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RESUMO - Este artigo traz uma abordagem numerica 
eficiente na analise de guias opticos com interfaces 
dieletricas constitufdas por curvas suaves. A estrategia 
aqui adotada aglutina tres aspectos numericos: urn 
reticulado eficiente, uma forma personalizada eficiente de 
resolver problemas de autovalores generalizados com 0 

uso de subrotinas de convergencia rapida; e a utilizacao 
apropriada das condicoes de contorno. 0 algoritmo 
implementado para 0 reticulado adaptativo da seccao 
transversal do guia optico faz uso de elementos finitos 
triangulares lineares, e de primeira ordem (lados 
retilineos), os quais produzem urn alto grau de precisao, 
sem ter que recorrer aos elementos finitos curvilfneos, e 
de segunda ordem. A comprovacao deste tipo de 
abordagem numerica esta sendo qui apresentada com 0 

calculo dos modos e das respectivas curvas de 
birefringencia em guias com micleos elfpticos que sao 
referenciados na atual literatura. Destacamos tambem a 
analise de urn acoplador simetrico 2x2 a fibra fusionada, 
colocando em evidencia alguns parametres crfticos que 
comparecem no projeto deste tipo de estrutura optica, 

Abstract - In this paper an efficient numerical 
approach based on the finite element method to analyse 
optical waveguides with smooth and arbitrary shaped 
dielectric interfaces is reported. Our strategy combines 
three numerical aspects: an efficient refinement, an 
efficient sparse matrix solvers, and proper boundary 
conditions. The adaptive mesh refinement algorithm takes 
into account simple first order linear (straight sided) 
triangles which produces high global accuracy instead of 
resorting to quadratic curve triangles. The effectiveness of 
the present scheme has been checked by computing the 
modes and correspondent birefringency of elliptical core 
fibers reported in the literature. Also, a symmetric 2x2 

fused-fiber coupler is analysed pointing out critical 
geometric parameters in the design of this structure. 

Keywords: Finite Elements, Optical Curved Structures, 
Optical Fused Couplers, Optical Fibers, Integrated Optics. 

1. INTRODUCTION 
It is well known that smooth curved interfaces demand a 
special treatment in the analysis of optical waveguides. 
Typical examples arise in fibre technology, where curved 
cross-sections such as ellipses, and other complicated 
shapes may be fabricated or may be induced due to 
external effects - stress, for instance. See references [1], 
[2], and references therein. On the other hand, in 
integrated optics waveguide technology curved interfaces 
have not been yet properly exploited. Thus, a robust and 
easy way to handle this situation would be quite valuable 
to exploit curved dielectric domains in the design of 
integrated optics devices. 

Although finite difference codes for handling this problem 
have been reported in the literature [4], this method is not 
as flexible as finite elements to deal with curved interfaces 
of arbitrary shape. In the finite-element optical-modelling 
literature, this problem has been treated by using meshes 
mainly composed of triangles (with straight sides) 
specially tailored to fit particular kinds of curved 
interfaces (circles and ellipses mainly) [1]. These meshes 
are generated in general without using an automatic and 
localized refinement at the interfaces. However, 
sub'i>tantial im})IO'le'nent in the accuracy of that approach 
has been reported by using second-order triangular 
elements with curved (quadratic polynomials) sides, see 
Refs. [2] and [3]. 
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The mesh used in this paper is adaptive and is based on a 
bisection algorithm [5], however, other algorithms may 
also be used [6]. Starting from a very coarse mesh and 
giving a set of suitable shape functions to monitor the 
refinement, a final refined mesh is readily obtained. The 
definition of those shape functions obey certain criteria 
established by the user. A typical criterion is to increase 
the density of triangles (finite elements) in regions where 
the user can expect more field intensity. When curved 
interfaces are included, one can also ask to increase the 
number of finite elements at such interfaces. Note that all 
this can be done locally, i. e. without affecting the density 
of other regions. Fig. 1 illustrates the present procedure 
for a fibre with elliptical cross-section (a quarter is 
shown). In this way the curved interface is fitted to a high 
degree of (local) accuracy, even using ordinary first order 
(straight sided) triangles. 

2. RESULTS 

2.1. Finite Element Numerical 
Implementation. 

We used in this paper the scalar wave equation for an 

eletric field tranverse component E : 

where n = n(x, y) is the refractive index, which can be 

complex or not, and k 0 = ro / c. Assuming the modal 

exponential form E(x, y) =exp(jkJ3)u(x, y), where 

f3 is the fase constant, the equation (1) becomes: 

(2) 

By using the Finite Element Method applied to the 
Galerkin Functional, the equation (2) is transformed to an 
eigenvalue problem of the type: 

Ax =ABx (3) 

In (3) the matrices have the form : 

(Ah.j=

-fCVqJj.VqJj +k~n2qJj.qJj)dQ+ f«(JqJi I (JtJ).qJjdl , 
Q ~ 

and 

(B)i,j = k~ f ({Jj.({JjdQ 
n 

where the matrices A and B are sparse, B is symmetric, 

A= f3 2, Q represents the domain where the guided 

region is contained, an includes all materials interfaces 

in Q and represents an artificial closed curve chosen to 

separate the guiding (interior) region from the infinitely 
extended (exterior) region, and tJ is the unit normal 

vector of the boundary an . 
To analyse the behaviour of the field close to the 
boundary interfaces we adopt in this paper that the finite 
element approach for the modal analysis of the field has 
asymptotic behaviour and that its propagation taken place 
in open-boundary waveguides, 

For convenience in this analysis we assume the harmonic 

time dependence E(x, v.z) =expC-jkoY.Z) e(x, y), 

where y is the normalised propagation constant, which 

may be real or complex, 

We can also assume the radiation conditions such that the 
electromagnetic fields exhibit the following asymptotic 
form: 

E = e( kp )[exp( - jkpp)] / .[k;+ 0(11 ~( kpp l ) 

where p=~(x2+l), k p =ko~n2 _y2 IS the 

radial wavenumber, and n is the refractive index of the 
infinitely extended media outside some fictitious 
enclosing boundary. 

Without loss of generality we can assume the media are 
linear and isotropic, and the origin of the coordinate 
system is located inside the core of the waveguide, or 
inside a region where the guided electromagnetic power is 
highly concentrated. 

In this case, for the presence of the infinitely extended 
region, the finite element approach adopted to solve the 
guiding region can be taken into account by a line integral 
term over a fictitious boundary. Normally the integrand of 
this integral contains terms which are proportional to the 
tangential or normal derivates of the electromagnetic field 
components. 

With our previous assumptions, those derivates can be 
expressed in terms of the of the field components 
themselves, and so we derivate the general impedance or 
mixed bounds conditions: 

where up is the unit radial vector in cylindrical 

coordinates and u1J represents the unit normal vector 

related to the fictitious boundary interface. 

If we substitute the equation (4) into the line integrals we 
derivate a nonlinear matrix eigenvalue problem of the 
form : 

(5) 
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The equation (5) can be solved iteratively in a self-
consistent way. By using our iterative numerical process it 
is possible to calculate only one mode at a time. Besides 
the local nature of this approach, we can preserve the 
sparse form of the matrices involved in the equation (5), 
where generally the matrices A and B may be complex 
(non-Hermitian). 

We used the subspace iteration method to solve (5), which 
takes full advantage of the sparsity of the matrices 
involved and allows one to calculate a given number of 
selected eigenvalues (and respective eigenvectors). 

2.2. Elliptical Core Fibres. 

In our first application, we illustrated the present 
procedure in Figure 1 for a fibre with elliptical cross­
section (a quarter is shown). In this way the curved 
interface is fitted to a high degree of (local) accuracy, 

even using ordinary first order (straight sided) triangles. 

We adopted three elliptical core fibres with aspect ratio e 

= 2, 3 and 5 (e = Q x / Q y ), where Q x and Q y represent 

the corresponding axis. In all three fibres the refractive 
indices of core and cladding regions are n) =1.485 and 

n 2 =1.47, and the value of the semiminor axis Q y is 0.5 

mm. 

2 2 0.5
We define v = k Q y ((n)) - (n2)) and b = o 

2 2 2 2 
((neff) - ( n2) )/( n)) - (n2) ), where neff is the 

effective refractive indice. 

In Figure 2 we present the dispersion characteristics 
curves for the first, second and third TE and TM modes. 
The results corresponding to e = 2, 3 and 5, are shown in 
Figs. 2(a), 2(b) and 2(c), respectively. The normalizated 
polarization modal birefringence B curves are shown in 
Figure 3, where B is proportional to the difference 
between the TE and TM effective refractive indices. The 
results related to e = 2, 3 and 5, are depicted in Figs. 3(a), 
3(b) and 3(c), respectively. Our numerical window was 
12 Jl1I1 x 8 Jl1I1, and the average number of unknows was 
350. 

Although our results show a good overall agreement with 
the ones reported in [2], in the cut-off regions, where 
more precision is required, our results exhibit a more 
accurate behaviour; i.e. asymptotic to the v axis. 

The present strategy allows us to achieve more accurate 
results than those reported in [2], and this can be better 
appreciated from the birefingence results, which demand a 
precision of at least 5 decimals from the dispersion 
curves. It is noticiable that in our calculations we use 
ordinary first-order (straight sided) triangular elements, 
against the more complex second-order curved triangles 
reported in [2]. Although the number of elements we used 
are roughly 20 % greater than the one used in [2], taking 
into account that our resultant matrices are much sparser, 
our approach should consume considerable less time. 

2.3. 2x2 Fused Fiber Couplers. 

An accurate description of the wave propagation through 
a symmetric 2x2 fused fiber coupler can be obtained by 
using the coupled mode equation (CME) theory [10]. This 
requires the computation of the supermodes locally 
associated to the axially varying cross-section of this 
structure along the fused-taper or power exchange region. 
The shape of the two identical individalfibers, separated 
in the entrance and exit of the fused taper, change 
drastically along this coupling region. In [10] a realistic 
and careful model of the geometry of this kind of fibre 
coupler is reported, showing excellent agreement with 
experimental results. In that model, the local region where 
the maximum coupling of modes happen, i, e. the middle 
of the taper, the fused cladding is discribed as a circle. 
The two cores, which are assumed to keep their circular 
shape along the fusion process, are symmetrically placed 
inside the circular fused cladding and its centres are 
separated a distance d = 2(2)/2 -1)rcl , where ra is the 
unfused fiber-cladding radius. 

Here, we investigate the effect of the fused cladding 
shape in the coupler performance, the fact of the fused 
cladding being elliptical rather than circular. We 
accomplish the present investigation by computing the 
associated supermodes using a scalar finite element 
formulation in conjunction with the efficient radiation 
boundary condition reported in [7], [8] and the adaptive 
refinement approach above. 

We consider a symmetric 2x2 fused coupler made of 
identical fibres with a taper parameter 't=0.3. This 
parameter is described in [10]. The untapered fiber core 
and cladding radii are reo = 2.25 Jl1I1 and rcl = 31.25 urn, 
respectively. The indices being nco = 1.451813 and ncl = 
1.447313, respectively, and the wavelength Il = 1.3 mm. 
Figure 4(a) shows the initial refinement and numerical 
window used for a cross-section, with aspect ratio, e = 
0.8, where e = R, I Ry, and R, and Ry represent the axis of 
the elliptical fused cladding. The final grid is presented in 

i /2 Figure 4(b), and we keep Ry = ra . constant along our 
calculations. 

In Fig. 5 we show the curves of birefingence, B (xlO'6), 
for the LPOI and LPn modes. Also, in the same figure the 
LPo) - LPn beat length l (in cm), versus e, is shown. 
From these curves, the influence of the cladding shape in 
the design of this structure becomes clear. We observe 
that B varies significantly for LPn , when e < 1. On the 
other hand, there is a compromise between B and l, 
namely, for e < 1, B becomes greater and l shorter. The 
opposite happens for e > 1. 

Finally, Figures 6(a) and 6(b) show the LPOI and LPn 
modal fields of a strongly fused coupler made of identical 
fibers. 




