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Event Location by Triangular Interpolation for
Temporal Decomposition of Speech

Miguel Arjona Ramirez

Abstract— For low-bit-rate coding and synthesis the evolution Unconstrained TD incurs in long delays. While such algo-
of spectral parameters is a source of redundancy to be consited.  rithms are useful for speech recognition [5], store-anivéwd
A triangular interpolation spectral measure (TRISM) is pro posed messaging applications [6] and for compressing speech syn-

as the basis for an open-loop event location criterion for lv-delay thesi 71 for t di licati lowl
temporal decomposition (TD). TRISM comes as an improvement esis corpora [7], for two-way coding applications lowaje

in linear interpolation error measurement over the spectrd 1D algorithms are necessary. That is why the TD algorithm to
transition measure (STM). While STM is heuristic and presup  be described locates event centers one at a time and cosstrai

poses asymmetric event functions, TRISM is a minimum square event functions to a finite support that spans two consegutiv
interpolation error based on symmetric functions. Minimun intertarget intervals.

TRISM (MINTRISM) TD interpolates up to 13 frames between | ticul tral f t location in TD
adjacent events at a mean event rate of 15 Hz and interpolatio n particular, a spectral measure for event location In

error level equivalent to that of standard low-bit-rate speech IS proposed. The triangular interpolation spectral measur
coders. The MINTRISM criterion is also a more stable solutim (TRISM) is based on interpolation error minimization and
to the location of events and determination of their number han |gcal slope minimization under the condition of a triangula

previous global and local TD methods. event function. It is compared to the spectral feature ttiams
Index Terms—Linear predictive coding, speech coding, tem- rate (SFTR) [8], which reduces to the spectral transition
poral decomposition, interpolation, autoregressive proesses. measure (STM) [9] when the location window length is fixed.
There are no well established guidelines for acceptable
. INTRODUCTION interpolation distortion as there are for LSF quantizatiis:

HE representation of speech spectral features pla tortion. As a matter of fact, speech decoders usually inlatp
P P P P1aYS &me rate vectors for a subframe resolution of one-fourth

central role in speech coding, synthesis and recogmnqrgame length, without accounting for the interpolationoerr
Each spectral vector represents the envelope of the avergae o4 An exceptional work in this respect was done by

speech spectrum along a frame,. which is a quaS'Stat'on?'fé(liwal [10], which may be taken as a baseline reference for
segment of speech that lasts typically for some tens of ml!he performance of uniform linear interpolation.

liseconds. The line spectral frequency (LSF) coefliciedls | Besides, for low-bit-rate speech coding, weighted digiort

.[2]’ [3] are the_repr_esentatlon of choice for the spectratoes measures across frame time and frequency[11], [12] shauld b
in speech coding since they are very robust parameterssigain

guantization and interpolation errors. Forpth-order linear considered.

prediction (LP) analysis, the LSFs constitute the compsete

of p resonant frequencies of the lossless vocal tract model un- !l SPECTRAL MEASURES FOR EVENT LOCATION

der both alternative conditions of open and closed terrtinat The LSF evolution matriXY contains, for each frame in
at the glottis. The LSF values range over the doubly-opéfe rangen = 0,1,... N — 1, p LSFs as column vectoy(n).

interval (0, 7) radians per sample, that is, from DC to thet is temporally decomposed, generating target maiand

Nyquist frequency. event matrix®, which may be used to estima¥ as
Variable-rate interpolation of target spectral vectorsnis N

plemented in various methods known as temporal decompo- Y =A®. 1)

sition [4]. The temporal decomposition of parameter trackfs;ne columnsa; in matrix A for j = 0,1,...,.J — 1 are

involves the location of event centers in the analysis phage, target vectjors, wherd is the number of events. Event

when event targets are sampled at event center locations ﬂﬂﬂ:tions@(n) forn=0,1,...,N—landj =0,1,...,J—1

then refined. The set of frames that lie between an evep
center inclusively and the next one exclusively is called it m

superframe. In the synthesis or recognition phase, evegetia In triangular TD event functions for error measurement

are mtterpctjlflr;[ed by m(;:ants O{( event functions in order e assumed to be linear interpolation functions which are
reconstruct the parameter tracks. symmetric around their center locations while STM-based TD
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represented as vectaps whose transposes are the rows
atrix ®.
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TABLE |
OPERATIONAL COMPLEXITY PER FRAME FORTRISM AND STM
EVALUATION,, WHEREp IS LP ORDER AND2M + 1 1S THE LOCATION

location. Then, in the second stage, the next event targétive
is determined along with the functions for the current arel th
next events in an iterative fashion.

In the first stage, event functiap, (n) is assumed to reach
its peak unity value at event centél(j) = no and to be

WINDOW LENGTH.

. . . [ Operation| TRISM [ STM |
triangular and symmetric about it so that - oAy oy T

for no < n <ng+ M and

(n)=—-a(n—mng)+1 3
¢5() ( 0) ®) locationsn that locally minimize the triangular interpolation
for ngo — M < n < ng, wherea is the attack slope. Along spectral measure (TRISM), defined by
the kth LSF track, the interpolation error is;(n) = yx(n) —

M
axjdj(n) for ng — M < n < ng+ M, whereay; is the target (n) = yIi(n) >y mly (n+m)+y(n—m))
LSF value. The square interpolation error along ke LSF : ly(n)]|?
track for the windowng — M <n <ng+ M is — M(M+1)| 8)
M
enj = Z (i (no +m) — ar;j [am + 12 which consists of the scaled version of the absolute value of

slope estimate (6).
M In a previous local TD method, event functions are assumed
4 Z {yx (no —m) — ay; [am + 1]}2, (4) to be linear and minimum event function slope is taken to
m=1 be the manifestation of spectral stability, whose locati®n
declared event center [8]. This led to the minimization & th
3pectra| transition measure (STM) [9]

m=0

The joint interpolation error of all LSF tracks is; =
> _,ek;. Expanding Eq. (4), rearranging the result an
casting it in vector notation, yields

M
M Du(n) =1 > mym+m) , ©)
2
e = Y lly(o+m) m=—M

m=—M where2M + 1 is the location window length.
M By inspection of Eq. (8), TRISM is seen to be a normalized

— 2caTl mly (no +m)+y (no —m)] ; ; L
J 0 0 measure in relation to the spectral coefficients and to the

m=1

location window length, whereas, by Eq. (9), STM is found to
depend directly on the magnitude of the spectral coeffisient
The weighting of the spectral coefficients is seen to be

M
— 2ajy(no) —2a] Y [y (no+m)+y(no+m)

M m symmetric for TRISM and antisymmetric for STM as shown
I 2a2||aj|\2 Z m2 additionally in Fig. 1. This can be interpreted to impligitl
o involve symmetric interpolation functions in the evaloatiof
+ 2M(M + Dallay||? + (2M + 1) |2 (5) TRISM and asymmetric ones in the evaluation of STM as

illustrated in Fig. 2.
Imposing% = 0 for minimum square interpolation error, For computational cost evaluation, Eq. (9) can be rearmnge

the slope of the event function turns out to be as follows
al S0 mly (no +m) +y (no — m)] M(M +1) M ?
~ v m=1
&= : - : Dy(n) = mly (n+m)—y(n—m) (10)
a2 Z%:—M m? Z%:—M TELGQ) mX::l

It is noticeable thatv = & is really a unique minimum for ~ The operational complexity involved in the evaluation of
e; (@) at given window lengti2f + 1 and locationn = n, MINTRISM and STM for a frame, according to Egs. (8)

since, by differentiating twice (5) with respect to we get ~and (10) is displayed in Table I, where it can be verified
that TRISM requires one additiop, multiplications and one

0%¢; — 4|2 i{: 9 ) division per frame more than STM for the location of event
902 J _1m ' centers, wherg is the LP order. But the greater stability of
" TRISM evaluations allows for a reduction in the number of

which is strictly positive. ~ refinement iterations in comparison.
For event center location, the target vecigris identified

to the central LSF vectoy (ng) . The criterion proposed for
determining event centers is the minimization over frameeti
of the triangularly fit slop&k(n). For a given location window The measures presented in Section Il locate the internal
length2M/ +1, this is equivalent to the determination of framesvent center§’; for j = 1,2, ..., J—2. Additionally, endpoint

IIl. L OCAL TEMPORAL DECOMPOSITION
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Fig. 1. Location windows for the evaluation of TRISM (leftofl and STM (right plot), illustrated for a five-frame longsea
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Fig. 2. General shape of event functions involved in theuatan of TRISM (left plot) and STM (right plot), illustradefor a five-frame long case.

event centers are located@ =1 andC;_; = N — 1. The and the sample values of the event functions in the current

detected event rate is superframe, by minimizing the square interpolation error

J-1 Cini—1

Je= T— ffa (11) - 2
Y7 C - O &= Y. lem)]
. . =C;
where f; is the frame rate for LP analysis. Cn_ ’ L
Each target vector is initially identified to the original ES S 2
vector at the event center just located, that is, - zg ly(n) —a;6;(n) — aj11;41 (n)l|” (15)
n==C;

a; = y(C)) (12) : Coe _
Setting the gradlenﬁ = 0 and rearranging terms, the
forj=0,1,...,J — 1. new estimate for the right-hand target vector is found to be
Theftwo evengurg:tlonspj(%) andqﬁf-ﬂ(n)afotr the_ cu(;rent Cpaai Cpaam1
superframen = C;, Cj41,...,C;41 — 1, are determined as a P _ _
function of the right-hand target vecter; for the previous Xg y(n)9;(n) — a zé 9;()¢;41(n)
n=~u; n=~u;

(16)

superframe and the running estimadg,; for the right-  a;; = R
hand target vector of the current superframe by the optimal s 9
procedure outlined in [13], which consists of the solutitms Z $j11(n)
the sets of equations n=C;

T T . T The LSFs in refined target vectors are tested for stability an
a;aj A a4l ] [ %;(n) ] — [ a;y(n) } made stable by the procedure described in [9] if necessary.
ajajp1 ajajpn | | ¢ja(n) aj,y(n) ) By defining initial event functions as straight-line segsen

. / _refinement can be carried out in either order, that is, event
forn = Cj,C+1,. .., Cj41—1. The estimated eventfunction, - v.oncgcr o target vector first. Both orders are tested
samples in Eqg. (13) are modified, if necessary, to lie in tr}ﬁe experiments described in Section IV.

range from zero to unity, that is, Refinement is repeated until iteratiérsuch that the relative

$;(n) = min {1, max {0’ éj(n)}} square interpolation error difference satisfies the inkiyua
. ~ (-1 _ (D
bt = winfrmcfogyon}} a0 AP -
fOfn:Cj7Cj+1,...,Cj+1—1. %

Next, the right-hand target vectas;y; for the current  Also, lower complexity TD algorithms are used that con-
superframe is reestimated, given the left-hand targetovecstrain the two event functions in a superframe to be symmetri
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unity-complementary [9], [14], that is,

2.8r
pjr1(n) =1—¢;(n) (18) % Optimized TD, MINSTM, functions last
2,61 3%& <+ Optimized TD, MINSTM, target last
— (. ) . _ + O Optimized TD, MINTRISM, functions last
forn=Cj,C; + _17 0 1 o 24 K O Optimized TD, MINTRISM, target last
The computational complexity of overall TD analysis is ,

dominated by the second-stage iterative determinatiorerf n
event target and current and next event functions. Further,
the number of iterations in the second stage depends on
the method used for event function determination, either th
optimal or the symmetric procedures.

Mean log SD (dB)

IV. EXPERIMENTS WITH TEMPORAL DECOMPOSITION AND
LINEAR INTERPOLATION

Speech spectral envelopes were obtained at a frame rate Mean event rate (Hz)
of 200 Hz as the LSF vector representation that results frq'flla. 3. MINTRISM versus MINSTM criteria for optimal TD witheestima-
tenth-order LP analysis of a 25 ms segment of speech extragigh of event functions and target vector in both orders.
through a Hamming window. The whole set of signals in the
test partition of the TIMIT database [15], [16] was resarmdple
at 8 kHz and LP-analyzed as just described, resulting ina tot
of 1.037 million frames of speech.

. . . 2.8r
Since TRISM is a more stable measure for event location,

Uniform linear interpolation

event rate hardly varies with location window length/ + 1. 28 a%& % Optimized 10 MINTRISM. torcet ot |
However, by interposing a dead time &f frames after each 241
event detection, frame rate can be controlled when using _22f
TRISM. By this procedure event rates may be varied from S
12 Hz up to 65 Hz whenM = 1,2,...,12. This same @1_8,
variation in M causes event rates for STM to range from ‘—%1_67
around 12 Hz up to 50 Hz. Different event rates may also be s
obtained with a fixed window length for all rates by varying L
the original frame rate [14]. tar

Interpolation error is measured as log spectral distor- 1r
tion (SD) [17] between the original log spectral envelope 08 > = m = T
10log;o S (/) and the interpolated log spectral envelope Mean event rate (Hz)

101ogy S, (¢7) associated with the original LSF vectpfn) Fig. 4. MINTRISM and MINSTM criteria for optimal TD are compsl

and_the 'nterp0|ated LSF VeCt@(n), reSpeCt'Vely- The |Og to uniform linear interpolation. Reestimation of event dtions is followed
SD is evaluated as the root mean square vdl{e) of the by target vector reestimation for MINTRISM TD and is done titeer way

difference between these log spectral envelopes over a-10@gund for MINSTM TD.
point uniform grid on the unit circle.

The minimum relative square interpolation error differenc
for stopping refinement, defined in Eq. (17), was seb te

1-1074, resulting in a mean number of refinement iterations 281 G

per superframe ranging from 5 to 10. 2.6} % Symmetric TD, M|Npsc,)Taw:,cTarget last
Two factors may be compared and contrasted by observing oal o) g{)mjg'ggmw;gy;;?;‘lf;‘

Fig. 3, namely, the event location criterion and the order th 2ol

event functions and the target vectors are reestimatedcim ea )

refining iteration. For the MINSTM criterion, reestimating § il

the target vector last causes a decrease of about 0.20 dB in 8%

distortion along most of the event rate range tested while fo § L6/

MINTRISM the improvement is far from uniform, reaching a =14

maximum of about 0.20 dB at around 30 Hz but giving virtu- 12}

ally coincident results below an event rate of around 15 Hz. "

When target vectors are refined last, the MINTRISM criterion 08 ‘ ‘ ‘ o .

displays a consistent decrease of 0.20 dB over MINSTM for 10 20 30 40 50 60 70

Mean event rate (Hz)

event rates below 30 Hz.
Next, a reference for goodness of fit was sought for th&g. 5.  Symmetric MINTRISM and MINSTM TD are compared to
D algorithms by Comparing their overall performance tMINTRISM optimal TD and to uniform linear interpolation. Bstimation

. : . . . of event functions is followed by target vector reestimatio
that of uniform linear interpolation. For the outline of the v e
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Fig. 6. Percentage of frames such that2 dB < D(n) < 4 dB for

symmetric MINTRISM TD, optimal MINTRISM and MINSTM TD and

uniform linear interpolation with reestimation of eventndtions followed
Opt. TD, MINSTM, target last

by target vector reestimation.
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Fig. 7. Percentage of frames such thatD(n) > 4 dB for symmetric
MINTRISM TD, optimal MINTRISM and MINSTM TD and uniform linar

interpolation with reestimation of event functions follegv by target vector
reestimation.
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4 dB, respectively. As a group, TD algorithms show from half
to one-fifth as much percentage of outermost outliers aadine
interpolation. Inside the TD group, the behavior of the best
symmetric TD algorithm is confined between those of optimal
MINTRISM TD and optimal MINSTM TD. The operation of
linear interpolation at 33.33 Hz may be taken as acceptable
since it is used in low-bit-rate coding [18], [10]. For therea
outermost outlier percentage, optimal MINSTM TD operates
at a mean event rate of 20 Hz and optimal MINTRISM TD
operates at around 15 Hz as shown in Fig. 7. This means
over two times a compression ratio for MINTRISM TD over
linear interpolation. These event rates include on avef#pe
and 13 frames per superframe, respectively. In additiom; lo
complexity symmetric MINTRISM TD operates at virtually
the same event rate as optimal MINSTM TD.

V. CONCLUSION

Variable-rate sampling and interpolation of LSF tracks for
speech signals has been analyzed and tested, using uniform
linear interpolation as a baseline for comparison. The psed
algorithm features low algorithmic delay due to sequential
event location. Events are localized by the first stage of the
algorithm using the proposed minimum triangular interpo-
lation spectral measure (MINTRISM) criterion. The mean
realized event rate under MINTRISM is the least sensitive to
location window length among global and local TD criteria.
Refining target vectors after event functions improves the
spectral match, particularly at higher event rates, bubtider
of refinement is immaterial below a mean event rate of 20 Hz.

Over a mean event rate range from 12 Hz up to 35 Hz,
TRISM performs better than STM by 0.2 dB in log SD.
A lower complexity version of MINTRISM TD constrains
the two event functions in a superframe to be symmetric
unity-complementary and performs between MINSTM and

global domain of TD performance, just the lowermost and th¢INTRISM TD. They can interpolate a maximum of 10, 11
uppermost curves in Fig. 3 were selected for overlay with tlend 13 frames between adjacent events, for a uniform frame
uniform linear interpolation curve in Fig. 4. It can be seerate of 200 Hz, within the interpolation distortion of stand

that the distortion for optimal MINTRISM TD with target
refinement last is always lower than that of linear interpota

by at least 0.4 dB for mean event rates below 33 Hz. Even the

low-bit-rate speech coders.
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