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Resumo - Vma tecnica bern estabelecida para a determina­
l,(ao da capacidade de seqiiencias discretas modeladas por urn 
diagrama de transil,(ao de estados finitos (FSTD) e baseada 
no maior autovalor da matriz adjacencia da FSTD. Neste ar­
tigo, 0 problema do ccilculo da capacidade e colocado em uma 
perspectiva que permite 0 emprego de metodos de combinato­
ria enumerativa para achar 0 numero de seqiiencias de com­
primento n satisfazendo uma determinada restril,(ao. Varios 
exemplos sao usados como ilustral,(ao. 

Abstract - A well known technique for determining the 
capacity of constrained sequences modeled as a finite state 
transition diagram (FSTD) is based on the largest eigenvalue 
of the adjacent matrix of the FSTD. In this paper, we rephrase 
the calculation of capacity by putting it into a perspective 
which allows us to employ a standard combinatorial enumer­
ative technique to find the number of sequences of length n 
satisfying a given constraint. Several examples are used as 
illustration. 

Keywords: constrained codes, Shannon capacity, combi­
natorial methods, generating series. 

1. INTRODUCTION 

Runlength-limited sequences have been used in many mag­
netic and optical digital storage as well as data transmission 
systems. The constraints introduced into the sequence offer 
the possibility of achieving a desired spectral shaping, reduc­
ing the intersymbol interference and improving the synchro­
nization ability of communication systems. 

The problem of determining the Shannon capacity, or sim­
ply capacity of constrained sequences, originates with Shan­
non [1]. If S is the set of all binary sequences of arbitrary 
length satisfying a certain constraint, the capacity of the set 
S, denoted as C, is defined as: 

log2 CnC = lim 
11 --+(X; n 

where C n is the number of sequences in S of length n. The 
number of sequences in S grows exponentially for large n 
as 2"c. Shannon showed that the capacity provides an up­
per bound on the code rate of any finite-state code that can 
be used to encode the unconstrained data sequence into the 
constrained sequence. 

The technique proposed by Shannon for finding the capac­
ity of constrained sequences that can be modeled by an FSTD 
is described in detail in reference [2]. The FSTD may be 
easily transformed into an adjacent matrix which indicates 
the allowed state transitions. Given the adjacent matrix A of 
the FSTD, it was shown by Shannon that the capacity is ex­
pressed as: 

C = log2 A, 

where A is the largest real eigenvalue of A. Equivalently, the 
capacity is the base two logarithm of the largest real root of 
the characteristic polynomial of A. The capacity can identify 
codes which are too constrained or inappropriate for a certain 
application. 

In this paper a standard enumeration technique is given to 
find a simple formula for a formal power series, the gen­
erating series, for some classes of constrained sequences, 
such that the number of binary sequences in S, Cn , are the 
coefficients of appropriate power of indeterminates. More­
over, using an argument similar to Shannon's, the capacity 
is expressed as the base two logarithm of the inverse of the 
largest real root of the denominator polynomial in the poly­
nomial ratio representation of the generating series. Several 
classes of binary constrained sequences of interest in digital 
data recording are used as illustration, including RLL(r, s), 
RLLo(d, k), ARLL(r, s)-(e, l), and RLLo(d, k, s) sequences. 
One example of M -ary sequences is considered as well. 

We now define some notation for further reference. A 
generic binary sequence will be denoted by u = aj a2 """. 
If A and B are sets of binary sequences, the concatenation 
product of A and B, defined as AB = { dJ I a E A, bE B} 
is the set formed by following any sequence in A with any 
sequence in B, A 2 = AA and A* = ¢ u A U A 2 U A3 """, 

where ¢ is the empty sequence, i.e., a sequence of length zero 
that possesses the property ¢a = at/J. In particular, {O, I} * is 
the set of all binary sequences. The Cartesian product of A 
and B, denoted as A x B, is the set of all ordered pairs ( a, b) 
where a E A and b E B. For example, if A = {O, 1, 01} 
and B = {I, 0, 10}, then 

A x B {CO, 1), (0,0), (0, 10), (1, 1), (1,0), 
(1,10),(01,1), (01,0),(01, 10)}; 

AB {OI,OO,OI0,11,10,110,OII,OI10}. 

In this particular example, the set A x B has 9 elements 
and the set AB has 8 elements. F denotes a sequence of r 
consecutive ones, for example, 13 =111. The field of rational 
numbers is denoted by Q. The next section contains back­
ground on generating series in commuting indeterminates. 

104 

mailto:cecilio@npd.ufpe.br


Cecilia Pimentel 
Generating Series and Capacity for Constrained Sequences 

2.	 THE GENERATING SERIES 

Let w : S ----t {O, 1, 2, ...} be a weight function such that 
w(O') is the weight of 0' with respect to w. The weight func­
tion w records designed infonnation about the sequence 0'. 

Let Q[[x]] be the ring of all fonnal power series in commuting 
indeterminate x with coefficients taken from the field of ra­
tional numbers Q. The ordinary generating series for S with 
respect to weight function w, denoted by [(S,w)], in the in­
determinate x, is defined as: 

[(S, w)] = I: xW(O') E Q[[x]]. 
O'ES 

The generating series [(S, w)] is to be regarded as a formal 
power series in Q[[x]] which retains combinatorial infonna­
tion on coefficients. We say that the indeterminate x marks 
w, and that [(S, w)] enumerates S with respect to w. The rea­
son for introducing this series is justified by the straightfor­
ward observation that if w(0') is the length of 0', the desired 
quantity c" is the coefficient x" in the formal power series 
[(S,w)]. 

The generating series approach provides us with a strat­
egy for solving problems involving sequences in a commut­
ing ring. One possible strategy for determining the generating 
series is to select a weight preserving bijection that decom­
poses the set S into constituent subsets under the operation 
of disjoint union and Cartesian product, such that it is easier 
to determine the generating series for these subsets. The enu­
meration of the original set is given by the Sum and Product 
Lemmas [3], which we state in the following two lemmas. 

Lemma 2••1 (The Sum Lemma) Let SI and S2 be a parti­
tion ofS with weight function w. Then 

[(S,w)] = [(Sl'W)] + [(S2,W)]. 

Lemma 2••2 (The Product Lemma) Let 8 1 and 8 2 be sets 
with weight functions w I and W2, respectively. Let S = 
8 1 X 82 be the Cartesian product of8 1 and 82 with weight 
function defined by w(O') = WI (bd + W2( b2),for all 0' = 
(b1 , bz) E 8 1 X 8 2• Then 

[(81 x 8 2 , w)] = [(81 , wd] [(82 , W2)]. 

From now on, we will assume that each element in a con­
catenated set AB is uniquely generated, that is, for each se­
quence in AB we can determine uniquely which part came 
from A and which part came from 8. This is the case, for ex­
ample, when A = {O, 00, ODD} and 8 = {I, 11, llI}. Under 
this assumption the set AB will effectively be the Cartesian 
product. Therefore, from the Product lemma we have: 

[(A8, w)] = [(A, w)][(8, w)], 

and consequently we can write: 

[(S*,w)] = 1 + [(S,w)] + [(S2,W)] + ... = (1 - [(S,W)])-l. 

For example, the generating series for the set of all {O, I}­
strings, {O, I} *, with respect to the weight function length of 
0' is: 

[({O, I}*, w)] = (1 - [({O, I}, W)])-1 = (1 - 2X)-I, 

where the indeterminate x marks the number of D's and 1'so 
The next section discusses the enumeration and capacity of 
the sequences under consideration. 

3.	 SEQUENCE ENUMERATION 
AND CAPACITY 

We define 0' to be an RLL(r,8) sequence if all runs of ze­
ros and ones of 0' have length at least r and at most 8. 
This class of sequences arises in magnetic recording systems 
where the maximum runlength 8 is usually imposed for rea­
sons of clock recovery, while the r constraint is used to mit­
igate the effects of intersymbol interference. For example, 
0' = (0001100111100) is an RLL(2,4) sequence of length 
13. The required generating series for a generic set S with 
respect to the weight function length of 0' is: 

Fs(x) = L
<Xl 

c"x" E Q[[x]]. 
,,=0 

For the remainder of this section we consider examples of 
the calculation of Fs(x) for some classes of constrained se­
quences. The key point to solve problems of this type is to 
find a bijection that expresses the set S in terms of concate­
nation products of binary strings. 

The generating series for RLL(r ,8) sequences is obtained 
directly from the following decomposition of the set {O, I} *: 

{O,I}* = I*{OO*II*}*O*, 

since any binary sequence begins with a sequence (possibly 
empty) of 1's, then alternating block's of D's and 1's, and ends 
with a sequence (possibly empty) of D's. It is now clear that 
the set of all RLL(r,8) sequences, denoted as S,.,s (this set will 
also be referred to as the RLL(r,8) code) can be expressed as: 

s , = {d> 1" 1,+1 ." I'HO" 0"+1." 0' J' 1"+1 .. , I'}*'.' {~:O<O'+< ... :O'}.' "", 
If the indeterminate x marks the length of the sequence, not~ 
that the generating series for the sets {¢, 1r, 1r+ I, ... ,IS} or 
{¢, 0", 0"+1"", OS} is 1 + X,. +Xr+1+... +xs . Therefore, 
Fs" (x) is given by: 

F s "."(X) =
 
= (1 + :r' + .,."+ 1 + ... + J;')2 (I _ (.,." + :r"+ 1 +, . + .r" )2) - 1 :
 

'1+~,J 

I_I "";~'::.+\ "J; 

I -.I"+./"I" -.r''''± I 
1-.1'-.1""+.1,.,+1 ' 

(2) 

where we have used the fact that the generating series for the 
set S* is (1 - Fs(x) )-1. The series expansion of Equation 
(2) yields the coefficients c", as we can see in the example 
below, for r = 3 and 8 = 7: 

Fs< .• (x) =	 1 + 2x3 + 2x4 + 2x5 + 4xtj + 6x7 + . 
+20x J 1 + 28x12 + 42xl3 + 58x14 + . 

We can also readily seen from Equation (2) that the coeffi­
cients Cn for the RLL(r, 8) code satisfy the following recur­
rence equation: 

Cn -	 Cn-J - Cn-'r + Cn-s-J = 0, (3) 
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for n > s + 1, with initial conditions: 

Co = 1;
 
Ci = 0, if! :S i :S r - 1;
 
c,.=2+Cr _l;
 
Ci=Ci-l+Ci-,., ifr+l:Si:Ss; 
Cs +l = -2 + Cs + Cs +l-l" 

We now consider the generating series for the set Sl',cx:" that 
is, sequences containing runs of zeros and ones of length at 
least r. This code is referred to as RLL(r, 00). When s goes 
to infinity the term (1 + x r + x r+1 + ... ) has a closed form 
given by 1 + x"j(1 - x). Therefore: 

(1 + x' )Z
F (x) = ~ = 1 - x + xl' 

S",c>o 1 _ (...£::....)Z 1 _ x _ xl' (4) 
I-x 

The asymptotic behavior of Cn is the main subject of the next 
section. More example of the calculation of generating series 
will also be given. 

4. CAPACITY CALCULATION 

To find the capacity of a constrained sequence we need to 
examine the asymptotic behavior of en for large n. For the 
class of sequences we are considering, the generating se­
ries FS (x) can be expressed as the ratio of two polynomials 
FS ( x) = N (x ) j D (x ). On considering the partial fraction 
expansion of FS (x), we would expect Cn to be a linear combi­
nation of the nth power of roots of the following polynomial 
equation: 

where T is the degree of D(x), Al (n),"', AT(n) are poly­
nomials in n, and the ai's are the roots of the reciprocal poly­
nomial D*(x) = x T D(ljx). Suppose that the root al has 
the largest absolute value. Thus 

ell = 1 + Az(n) tZr' + ... + AT(n) t T)Il. 
Al (n)a1' Al (n) al Al (n) al 

It is clear that: 

since a;/a I all have absolute value less than 1 for all i 
2, ... ,T. Thus, asymptotically, the capacity is given by: 

- l' logz Cn _ l' logz Al (n)aj' - 1C - 1m --- - 1m - Ogzal. 
lI-------Jo(X; n ll----oCX) n 

Therefore, the capacity is given by the base two logarithm 
0 f the largesthreal root of thfe thre.ciprOCal polynomial D * (x). 
1t turns out t at the root 0 IS equation with the largest 
magnitude is real and positive. The equivalence between the 
generating series and Shannon's approach is clear, D*(x) is 
the characteristic polynomial of the adjacency matrix of the 
FSTD that represents the constraints. 

From Equation (2) we have that D*(x) for the RLL(r,s) 
code is X,+I - x' - xs-,-+I + 1. As an illustration, Ta­
ble 1 shows the capacity of RLL(2,s) codes for small val­
ues of s. The capacity of this code converges for large s to 
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Table 1: Capacity of RLL(2,s) codes 

s C 
3 04057 
4 .5515 
5 .6174 
6 .6569 
7 .6690 
8 .6793 
9 .6853 
10 .6899 

logz(1.618) = 0.6942, since 1.618 is the largest real root of 
the polynomial D*(x) = x Z - x-I given by Equation (4). 

In some optical recording channel applications the mini­
mum and maximum run-length of O's and 1's are required 
to be different [4]. This gives rise to a new constrained 
code called asymmetrical runlength-limited (ARLL) code [4] 
with parameters (r, s)-(e, l), where (r, s) represent the mini­
mum and maximum runlength of 1's, and (e, l) are the anal­
ogous parameters of O's. By modifying Equations (1) and 
(2) accordingly, we conclude that the generating series for 
ARLL(r, s)-(e, l) codes is: 

(1-;1'+x' -x'+')(I-x+x' _x1+') 
F....,:. , ( 11 (x) = 1 _ 2x + :('2 _ X,,+J+2 + X>i+{+1 + ;1.,+1+1 _ J"+'>oj 

(5) 

The capacity follows readily from the denominator poly­
nomial of the equation above. Moreover, the reciprocal de­
nominator polynomial for the ARLL(r, oo)-(e, 00) code is 
D*(x) = x e+r - 2Xe+,.-1 + xe+r - Z - 1. It is also of 
interest to impose additional limitations on these codes by 
requiring that the number of consecutives ones must be of 
even length [4]. This modified ARLL(r, oo)-(e, 00) code is 
denoted MARLL(r, e). The allowed sequences of this code 
are: 

S(r,e) = 

Thus 
_ (1+6)(1+6). 

Fs "" - 1- 1-·:'·~·~"I--.r, ' 

_ (l-,,.-,,."l(I-.,."-.r") 
- l-:e-x:2 +:l::~ -;T"+/' • 

The code MARLL(2,1) is the so-called even-marked­
modulation (EMM) [4]. The capacity of this code is the 
largest root of D*(x) = x Z - x - I, or C=0.6942, the same 
capacity as the RLL(2, 00) code. 

5. CAPACITY OF SE­
QUENCES 

We refer to u to be an RLLo(d, k) sequence if between con­
secutive ones there are at least d and at most k zeros. The 
IBM RLLo (2, 7) code [5] constitutes an example of practical 
use of these codes. The RLLo(d, k) code is asymptotically 
equivalent to the set of sequences that ends with aI, where 
each run of zeroes satisfies an RLLo (d, k) constraint. This set 
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is expressed as Sd,k = {(Od, ... , Ok)I}*. So 

I-x 
Fs", (x) = 1 _ x _ xd+1 + xk+2' (6) 

From Equations (2) and (6) we can check the known result 
that the capacity of RLLo (d, k) and RLL(d + 1, k + 1) codes 
is the same [6]. The recursion given by Equation (3) is also 
valid for RLLo(d, k) codes where r = d + 1 and s = k + 1, 
but with different initial conditions. Bounds on the capacity 
ofRLLo(d, k) codes are given in reference [7]. 

An example of a more complicated system is the code 
RLLo(d, k, s) [2] where the parameter s indicates that the 
number of consecutive zeros must be of the form d + is, 
for i = 0, 1, .. '. For example, when d = s = 2, only 
even number of zeros are allowed. The denominator poly­
nomial of the generating series for RLLo(d, k, s) codes is 
D(x) = 1 - X S + xl+d+s+ sL ':" J _ X d+ 1. 

Recently, practical applications of M -ary modulation 
schemes can be achieved on some optical and magnetic me­
dia [8]. This offers the possibility of achieving large in­
formation density on the channel. An M-ary RLLo(d, k) 
code, denoted as RLLo(M, d, k), is one where at least d and 
at most k zeroes occur between non-zero symbols. Simi­
larly to the development above, the set of all sequences is 
SIII,d,k = {(Od,···,Ok)I,2,···(M -1))*. Consequently, 
FSM,d" (x) is written as: 

The reciprocal denominator polynomial of the generating se­
ries FSA1d.' (x) is: 

D*(x) = x k+2 - xk+! - (M - l)xk- d+! + M - 1. 

6. CONCLUSIONS 

We have presented an enumerative approach to address the 
problem of finding the capacity of constrained sequences 
that can be expressed as the concatenation product of M-ary 
strings. The capacity is expressed as the base two logarithm 
of the inverse largest root of a polynomial whose coefficients 
are found directly from the parameters of the constraints. The 
examples shown here constitute in most cases well-known re­
sults but it forms the basis of an approach that can be ex­
panded. Perhaps of more importance than these particular 
results are the enumeration techniques used to derive them. 
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