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Abstract - We present an analytical method for evaluating 
the performance of non-interleaved forward error correcting 
codes on channels that exhibit statistical dependence in the 
occurrence of errors. We consider a model for such a chan
nel based on the probabilistic function of a Markov chain, 
also known as finite state channel (FSC) model. The main 
idea is to apply combinatorial methods to derive simple ex
pressions for the probability of the number of symbol errors 
produced by the channel in terms of a coefficient in a formal 
power series. These methods are used to derive expressions 
for the codeword error probability of various practical cod
ing schemes, including nonbinary block codes and the con
catenation of two block codes. The general expressions are 
specialized for a Gilbert-Elliott channel with known model 
parameters, and numerical results are derived. 

Resumo - Apresentamos um rnetodo analftico para calcu
lar 0 desempenho de c6digos corretores de erro em canais que 
exibem dependencia estatistica na sequencia de erro. Con
sideramos um modelo para tais canais baseado em funcoes 
probabilfsticas de uma Cadeia de Markov, tambem conhecido 
como modelo de canais de estados finitos (FSC). A ideia cen
tral consiste em aplicar metodos enumerativos para derivar 
expressces para a probabilidade de erro em tennos de coe
ficientes especfficos de urna serie de potencia formal. Este 
metodo e aplicado para calcular 0 desempenho de varies 
esquemas de codificacao, incluindo c6digos nao binaries e 
c6digos concatenados. 

Keywords - Generating series, error correcting codes, 
Gilbert-Elliott channels, channels with memory, performance 
of coded systems. 

1. INTRODUCTION 

The design of reliable communication systems has been an 
active area of research in the past few years. Among the dif
ficulties encountered by the communication system designer 
to accomplish this goal, we stress the special system require
ments (in general, high carrier frequencies, high data rates, 
low power consumption are highly desired and sometimes 
necessary), and the harsh channel environment. For exam
ple, in a typical mobile communication scenario, propagation 
phenomena lead to the presence of signal arriving along dif-
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o. 

ferent paths, each having random strength, phase and delay. 
With these system requirements and channel conditions, the 
combined effect of the channel impairments tend to introduce 
distortion in the transmitted process in such a way that the er
rors in the received sequence are grouped together in clusters, 
called bursts. Because of the statistical dependence in the oc
currence of errors, the channel is said to exhibit memory. 

To achieve high reliability in data transmission over chan
nels with memory, a good understanding of the channel char
acteristics is of fundamental importance. The mathematical 
model for a discrete channel has three constituents: The set 
of possible discrete inputs to the channel, the set of possible 
quantized outputs, and the set of probabilities on a sequence 
of output symbols, conditional on the inputs. The error se
quence produced by the channel is defined by some measure 
of difference between the input and output sequence. This 
error sequence incorporates all the physical impairments and 
distortions present in the channel. 

The discrete channel is the so-called coded channel. The 
discrete inputs and outputs to the coded channel are, respec
tively, the output sequence of the encoder {xd~l' and the 
input sequence to the decoder {ydk'=l' Thus, for example, in 
a binary system the error sequence will be a sequence of zeros 
and ones defined as follows: At the k-th time interval, the er
ror bit ek is equal to zero (indicating no error) if Xk = Yko or 
ek is equal to one (indicating an error) if Xk =1= Yk. The char
acteristics of the channel impairments, such as a correlated 
fading process, are incorporated into a mathematical model 
in such a manner as to produce a statistically similar error 
sequence as the output of the hard decision receiver. 

One important family of discrete mathematical models that 
has been extensively used to characterize the error sequence 
is the family of finite state channel (FSC) models [1]. De
pending on the application, such models are also referred 
to as a hidden Markov model, function of Markov chains, 
and probabilistic automaton. An FSC model is characterized 
by an underlying non-observable Markov chain. The output 
symbol of the FSC at the k - th time interval, Yko is a func
tion of the input symbol x k and the state of the Markov chain 
Sk. The channel is described statistically by the conditional 
probability P(Yk, Sk I Xk, Sk-l). Each state, Sko may be as
sociated with a particular channel quality (for example, each 
state might represent a particular distribution of fading) and 
the transition of states simulates the time-varying character
istic of the channel. 

Several FSC models have been successively used to model 
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practical communication systems, as we can cite: Tele
phone networks [2], high-frequency microwave links [3,4], 
satellite channels [5], magnetic and optical recording sys
tems [6], spread-spectrum frequency-hopped multiple access 
channels [7], the effect of fading in a mobile radio chan
nel [8, 9, 10], communication systems with loss of synchro
nization [11], and the burst nature of the Viterbi algorithm 
decoding [12]. 

This paper is devoted to the application of the combina
torial methods in the evaluation of the performance of for
ward error correcting codes over channels modeled as gen
eral FSC models. We follow the theory of enumeration of 
constrained sequences to enumerate a particular subset of er
ror sequences. This powerful and general approach allows us 
to find a simple formula for the sum of a formal power series, 
the generating series, where the probabilities of interest are 
the coefficients of appropriate powers of the indeterminates. 

These combinatorial methods are used to derive expres
sions for the codeword error probability and bounds to sym
bol and bit error probabilities of various practical coding 
schemes, including Reed-Solomon (RS) codes and the con
catenation of two block codes. Methods for determining the 
codeword error probability for specific models, as for exam
ple, Fritchman [6], and Gilbert-Elliott [2] are known. The 
contribution of this paper lies in presenting analytical results 
for the performance of non-interleaved error correcting codes 
over general FSC models, irrespective the number of states 
and the structure of the Markov chain. The results of this pa
per are specialized for a Gilbert-Elliott channel with known 
model parameters, and numerical results are derived. The 
substance of this paper comes from work done in a doctoral's 
thesis [13]. 

This paper is organized into four sections. A brief review 
of FSC models and its properties is given in the next sec
tion. The performance analysis of coding schemes over FSC 
models is the main concern of Section 3. Subsection 3.1 is 
dedicated to analyzing the performance of RS codes. This 
class of codes are of considerable importance in part because 
they have an efficient decoding algorithm based on their well
understood algebraic structure. They also have optimum min
imum distance since they are maximum distance separable 
codes. In Subsection 3.2 we investigate the performance of 
concatenated codes. Finally, Section 4 presents our conclu
sions to this paper. 

2. PROPERTIES OF FINITE	 STATE CHAN
NELS 

In this section we describe the details of the generation of 
the error process with FSC models and its properties. The 
statistical characterization of the error sequence generated by 
an FSC model will also be discussed. 

The input sequence to the channel, denoted as {Xdk'=l' 
is transmitted across a binary channel and the correspond
ing output sequence is {Yk}k'=l' The impairments due to 
the channel will be considered as an additive error sequence 
{Ed~l and the channel output at the k-th interval is repre
sented as Yk = XkffiEk. For the cases of interest the alphabet 
of the symbols X b Yk and Ek is binary, N2 = {G, I}, and 

the symbol ffi denotes addition modulo 2. An error is said to 
occur at the k-th time interval whenever E k = 1. 

Consider {Sd ~o an N -state, homogeneous, first-order 
Markov chain with a finite state space N1V = {G, 1, ... ,N 
I}. This Markov chain is characterized by a set of tran
sition probabilities, Pi,j = P(Sk = j I Sk-l = i), 
i, j E JV.N , where Pi,j is independent upon a particular time 
interval k. Let P be an ]V x I"; transition probability ma
trix, whose (i,j) entry is Pi,j. We say that a state j can be 
reached from a state i, if there exists some ri ~ Gsuch that 
P(Sk+n = j I Sk = i) > G. A chain is classified as irre
ducible if, and only if, every state can be reached from every 
other state [14]. We will now define the period of a state. A 

Istate i has period d(i) when P(Sk+n = i Si, = i) = G 
except when ti is multiple of d(i), and d(i) is the largest inte
ger with this property. A chain is aperiodic when all its states 
have period equal to 1. We consider only irreducible and ape
riodic Markov chains. For irreducible and aperiodic Markov 
chains, there exists a limiting distribution for Sko as k -7 00, 

independent of the starting distribution for So. This limit
ing distribution is known as the stationary distribution and is 
denoted by the matrix II = [TiO Til ... 71" N_l]T, where the 
superscript [.jT indicates the transpose of a matrix. Addition
ally, if the initial state So has distribution II, the subsequent 
states Sk have distribution II for all k. 

Throughout this paper we consider a particular class of 
FSC models where the error sequence is generated as follows. 
At the k-th time interval, the chain makes a transition from 
state Sk-l = Sk-l to Sk = Sk with probability PSk-1,Sk and 
generates an output symbol ek E N2 (independent of Sk-l), 
with probability bsk,ek = P(Ek = ek I Sk = Sk)' The 
sequence {edk'=l is known as the observed sequence of the 
model, and notice that the underlying state sequence cannot 
be determined from the observed sequence. We assume that 
the following definitions and properties are valid: 

•	 P(Ek = ek,Sk = Sk I Sk-l = Sk-L'" .S« = So, 
E k- l = ek-l,'" .E, = el) = 

P(Ek = ek i Sk = Sk) P(Sk = Sk I Sk-l = Sk-l) 
=	 bsk)ek PSk-1,Sk· 

•	 The error process is independent of the input sequence 
(channels that possess this property are called symmetric 
channels). Then 

P(ek, ek+l,···, ek+n) = 
= P(Ek = ek, E k+l = ek+l,···, Ek+n = ek+n); 
=P(Yk,Yk+l, ... ,Yk+n I Xk,Xk+l,··· ,Xk+n), 

where each error symbol ek is equal to the difference 
between the output and input symbols, i.e., ek = Yk ffi 
Xb since in N 2 S and e are the same. 

•	 The distribution of the initial state is the stationary dis
tribution II. Hence, the error sequence is a stationary 
process and is completely characterized when the mul

tidimensional probability P(en) f::,. P(ele2 ... en ) is 
known for all values of n. 
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•	 When conditioned on the state process, the error process 
is memoryless, that is: 

P( en sn) = II
n 

P(ek 5k) . I 1 

k=l 

Having established the basic properties of the model, we 
turn to the problem of calculating the probability of an error 
sequence. By the law of total probability and the previous 
definitions, the probability of an error sequence of length n., 

L::. 
en = el e2 ... en, may be expressed as: 

P( en I So = so) = 
= (2::: S 

n 
ENN

n P( En = en I Sn = Sn, So = so) 
P( Sn = s- I So = 50)); 

= (2::: SnENN TI~=lP(Ek = ek I Sk = 5k) 
P(Sk = 5k I Sk-l = Sk-l)); 

n 

2: IT bsk,ek PSk_1,Sk'
 

SnENNk=l
 

Hence 

N-l n 

P( en) = 2: 71"so 2: II bSk,ek PSk_1,Sk' (1) 
so=O SnENN k=l 

Equation (1) can also be written using matrix form [11]. De
fine two N x N matrices, P (0) and P (1), where the (i, j) 
entry of the matrix P(ed is P(Ek = eu, Sk = j I Sk-l = 
i) = bj,ek Pi,j, which is the probability that the output sym
bol is ek when the chain makes a transition from state i to i 
Equation (1) has a matrix form given by: 

P( en) = ITT CIT p(ek)) 1. (2) 

The following expressions are valid for the matrices P and 
IT: 

P = P(O) + P(I); (3) 

ITT P = ITT; (4)
 

P 1 = 1; (5)
 

ITT 1 = 1. (6)
 

>From (4) and (5) we conclude that the vectors ITT and 1 
are the left and right eigenvectors of the matrix P, respec
tively, corresponding to the eigenvalue 1. A binary stationary 
FSC model is completely specified by the matrices P (0) and 
P(I), since the initial distribution is the unique solution of 

Equation (4), and P is given by Equation (3). 
Various burst channel models have been proposed in the 

past few decades. The first model, based on a binary prob
abilistic function of a Markov chain, was proposed in 1960 
by Gilbert [15] in his studies to characterize the telephone 
channel. The Gilbert channel model, or, for short, the Gilbert 
channel, is a two-state Markov chain composed of an error
free (good) and an error (bad) state. When the chain is in the 
good state the error bit ek is always zero. Otherwise, when 
it is in a bad state, the error bit is zero (no error) with prob
ability 1 - b, or one (error) with probability b. The Gilbert 

channel was generalized by Elliott [2] in 1963, yielding the 
well known Gilbert-Elliott channel, by introducing a param
eter g, which is the probability that the error bit is one (er
ror) when the chain is in a good state. A further generaliza
tion was proposed by McCullough [16], whose model dif
fers from Gilbert-Elliott's channel essentially in two ways: 
(i) more than one bad state is considered, (ii) transition be
tween states are permitted only immediately after an error. In 
spite of its simplicity, the derivation of expressions for cer
tain error statistics can be surprising difficult and closed form 
expressions for quantities such as capacity, are not known at 
all. 

A comprehensive presentation of many mathematical mod
els proposed in the sixties and seventies is given in [1]. In the 
following example we specialize the equations developed in 
this section for the Gilbert-Elliott channel. 

2.1. EXAMPLE: THE GILBERT-ELLIOTT CHANNEL 

The Gilbert-Elliott channel [2, 15] consists of a two-state 
Markov chain. The state space is #2 = {O, I}. and bO,l = g, 
and b1,1 = b, as shown in Figure 1.. The model has four pa
rameters Q, q, b, g. By definition, 9 < b (the state 0 is the 
good state). 

Q 

l-QO~ ~~l-q
 
~ ) L./ 

q 

l-g I-b

X~Yk 
~. xZ y, 

I-bl-g 

Figure 1. Gilbert-Elliott model for burst channels. 

The matrices P, P (0), P (1) and IT are given by: 

p=[I~Q Q ]. (7)l-q , 

P(O) = [ (1 - Q)(1 - g) Q(I-b) ] (8)
q (1 - g) (l-q)(I-b) , 

P (1) = [ (1 - Q)9 Q b ] 
q 9 (1 - q) b; (9) 

IT = I 71"0 ] = [ ~ ] . (10)
L 71"1 q+Q 

Some error distributions for this channel can be calculated 
using Equation (2). As an example, the probability the bit 

error is a I, P(I) ~ P(Ek = 1), and the probability of two 

consecutive ones, P(ll) ~ P(Ek = 1,Ek+l = 1), are given 
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by: 

P(l) = n" P(l) 1	 = 710 9 + 711 b; 
= lL 9 + IIp b. 

(II) 
• p • 

P(ll) n" P(l) P(l) 1 = 710g[(1- Q)g + Qbl 

+71 l b[qg + (l-q)b]. 

In Equation (11) p is the good-to-bad ratio defined as: 

P = 6 
P(Sk = 0)/P(Sk = 1) = 710/711 = q/Q. (12) 

The performance evaluation of a coded communication 
system operating over an FSC model will be discussed in the 
next section. We will derive expressions for the probability 
of codeword error through the determination of P, (m,n), the 
probability of m channel error symbols in a block of length 
n symbols. A general model is described by a set of matrices 
Il , P (0), P (1) and the probability Ps (m,n) is expressed 

as a coefficient of particular terms in a formal power series. 

3. PERFORMANCE ANALYSIS 

We now establish some notation. On denotes the sequence 
of O's of length n, for example, O2 = 00. Let R be the field 
of real numbers. If s and z are commutative indeterminates, 
[sk zn] P (s, z) denotes the coefficient of sk Z n in the formal 
power series P(s, z). Let R < Xo, Xl > be the set of poly
nomials in non-commuting indeterminates Xo and Xl, that is, 
the set of all sums of finite non-commuting products of Xo 
and Xl with coefficients taken from R. It is easy to see that 
R < Xo, Xl > together with the operations of addition and 
multiplication is a ring. For convenience, this ring is denoted 
by R < Xo, Xl >. If [.n is a set of binary sequences oflength 
n, denote the generating series for [.n by: 

Fin = L xe1 x e2 ... xen ER<xo,Xl>, 
enE en 

(13) 

where x e i E {xo, Xl} and the indeterminates Xo and Xl mark 
an error bit produced by the channel. For example, if [.4 is the 
subset of Nt defined as [.4 ={ one error in a block of length 
4}, then [.4 = {1000,0l00,0010,0001}. According to the 
definition of Fen in (13) the generating series for the set [.4 

is: 

Consider that the error sequence is generated by an N
state binary FSC model defined in terms of the matrices 
n, P(O), P(l). >From Equations (2) the probability of 
the set [.4 defined above may be expressed as: 

P([.4) = lIT {P(1)P(0)3 +P(0)P(1)P(0)2 
+ P(O?P(l)P(O) +P(0)3P(1)}1. 

Notice that P([.n) may be obtained from the generating se
ries Fe; simply by replacing X e i by P (e.) and wrapping the 

vector n" around the front and 1 around the back. We can 
formalize this concept by defining the mapping: 

acting as a homomorphism to the whole of the ring R < 
Xo, Xl >. MN(R) is the ring of all N x N matrices with 
entries taken from R. The probability of the set En may be 
expressed very compactly as: 

(15) 

An expression for P(En ) can be written down directly from 
the generating series Fen in non-commuting indeterminates 
by acting on Fen with the homomorphism 6., and then wrap
ping n" and 1 around it. Therefore, the main step to find 
P([.n) is to determine the generating series FEn' 

We now develop an expression for P, (m, n) for two cases: 
RS codes and concatenated codes. 

3.1. NONBINARY CODES 

GF(2
An (n, k) nonbinary code defined over the Galois field 

C 
) , where c is a positive integer, has codewords of!e:::g~l, 

n symbols, k information symbols, ti - k parity check sym
bols, and code rate R; = kin. For example, an primitive 
RS code has length n = 2C

- 1 symbols and can correct any 
combination of up to t = l(n - k) /2J error symbols within a 
codeword, where t denotes the error correcting capability of 
the code, and lX J is the greatest integer less than or equal to 
x. 

We consider a coded communication system where nonbi
nary transmitted symbols, taking values on GF(2 C ) , are trans
mitted across a binary channel. Each symbol in a transmitted 
codeword is corrupted by an additive error symbol ek, com
posed of a sequence of c error bits statistically distributed ac
cording to the FSC model. Each error symbol ek can also be 
regarded as an element from GF(2 C) , where each sequence of 
c bits is the vector-space representation of the corresponding 
field element. The k-th received symbol within a codeword 
is the sum Zk = Ck + ek, Zk E GF(2 C 

) , where the addition 
is over GF(2 C 

) . The transmitted symbol is received correctly 
(i.e., Zk = Ck) if the symbol ek is the sequence of C con
secutive zeros, denoted by Dc. Otherwise, if ek =J Oc the 
transmitted symbol is received incorrectly, Due to this sym
bol orientation, RS codes are suited to an environment where 
both burst and random errors occur. An expression for the 
probability of m erroneous received symbols in a block of 
length ti, Ps(m, n), is developed next. 

Let Fc and Fe denote the generating series for sets of error 
symbols ek that produce a correct and an erroneous received 
symbol, respectively. Then 

Fc = Xo	 E R < XO,Xl >; (16)
Fe = (xo +Xl)C -Xo E R < XO, Xl >, 

where the indeterminates Xo and Xl mark an error bit (pro
duced by the channel) equal to 0 or 1, respectively. The set 
of all error symbol patterns of any length is (1 - Fc - Fe)-1 . 

Notice that Ps (m,n) is equal to the probability that m error 
symbols from the set enumerated by Fe occur in a block of 
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GF(2

n consecutive error symbols. Let the indeterminate z mark 
the length of an error word (an n-tuple of error symbols over 

C
) ), and let s mark the number of error symbols from 

the set enumerated by Fe in an error word. Then, from the 
mapping zx defined in Equation (14), and from Equation (15), 
Ps(m,n) may be expressed as: 

P, (m, n) = [sTn zn]IIT .6.(1 - z(Fc + sF.)) -1 1 (17) 

= [s7n zn]IIT .6.(1 - z {x6 + s ((xa + Xl)" - X6)})-11 (18) 

= [s7n zn]IIT (I - z{ P(O)C + s( P" - p(O)")})-ll. (19) 

From Equation (19) it is simple to derive recurrence formulas 
for Ps(m, n), which provides a rapid computational scheme 
for the problem. For a specific FSC model, Ps(m, n) can 
be expressed as [sm zn]p(s, z), where pes, z) is the ratio of 
two polynomials in s and z. The denominator polynomial 
is responsible for the recurrence relation, and the numera
tor polynomial defines the initial conditions. For example, it 
is easy to show that Ps ( m, n) for a two-state Gilbert-Elliott 
channel satisfies a six-term recurrence formula. For example, 
the recurrence formula for c = 1 (binary code) is given by: 

P(m,n) = 
-(Q(I-g) + q(l-b) - (2-g-b))P(m, n - 1) 
+(b(l- q) + g(l- Q))P(m -1,n -1) 
-((1- b)(I- g)(I- q - Q))P(m,n - 2) 
-((1- q - Q)(b + 9 - 2gb))P(m -1,n - 2) 
-((1 - q - Q)gb)P(m - 2, n - 2), 

Figure 2. shows Ps(m, n), as a function of m, for Gilbert
Elliott channels with various values of memory, fl = (1 
q - Q), for n = 127, and c = 7. Throughout this section we 
consider the following model parameters, p = q/Q = 20, 
b = 0.4, 9 = 0.001. The parameters Q and q are uniquely 
determined from fl and p. Because the Gilbert-Elliott channel 
has a parameter that can be interpreted as the memory of the 
channel, the effectiveness of coding schemes under several 
memory conditions can be evaluated. 

The average number of erroneous symbols in a received 
word of length ti is Tis = n ITT ( P" - p (O)C) 1 . Exam
ples of values of Tis are 12 for fl = 0.6, 10 for fl = 0.8, 8 
for fl = 0.92,7 for fl = 0.96. The curves of Figure 2. show 
that for values of fl approximately less than 0.8 the probabil
ity Ps(m, 127) has a maximum roughly centered around Tis. 
This is a typical behavior of memoryless channels. Therefore, 
over the span of 127 x 7 = 889 bits, models with fl < 0.8 
make sufficient state transitions to assure this "random" be
havior. However, when the memory increases, fewer transi
tions occur between states and long bursts are more likely. 
As a consequence, Ps(m,127) spreads out and decreases 
slowly with m. To give an example, the curves show that 
Ps(0,127) = 0.36 for fl = 0.99. This is the probability of 
being in the good state during all 889 bit intervals and making 
no error, which is equal to, 1!"o ((1 - Q) (1 - g) )889 = 0.36. 
The contribution of any other state sequence to Ps(m, 127) 
is negligible. In the sequel we discuss how the amount of 
memory affects the codeword error probability of RS codes. 

We consider the case of bounded-distance decoding: Given 
a received word, the decoder selects a codeword which lies 
within Hamming distance t of the received word. If no such 

codeword exists a decoding failure is declared. The decoder 
decodes the received word as the correct (transmitted) code
word if no more than t error symbols occur in one codeword. 
The probability of codeword error (PCE) is defined as the 
probability of occurrence of received words with more than t 
erroneous symbols. Thus 

n 

PCE = 1 - L Ps(m, n) = L Ps(m, n). (20) 
m=O m=t+1 

Figure 3.2. shows PCE for RS codes with fixed length n, 
versus the memory fl, for various values of k (number of 
information symbols). In this analysis we consider PCE = 
10-6 the required error probability for reliable communica
tion. We can conclude from these plots that for a particular 
value of u, say fl = 0.92, PCE equals to 10-6 is achieved 
with rate R; = 49/127 = 0.39 for c = 7 (n = 127), and 
R; = 141/255 = 0.55 for c = 8 (n = 255). 

1
 
10-1
 

~0.9;~=: r 
0.96 

10-5 

Ps(m, n) 0.92 

10-9 r- fl= 

t \ 0.8 

10-12 0.6 
I I I 

0 10 20 30 40 50 
m 

Figure 2. P, (m, n) as a function of m, for n = 127, having 
the memory fl as a parameter, fl = 0.6,0.8,0.92,0.96,0.99. 

It was also observed that for a fixed k, PCE is minimum 
for fl = 0.6. In fact, the curves show two distinct modes 
of behavior of PCE, depending upon the burst length. In the 
region of short bursts, say fl < 0.6, as the memory increases 
the error bits become more concentrated within bursts and 
affect fewer symbols in a codeword. Therefore, short bursts 
help the performance of RS decoders. On the other hand, in 
the region of high memory, say fl > 0.8, where long bursts 
occur, reliable communication is possible only with longer 
low rate codes. 

In this section we have used PCE as a measure of perfor
mance. The evaluation of other important measures will be 
discussed in the next subsection. 

3.2. AN UPPER BOUND TO THE SYMBOL AND BIT 
ERROR PROBABILITIES 

Error control strategies are typically compared on the basis of 
various probabilistic measures of performance. In addition to 
PCE, the symbol error probability Ps , and the bit error prob
ability Pb, are also important measures in evaluating system 
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Performance of RS codes 
1 

0.01 

0.0001 

1e-06 

PCE 1e-08 

1e-1O 

1e-12 
31 

1e-14 

o 0.2 0.4 0.6 0.8 0.99 
f-L 

(a) 
Performance of RS codes 

1 

k= 
0.01 

0.0001 

1e-06 

PCE 1e-08 

o 0.2 0.4 0.6 0.8 0.99 
f-L 

(b) 

Figure 3. PCE versus memory u, for RS codes over Gilbert-Elliott channels having the number of information symbols k as 
a parameter, for C = 7 (a); C = 8 (b). 

performance [17]. An exact expression for either P, or Pb 

is in general difficult to evaluate, since it depends to a large 
extent on the operation of the decoding algorithm. Expres
sions for Pi, are available in the literature for block codes on 
memoryless channels with known codeword weight distribu
tion [18]. In this section, a simple upper bound on Hand 
P, that does not depend upon the decoding operation is pre
sented. 

Let C = (Cl,""Cn), Z = (Zl, ... ,Zn), and c = 
(Cl' ... ,cn ) be the transmitted codeword, the received word, 
and the codeword chosen by the decoder, respectively. The 
average decoded-symbol error probability is defined by [19]: 

n 
1 L ( ) E{Ne }P, = - P Cj =I- Cj = ---, (21) 
n n 

j=l 

where the random variable N; is the number of symbols 
where c and c differ, and E{·} stands for the expected value 

of a random variable. If the random variable N; is the num
ber of symbol errors in the received word, then 

(22) 
n 

1 n;: L E{Ne n, = m}Ps(m,n). (23)I 

m=t+l 

For the case of a t-error correcting bounded-distance decod
ing, a simple upper bound to E{ N; I N; = m} is given by 
the following worst-case argument: Whenever t or more er
rors occur, the received word lies within a sphere of a wrong 
(not transmitted) codeword, and that the decoder introduces 
t additional errors. Clearly, the maximum value assumed by 
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Figure 4. peE as a function of memory for non-interleaved concatenated codes over the Gilbert-Elliott channel. R; = 0.3 
(a); R;	 = 0.45 (b). 

symbol Ci is treated as a binary sequence of length K and is 
encoded into a codeword of an (N, K) inner code over GF(2). 
The resulting code has length nN bits and the overall code 
rate of the concatenated code is R; = (K/N)(k/n). The 
decoding method is also done in two steps. The received bi
nary sequence of nN bits at the input to the inner decoder is 
partitioned into n binary strings of length N (received words 
of the inner decoder). The operation of the inner decoder can 
be seen as a memoryless mapping form this string of length 
N to a symbol z; in GF(2K ) , the RS received symbol. A se
quence of n consecutive symbols Zi forms the outer received 
word and is decoded by the RS decoder. 

To evaluate the performance of non-interleaved concate
nated codes recall that the probability P, (m, n) of m erro
neous received symbols at the input to the RS decoder is 

given by Equation (17). The generating series Fe and Fe for 
the sets of error symbols that produces a correct and erro
neous received RS symbol for the outer channel are: 

Fe =	 L [wi](xo + wxd N 
, E R < XO, Xl >; 

O<i<Ti 

Fe = (x~ +xdV -Fe, E R < XO, Xl > . 
(26) 

In Equation (26), T'; is the error correcting capability of the 
inner code and the indeterminate w marks the number of error 
bits in a received word of length N at the input to the inner 
decoder. Notice that Fe enumerates the correctable error pat
terns of the inner decoder, that is, all error patterns of length 
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N and weight less than or equal to Ti. Formulas (26) and 
(17) have been used to calculate PCE of concatenated codes. 

Figure 3.3. depicts the performance of concatenated codes 
with the same overall code rate. The code rates selected are 
R; = 0.3 and R; = 0045. The outer code is the (127, k) 
RS code, c = 7. The inner codes selected are the (11,7) 
shortened Hamming code (Ti = I), and the (15,7) BCH 
code tT; = 2). As a comparison, the performance of RS 
codes alone with the same rate is also shown. Notice that 
the concatenated code uses RS codes with higher rates than 
the RS code alone, therefore, its decoding complexity is con
siderably lower. We conclude from Figure 3.3. that, when 
R, = 0.3, the concatenated code with the Hamming inner 
code gives the best performance for f-L > 004. On the other 
hand, when R; = 0.45, the RS code alone performs better 
for f-L > 0.36. We attribute this to the fact that when the over
all code rate increases, the improvements caused by the inner 
code do not make up the reduction in the number of redun
dant symbols of the outer RS code. 

4. CONCLUSIONS 

We have addressed the problem of evaluating the codeword 
error probability of error control schemes on general FSC 
models. The main idea to find an expression for this mea
sure for a specific coding scheme is to express the probabil
ity of the correctable error pattern as a coefficient in a formal 
power series. All numerical plots presented in this paper were 
generated by first deriving recurrence formulas from matrix 
expressions. Bounds on symbol and bit error probabilities 
can also be derived using the expressions given in Subsec
tion 3.2.. 

In the first part of Section 3 we have derived an expres
sion for the codeword error probability of non-interleaved RS 
codes. The results presented in this section have been applied 
to investigate the code error-correcting capability necessary 
to achieve a desired performance. These results were ex
tended to the case of concatenated codes with binary block 
codes as the inner code. The comparisons reported in this 
paper among different coding schemes are only valid for the 
specific channel parameters considered. Clearly, the analy
sis can be repeated for any FSC model of interest, and other 
coding schemes can be treated as well with the machinery we 
have presented in this work. 
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