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Resumo - Neste artigo apresentamos urn metodo enume­
rativo para calcular express6es analiticas para as estatisticas 
de surtos de erros gerados por canais de comunica~aomode­
lados por cadeias de Markov escondidas (lIMC). E demons­
trado que a distribui~ao de peso de uma seqiiencia de erro 
pode ser descrita analiticamente a partir da distribui~ao do 
numero de intervalos entre erros. 0 estudo da descri~ao es­
tatistica do processo de erro tern aplica~oes imediatas no mo­
delamento de canais reais e no projeto de esquemas de codi­
fica~ao para canais com memoria. 

Abstract - In this paper we present an enumerative method 
to derive analytic expressions for burst error statistics of hid­
den Markov channel (HMC) models with an arbitrary number 
of states. It is demonstrated that the error weight distribution 
can be analytically described from the distributions of inter­
vals between errors. The study of the statistical description 
of the error process has immediate applications in the model­
ing of real channels, and in the designi of coding schemes for 
channels with memory. 

Keywords: channels with memory, combinatorial meth­
ods, multigap distribution, burst statistics, error weight distri­
bution. 

1. INTRODUCTION 

Two fundamental problems arise in the mathematical mod­
eling of communication systems: The problem of channel 
modeling and the problem of applying the model to further 
system analysis. The aim of channel modeling is to obtain as 
simple an analytical model as possible that accurately reflects 
the important statistical description of the real error process. 
Therefore, we can use the statistics of the model to design 
coding schemes and to evaluate the performance of commu­
nication systems. 

An HMC model is characterized by an underlying non­
observable Markov chain [1]. The discrete output symbol 
to the channel at the k th time interval, Yk, is a function of the 
input symbol x k and the state of the Markov chain S k . The 
channel is described statistically by the conditional probabil­
ity P(Yk, Sk I XI,. , sk-d. The difference between the input 
and output sequence to the channel is defined as the error 
sequence. Thus, for example, in a binary system the error 
sequence will be a sequence of zeros and ones with a one 

indicating an error. The characteristics of the channel impair­
ments, are incorporated into the model in such a manner to 
produce a statistically similar error sequence as produced by 
the real channel. This HMC model is suitable when the chan­
nel has a set of properties constant for a certain period of time, 
and then, change sequentially to another set of properties. 
This approach has some interesting features: (i) The model 
is quite general and flexible. For a broad class of real com­
munication channels, the correlation structure of the error se­
quence can be accurately characterized by the proper choice 
of the model parameters. (ii) The model has a well known an­
alytical description. When its parameters are known, the mul­
tidimensional probability of the error sequence can be calcu­
lated. 

Some burst error statistics have been used as a criterion for 
selecting models to represent real channels. One issue of con­
siderable importance is the investigation of the renewal na­
ture of the error process. Renewal channels possess the prop­
erty that the gap (sequences of zeros) lengths before and after 
an error are independently distributed. Examples of renewal 
models include Fritchman channels with one error state [1]. 
The Gilbert-Elliott channel [2], for example, is non-renewal. 
Renewal models have gained some popularity mainly due to 
their simplicity of analysis. However, it can be demonstrated 
that many real communication systems cannot be accurately 
modeled as renewal models [1, 3]. The statistic called multi­
gap distribution has been used as a test of non-renewalness of 
the error process. Despite this important property, no analyt­
ical expression for the multigap distribution of HMC models 
has been given in the literature so far. Another application of 
burst error statistics is the design and performance evaluation 
of coded systems over HMC models. Some statistics of in­
terest for the encoder designer may include the probability of 
exactly m errors occurring in a block of length n, the average 
burst length, and many others. 

In this work we follow the theory of enumeration of con­
strained sequences described in [4] to enumerate a particular 
subset of error sequences generated by the HMC model. We 
will show that the probability of this subset can be obtained 
by acting on the generating series with a linear mapping ex­
tended as a homomorphism to the whole of the ring of all 
formal power series. As an application, we specialize these 
general expressions for the cases of Gilbert-Elliott and Fritch­
man channel models. Moreover, we will also use the generat­
ing series to find recurrence formulas, which are convenient 
for computation. The techniques developed here are not lim­
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ited to these particular models and can be readily applied to 
more general Markov models. 

This work is organized in five sections. Section 2. de­
scribes the details of the generation of the error process with 
HMC models and its properties. In Section 3. we define the 
generating series in a ring of all formal power series in non­
commuting indeterminates. A method for determining the 
burst error statistics from the generating series is introduced 
in this section. In Section 4. we give explicit expressions for 
the burst error statistics considered in this work. Finally, con­
cluding remarks are given in Section 5.. 

2. MODEL DESCRIPTION 

Consider {8 k } k= 1 an N -state Markov chain with a finite state 
spaceNN = {O,I, ... ,N-I}. LetPbeanNxNtran­
sition probability matrix, whose (i,j)th entry is Pi,j' The 
error sequence is generated by the HMC model as follows. 
At the kth time interval, the chain makes a transition from 
state 8 k = ito 8 k+ 1 = j with probability Pi,j and generates 
an output symbol ek E N2 (independent of j), with prob­
ability bi,e, = P(Ek = ek I Sk = i). We are assuming 
that the distribution of the initial state is the stationary distri­
bution IT = [11"0,71"1, •.. ,11" N-1V (where the superscript [.]T 
indicates the transpose of a matrix). 

The probability of an error sequence is calculated as fol­
lows. Define the N x N matrix P(ek) whose (i,j)th entry 
is Pi,j(ek) = P(Ek = ek, Sk+] = j I Sk = i) = Pi,j bi,e" 

which is the probability that the output symbol is ek when the 
chain makes a transition from state i to j. The probability of 
an error sequence oflength n, ell = e] e2 ... en, has a matrix 
form given by: 

(1) 

where 1 is a column matrix with all entries ones. 
The Gilbert-Elliott channel [2] is a two-state Markov chain 

composed of a good state, state 0, where errors occur with 
small probability, and a bad state, state 1, where errors occur 
with higher probability, as illustrated in Figure 1. When the 
chain is in the good state the error bit ek is zero (correct) with 
probability 1-g, or one (error) with probability g. Otherwise, 
when it is in a bad state, the error bit is zero with probability 
1 - b, or one with probability b. 

Q 

I-b 

~Y' 
I-b 

Figure 1: Gilbert-Elliott model for burst channels. 

The matrices P,P(O),P(I) and IT are given by: 

p=[I-Q Q ]. (2)
q l-q' 

P(O) = [ (1 - Q)(I - g) Q(I-g) ]; (3)
q (1 - b) (1 - q)(1 - b) 

P(I) = [ (I-qbQ)g Qg ] . (4)
(I-q)b ' 

(5) 

Some error distributions for this channel can be calculated 
using Equation (1). As an example, the probability the bit 

error is a 1, P(I) ~ P(Ek = 1), and the probability of two 

consecutive ones, P(ll) ~ P(Ek = 1, EHI = 1), are given 
by: 

P(I) = ITT P(I) 1 = 71"0 9 + 11"] b. (6) 

P(ll) 

An HMC model can also be described as a deterministic 
function of a Markov chain. In the Fritchman channel, the 
state space N N is partitioned into two disjoint subsets Ao = 
{O, ... ,K-I} (thegoodstates),andA] = {K, ... ,N-I} 
(the bad states). The error bit generated by the model at the 
k th time interval, Ek, is a deterministic function of the cur­
rent state Sk, and assumes the value E k = 0 (no error) if 
S", E Ao or Ek = 1 (error) if S". E AI. Using the ma­
trix P and this partition, we can determine the two matrices 
P(O) and P(I), where P = P(O) + P(l). We will consider a 
class of equivalent Fritchman channels (EFC) with matrix P 
having the following special structure: 

P_[Ana PO]] (7)- All 'P lO 

where 1\00 and A]] are diagonal matrices. The block matrices 
Pk,1 represent the transition probabilities from the set A k to 
AI. A model with K good states and N - K bad states is 
denoted by (K, N - K)-EFC. In particular, the matrices P, 
P(O), P(I) and IT for the (2,1 )-EFC model are given by: 

1- Ao ]
1- A] ;P= 

1 - P2,O - P2,] 

P(O) = 

1 - >'0 ]
1 - A] ; 

1 - P2,O - P2,1 
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Tsai modeled a fading HF communication channel using the 
following (2,1)-EFC model [5]: 

0.99911 0 0.00089 ] 
(8)P = 0 0.73644 0.26356 . 

[ 0.36258 0.58510 0.05232 

3.	 THE GENERATING SERIES 

The problem we will address in this section is to find the prob­
ability of error events associated with HMC models. The er­
ror events of length n will be denoted generically by £11' It 
is well known that the probability of an error sequence is not 
preserved under commutation of its symbols. This prompts 
us to define the generating series in non-commuting indeter­
minates in order to keep all the information about the original 
sequence. So denote the generating series for £11 (error event) 
as: 

(9)FE" = L X e , x e1 .• • x e", 
el/E£,/ 

which is in R «xo, Xl », the ring of all power series in the 
non-commuting indeterminates xo, Xl. The indeterminates 
Xo and Xl mark an error bit equal to 0 or 1, respectively. No­
tice that P(£,J may be obtained from the generating series 
FE" simply by replacing X e , by P(ei) and wrapping the vec­
tor rrT around the front and 1 around the back. We can 
formalize this concept by defining the mapping: 

Ll: R« Xo, Xl »---t M N(R) : Xk f---+ P(k), 

acting as a homomorphism to the whole of the ring. M N (R) 
is the ring of all N x N matrices with entries taken from R 
(the field of real numbers). The probability of the set £11 may 
be expressed very compactly as: 

(10) 

The main step to find P (£11) is to determine the generating 
series FE". The key point to solve problems of this type is 
to find a bijection that expresses the set £11 in terms of con­
catenation products of binary strings. More examples will be 
addressed in the next section. 

4.	 DERIVING BURST STATISTICS 
FROM GENERATING SERIES 

In this section we will derive expressions for two important 
statistics: 

•	 The error weight probability, P(m, n), the probability 
of exactly m errors occurring in a block of n bits. This 
measure is important to determining the performance of 
block codes and interleaving on HMC models. 

•	 The multigap distribution, M(r, l), is the probability of r 
consecutive gaps in a sequence of length l. The multigap 
distribution has been used as a test of non-renewalness 
of the error process. 

In all cases, we first obtain an expression for an N -state 
HMC in terms of the matrices rr, P(O), P(I). We now de­
fine some notation. If s and z are commutative indetermi­
nates, [sk zll] T(s, z) denotes the coefficient of sk z1l in the 
formal power series T(s, z). If A is a set of sequences, A * is 
the set of all sequences formed by concatenating any number 
of sequences in A. The identity matrix will be denoted by I. 

4.1.	 The Error Weight Distribution P(m, n) 

We wish to determine the probability of the set £n composed 
of sequences of Hamming weight m and length n. The gen­
erating series for £11 is obtained directly from the generating 
series for the set of all binary sequences, {O, I}* , by defining 
the indeterminate z to mark the length of the sequence and s 
to mark the number of I's. Since F{O,I}' = (1- Xo - xd- l

, 

it follows that FE" is: 

FE" = [sm zll] (1 - xoZ - XISZ)-l E R« Xo, Xl » . 
(11) 

From Equations (10) and (II) the error weight distribution 
P(m, n) is given by: 

P(m,n) = [s1l1 z1l] rrT(I -P(O)z -P(I)sz)-ll; 
= [s1l1 z"] Hp(s, z), 

(12) 

where 

Hp(s, z) = L P(m, n) sm z1l E R[s][[z]]; 
rn,11 (13) 

= rrT(I -P(O)z -P(I)SZ)-l 1. 

The generating series Hp(s, z) is a polynomial in s. Then, 
Hp(s, z) is a formal power series in z with a coefficient ring 
R[s]. We now specialize the calculation of P(m, n) for the 
Gilbert-Elliott channel. An expression for H p (s, z) can be 
obtained upon substitution of Equations (3)-(5) into (13). An 
explicit formula for P(m, n) can be found by carrying out the 
partial fraction technique to extract the coefficient of Equa­
tion (12). Alternatively, it is simple go from generating series 
to recurrence formulas, which provides a rapid computational 
scheme for the problem. From Equation (12) we can prove 
that P(m, n) for the Gilbert-Elliott channel satisfies the fol­
lowing 6-term recurrence formula: 

P(m,n) = 
-(Q(I-g) + q(l-b) - (2-g-b)) P(m,n -1) 
+(b(l- q) +g(l- Q)) P(m -I,n -1) 
-((1 - b)(1 - g)(1 - q - Q)) P(m, n - 2) 
-((1- q - Q)(b+ g - 2gb)) P(m -I,n - 2) 
-((1 - q - Q)gb) P(m - 2, n - 2), 
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for m ~ 0, n ~ 2, with initial conditions: 

P(m,n) D, for m, n < D, m > n;
 
P(O,O) = l'
 
P(O,l) q!Q(l- g) + ~(1- b);
 
P(1,l) = ;dQg + ffub.
 

A new recurrence fonnula for P(m, n) for the (2,1)-EFC 
Fritchman channel is given below: 

P(m,n) =
 
(Ao + AI)P(m, n - 1) +
 
(1 - P2.0 - P2.I}P(m - 1, n - 1) ­

AoAIP(Tn,n - 2)­
«Ao + AI) - P20(1 + AI) - p:1.1(l + Ao))P(m - 1,n - 2)
 
+ (ADAI - P2.I Ao - P2.oAdP(m - 1, n - 3),
 

for m ~ D, n ~ 3, with initial conditions: 

P(O,D) = 1;
 
P(D, 1) = P(D);
 
P(l, 1) = P(l);
 
P(D,2) = P(OD);
 
P(1,2) = 2P(D1);
 
P(2,2) = P(ll). 

Let the random variable E" be the number of errors in a block 
of length n. It is obvious that P(E" = m) = P(m, n). 
Moments of the random variable E" of any order, E{ (E") k}, 
can be obtained from the el> derivative of the matrix ( 1 ­
P(O)z - P(l)SZ)-l, since: 

E{ E" (E" - 1) .. . (E" - k + 1)} =
 

= [Zll] {~~,\ Hp(s, z) L=l ;
 
= [Z"] n T {::, (1 -P(O)z -P(l)sz)-l}8=1 1.
 

An exact formula for ::' (1 - P(O)z - P(l)sZ)-l will be 
stated without proof in the next lemma. 

Lemma 4..1 The ktl> partial derivative of the matrix 

A(s, z) g ( I - P(D)z - P(l)sz)-1 is: 

~~, A(s, z) :=: k! : (A(s, z)P(l)z)1- : A(s, z). 

Using the result of the lemma, we are able to prove the 
following result: 

E{ Ell (E" - 1) . .. (E" - k + 1)} =
 
= k! [Zll] n T « 1 - Pz)-IP(l)z)1- (I - pz)-ll;
 

= k! [Zll] n T « 1- Pz)-IP(l)z)1- 1~~;
 
= k! [Z"-I.·] nT « I - pz)-lP(1))1- l~:;
 

II-I ­

= k! L [zJ] n T « 1- pz)-lP(l))1. 1. 
j=() 

(14) 

It is easy to see from Equation (14) that E{E"} = nP(l) 
where P(l) is defined in Equation (6). Moreover, the vari­
ance of E" , for a general HMC model can be found directly 

from (14) by setting n = 2. The final expression is: 

=E{(E")2} - (np(1))2; 
11-2 

= 2~)n - j - 1) n T p(1)pJP(1) 1 
j=O 

+ nP(l) (1 - nP(l)); 
(15) 

From the variance of E", we can readily calculate the corre­
lation coefficient between two blocks of length n. Consider a 
block of length kn formed as a concatenation of k blocks of 
length n. Let the random variable El! be the number of errors 
of the kth block. The correlation coefficient between EO' and 
E'k is given by [3]: 

Var(E(/,'-I)1l) - 2Var(Ek l1) + Var(E(ldl)1l)
Pk = --'----'----:::-:--'-:-=-7----....:......----' ­

2Var(En) 
(16) 

The quantity Pk can be a useful indicator to select codes. For 
example, as mentioned in reference [3], the burst-trapping 
code works well for channels whose Ph' is negative. It is easy 
to show that for the Gilbert-Elliott channel, p~~ is positive for 
all values of k and n, as long as 0 < (1 - q - Q) < 1. 
A positive correlation indicates that whenever a block i has 
more than the average number of errors, block i + k has the 
tendency to have more than average. 

4.2. The Multigap Distribution M(r, l) 

The length of a gap is the number of zeros between two er­
rors plus one (the last error is included). The error process 
{Ed~l can be regarded as a sequence of gaps {Gd~I' 
where G I- is the length of the k f I> gap. The gap process is 
a convenient representation for the error sequence, since a 
large number of consecutive D's is expected to occur on chan­
nels with low bit error probability. Let the random variable 
G" = L::7~:-1 G be the sum of r consecutive gap lengths 

" G". The multigap length distribution, denoted as M(r, i), is 
defined as M(r, I) = P(Gl' = I). If the error process were 
renewal, this means that {G I- } 1:=.] are independent random 
variables, then the variance of G' is V areG") = r V are G1)' 

The problem of finding M(r, i) may be formulated as fol­
lows: Find the probability of the set El , composed of binary 
sequences of length l such that the r th error will occur at the 
lti> time interval. Note that the set of all sequences that ends 
with a 1 may be expressed as {O* 1} *. Let the indeterminate z 
mark the length of the sequence and let s mark the occurrence 
of a 1. The generating series for the set El may be obtained 
from {O* 1} * by replacing: 

0* by 1+xoZ+x6z2+ ... =(l-xoz)-J; 
1 by X1SZ. 

It follows that FE, is: 

FE, = [s"zl](l-(I-xoz)-lxlSZ)-1 E R«:x(),xl~. 

The multigap distribution M (r, l) is the probability of the set 
El' conditioned on Eo = 1. Then 

(17) 
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where the generating series HlII(s, z) is: 

HlII(s, z) = L M(r, l) sr zl E R[sl[[z]]; 
1',1 

= P(J) rrT p(I)(1 - (1 - P(O)z)-lP(I)sz)-11. 
(18) 

It is interesting to notice that the computational effort to cal­
culate M(r, l) and P(m, n) is very closely related, as will be 
stated in the following proposition. 

Proposition 4..1 For a general HMC model, the statistics 
P(m, n) and M (r, l) follow the same recurrence relation, but 
with different initial conditions. 

Proof. The generating series HP ( s, z) and HAt{s, z) are 
the ratio of two polynomials in s and z. The denominator 
polynomial is responsible for the recurrence relation, and the 
numerator polynomial defines the initial conditions. So, it 
suffices to prove that H P (s, z) and H AI (s, z) have the same 
denominator polynomial. Hp(s, z) is defined in Equation 
(13), and it follows from Cramer's rule that its denomina­
tor polynomial is det( 1 - P(O)z - P(I)sz). Using the 
same argument, we can conclude from Equation (18) that 
the denominator polynomial of H 1II (s, z) is the numerator of 
det( 1 - (1 - P(O)z)-lP(I)sz). But: 

det(1 - (1 -P(O)z)-IP(I)sz) = 
= det((1 -P(O)z)-1 [(1 -P(O)z) -P(I)sz] :); 
= det((1	 -P(O)z)-I) det((1 -P(O)z) -P(I)sz); 
= del( I -PfOlZ -P(I)sz).
 

det{ -P(O)z)
 

Therefore, the proof is complete. • 
The variance of Gr, denoted as Var (Gr), can be expressed 

as: 

Adoul [3] defined a quantity called variation coefficient K (r) 
for a channel as: 

Var(Gr) = K(r) VarBsc(Gr), 

where V arBsdGr) = r(1 - P(I)) / P(I)2 is the variance 
of G' for the BSC channel with crossover probability P(I). 
Adoul [3] shows experimental curves for K(r), as a function 

Table I: K(I) versus d 

d K(I) 
1 4.443 
2 2.761 
3 2.100 
4 1.790 
5 1.600 
10 1.202 
20 1.061 

Since K(r) is constant with r, the process is renewal. Let us 
sample the process en to obtain the process Zn, or Zn = ed", 
for d = 1,2, .... Using the above theory, it can be shown that 
z" is a renewal process. Table 1 shows the values of K(I) 
versus d for the sampled process Zn when the HMC model is 
the (2,I)-EFC channel given by Equation (8). 

Adoul [3] defined a process whose K(I) is greater than one 
as a more variable process, in the sense that the gap lengths 
spread widely from their mean value. In this case, errors have 
a trend to be clustered. The further K(I) is from 1, the more 
pronounced is this trend. As the value of d increases, the 
process z" tends to become memoryless and K(I) tends to 
1. If we encompass the channel with an interleaving and an 
deinterleaving with finite interleaving depth d, we can regard 
the sampled process z" as the error sequence at each row of 
the deinterleaver. We can use the table above to investigate 
the minimum value of d that renders the channel memoryless. 

Figure 2 illustrates the behavior of K (r) for Gilbert-Elliott 
channels for two different sets of parameters. The mod­
els denoted as M 1 and M2 in the figure have parameters 
(Q = 0.0022, q = 0.11, b = 0.4, 9 = 10-2

) and (Q = 
4 X 10-6 , q = 4.7 X 10-4 , b = 0.3, 9 = 10-3), respectively. 
The plots show that Gilbert-Elliott channels are able to model 
channels with gap lengths that spread widely from their mean 
value. 

Variation coefficient 
5 

4.5 
M24 

of r, for troposcatter channels. This curve was used to com- K(r) 3.5 
pare the spread of multigap lengths for a particular channel 
and its corresponding BSC. It is important to notice that for 
renewal processes K(r) = K(I), for all r, that is, the curve 
K(r) versus r is a constant for all r. An expression for K(r) 
for the renewal (2,1 )-EFC model is given below: 

K(r) =	 (1 + >'0)(1 + >.d(P2,1(1 - >'0)+ 
(1 - >'1)P2.0) - ((1 - >'0)P2.1 + 
(1 - >'1)P2,0)2/((1 - >'0)(1 - >'1) 
+P2.0(1 - >'d + P2.1 (1 - >'0)) 
(P2,o(1 - >'1) + P2,l(1- >'0))' 

MI3 
2.5
 

2
 

1.5 
1 

2 4 6 8 10 
r 

Figure 2: K(r) as a function ofr, for Gilbert-Elliott channels. 
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5. CONCLUSIONS 

A combinatorial approach has been presented to derive vari­
ous statistics of interest in the analysis of general HMC mod­
els. The method has two main steps. First, the set of all per­
missible sequences that constitute the error event is enumer­
ated. Second, a linear mapping incorporates the parameters of 
the model into the generating series. The specific new results 
developed in this paper are stressed below: (i) a new recur­
rence formula for P(m, n) for the Gilbert-Elliott channel and 
for the (2,1)-EFC model; (ii) an expression for the variance 
of the multigap distribution; (iii) the fact that the multigap 
and the error weight distribution follows the same recurrence 
formulas. It is clear that many other problems of significance 
in the evaluation of communication system performance will 
also be amenable to the application of these techniques. 
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