o 
o 

o 
o 

o 
oo 

o 

o ~ superposition 

'!'.........-. 

D 

o 

Figure 9. Superposition of two 2-dimensional states. 

As a second example, we illustrate now the last 
consequence presented in Section 3. In this second 
example, we have chosen the channel model f2 

[1.0000 -1.6180 1.0000 f, which has two complex 
zeros on the unitary circle. Figure 10 shows the location of 
these zeros. 

According to Theorem 1, we know that no linear hyperplan 
can separate all the states with different labels. Nevertheless, 
just as an illustration, we "force" such a separation by 
means of the hyperplan corresponding to the transversal 

90 



Revista da Sociedade Brasileira de Teleccmunlcacoes 
Volume 14, Numero 2, dezembro 1999 

1.5 .-----.-----,.---,..---.-----,----, 

1m 

0.5 

oI-----;i-------,i-------;~---; 

As 

-0.5 

-1 

-1.5 '------'_---'_----l_----'_---'_---' 
-1.5 -1 -0.5 0.5 

Figure 10. Complex zeros of f2 . 

linear Wiener equalizer with high order. We use a 101­
tap equalizer (101 has been chosen for clarity of figures 
presentation). Figure 11 shows the zeros of the resultant 
polynomial: Gop(z) = F(z)Hw(z), where Hw(z) is the 
Wiener equalizer. We notice that as the number of taps (M­
order) increases, the zeros tend to fallon the unitary circle. 
Furthermore, it also implies that at least one real zero equal 
to +1 or -1 will tend to appear. 

Consequently, we can conclude that if we try to apply a 
Wiener equalizer on a channel which comes into Theorem 
1, the resulting global impulse response tends to be included 
in the case treated in Theorem 2, which illustrates the ideas 
presented in Section 3. 
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Figure 11. Gop (z) zeros. 

5. CONCLUSIONS AND REMARKS 

In this paper, we have investigated some aspects of 
equalization regarding the polynomial zeros analysis of the 
corresponding channel by a classification approach. 

We have introduced two theorems which relate the location 
of the zeros on the unitary circle to the possibility of 
equalization. These theorems show one theoretical limit of 
both linear and nonlinear equalizers. 

Moreover, we have also investigated a specific 

consequence of these results regarding the validity of 
equalizing using mixed linear and nonlinear devices. 

Actually, we have used these two results in order to 
evaluate the performance limit of a clustering based channel 
identification strategy (according to [4]). 
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