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Abstract— For low-bit-rate coding and synthesis the evolution
of spectral parameters is a source of redundancy to be considered.
A triangular interpolation spectral measure (TRISM) is pro posed
as the basis for an open-loop event location criterion for low-delay
temporal decomposition (TD). TRISM comes as an improvement
in linear interpolation error measurement over the spectral
transition measure (STM). While STM is heuristic and presup-
poses asymmetric event functions, TRISM is a minimum square
interpolation error based on symmetric functions. Minimun
TRISM (MINTRISM) TD interpolates up to 13 frames between
adjacent events at a mean event rate of 15 Hz and interpolation
error level equivalent to that of standard low-bit-rate speech
coders. The MINTRISM criterion is also a more stable solution
to the location of events and determination of their number than
previous global and local TD methods.

Index Terms— Linear predictive coding, speech coding, tem-
poral decomposition, interpolation, autoregressive processes.

I. I NTRODUCTION

T HE representation of speech spectral features plays a
central role in speech coding, synthesis and recognition.

Each spectral vector represents the envelope of the average
speech spectrum along a frame, which is a quasistationary
segment of speech that lasts typically for some tens of mil-
liseconds. The line spectral frequency (LSF) coefficients [1],
[2], [3] are the representation of choice for the spectral vectors
in speech coding since they are very robust parameters against
quantization and interpolation errors. For apth-order linear
prediction (LP) analysis, the LSFs constitute the completeset
of p resonant frequencies of the lossless vocal tract model un-
der both alternative conditions of open and closed termination
at the glottis. The LSF values range over the doubly-open
interval (0, π) radians per sample, that is, from DC to the
Nyquist frequency.

Variable-rate interpolation of target spectral vectors isim-
plemented in various methods known as temporal decompo-
sition [4]. The temporal decomposition of parameter tracks
involves the location of event centers in the analysis phase
when event targets are sampled at event center locations and
then refined. The set of frames that lie between an event
center inclusively and the next one exclusively is called a
superframe. In the synthesis or recognition phase, event targets
are interpolated by means of event functions in order to
reconstruct the parameter tracks.

Unconstrained TD incurs in long delays. While such algo-
rithms are useful for speech recognition [5], store-and-forward
messaging applications [6] and for compressing speech syn-
thesis corpora [7], for two-way coding applications low-delay
TD algorithms are necessary. That is why the TD algorithm to
be described locates event centers one at a time and constrains
event functions to a finite support that spans two consecutive
intertarget intervals.

In particular, a spectral measure for event location in TD
is proposed. The triangular interpolation spectral measure
(TRISM) is based on interpolation error minimization and
local slope minimization under the condition of a triangular
event function. It is compared to the spectral feature transition
rate (SFTR) [8], which reduces to the spectral transition
measure (STM) [9] when the location window length is fixed.

There are no well established guidelines for acceptable
interpolation distortion as there are for LSF quantizationdis-
tortion. As a matter of fact, speech decoders usually interpolate
frame rate vectors for a subframe resolution of one-fourth
frame length, without accounting for the interpolation error
incurred. An exceptional work in this respect was done by
Paliwal [10], which may be taken as a baseline reference for
the performance of uniform linear interpolation.

Besides, for low-bit-rate speech coding, weighted distortion
measures across frame time and frequency[11], [12] should be
considered.

II. SPECTRAL MEASURES FOR EVENT LOCATION

The LSF evolution matrixY contains, for each frame in
the rangen = 0, 1, . . .N − 1, p LSFs as column vectory(n).
It is temporally decomposed, generating target matrixA and
event matrixΦ, which may be used to estimateY as

Ŷ = AΦ. (1)

The columnsaj in matrix A for j = 0, 1, . . . , J − 1 are
the target vectors, whereJ is the number of events. Event
functionsφj(n) for n = 0, 1, . . . , N−1 andj = 0, 1, . . . , J−1
are represented as vectorsφj whose transposes are the rows
in matrix Φ.

In triangular TD event functions for error measurement
are assumed to be linear interpolation functions which are
symmetric around their center locations while STM-based TD
uses asymmetric linear interpolation functions implicitly in
STM evaluation.

In particular, local TD is performed between the current
and the next event locations in a two-stage sequential process.
The first stage involves the determination of the next event
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location. Then, in the second stage, the next event target vector
is determined along with the functions for the current and the
next events in an iterative fashion.

In the first stage, event functionφj(n) is assumed to reach
its peak unity value at event centerC(j) = n0 and to be
triangular and symmetric about it so that

φj(n) = α (n − n0) + 1 (2)

for n0 ≤ n ≤ n0 + M and

φj(n) = −α (n − n0) + 1 (3)

for n0 − M ≤ n ≤ n0, whereα is the attack slope. Along
the kth LSF track, the interpolation error isek(n) = yk(n) −
akjφj(n) for n0 −M ≤ n ≤ n0 + M, whereakj is the target
LSF value. The square interpolation error along thekth LSF
track for the windown0 − M ≤ n ≤ n0 + M is

εkj =

M
∑

m=0

{yk (n0 + m) − akj [αm + 1]}
2

+

M
∑

m=1

{yk (n0 − m) − akj [αm + 1]}
2
. (4)

The joint interpolation error of all LSF tracks isεj =
∑p

k=1 εkj . Expanding Eq. (4), rearranging the result and
casting it in vector notation, yields

εj =

M
∑

m=−M

‖y (n0 + m)‖
2

− 2αaT
j

M
∑

m=1

m [y (n0 + m) + y (n0 − m)]

− 2aT
j y (n0) − 2aT

j

M
∑

m=1

[y (n0 + m) + y (n0 + m)]

+ 2α2‖aj‖
2

M
∑

m=1

m2

+ 2M(M + 1)α‖aj‖
2 + (2M + 1)‖aj‖

2. (5)

Imposing ∂εj

∂α
= 0 for minimum square interpolation error,

the slope of the event function turns out to be

α̂ =
aT

j

∑M

m=1 m [y (n0 + m) + y (n0 − m)]

‖aj‖2
∑M

m=−M m2
−

M(M + 1)
∑M

m=−M m2
.

(6)
It is noticeable thatα = α̂ is really a unique minimum for
εj (α) at given window length2M + 1 and locationn = n0

since, by differentiating twice (5) with respect toα, we get

∂2εj

∂α2
= 4‖aj‖

2
M
∑

m=1

m2, (7)

which is strictly positive.
For event center location, the target vectoraj is identified

to the central LSF vectory (n0) . The criterion proposed for
determining event centers is the minimization over frame time
of the triangularly fit slopêα(n). For a given location window
length2M +1, this is equivalent to the determination of frame

TABLE I

OPERATIONAL COMPLEXITY PER FRAME FORTRISM AND STM

EVALUATION , WHEREp IS LP ORDER AND2M + 1 IS THE LOCATION

WINDOW LENGTH.

Operation TRISM STM

+ 2Mp 2Mp − 1
× (M + 2)p (M + 1)p
÷ 1 0

locationsn that locally minimize the triangular interpolation
spectral measure (TRISM), defined by

TM (n) =

∣

∣

∣

∣

∣

yT (n)
∑M

m=1 m [y (n + m) + y (n − m)]

‖y(n)‖2

− M(M + 1)| , (8)

which consists of the scaled version of the absolute value of
slope estimate (6).

In a previous local TD method, event functions are assumed
to be linear and minimum event function slope is taken to
be the manifestation of spectral stability, whose locationis
declared event center [8]. This led to the minimization of the
spectral transition measure (STM) [9]

DM (n) =

∥

∥

∥

∥

∥

M
∑

m=−M

my (n + m)

∥

∥

∥

∥

∥

2

, (9)

where2M + 1 is the location window length.
By inspection of Eq. (8), TRISM is seen to be a normalized

measure in relation to the spectral coefficients and to the
location window length, whereas, by Eq. (9), STM is found to
depend directly on the magnitude of the spectral coefficients.
The weighting of the spectral coefficients is seen to be
symmetric for TRISM and antisymmetric for STM as shown
additionally in Fig. 1. This can be interpreted to implicitly
involve symmetric interpolation functions in the evaluation of
TRISM and asymmetric ones in the evaluation of STM as
illustrated in Fig. 2.

For computational cost evaluation, Eq. (9) can be rearranged
as follows

DM (n) =

∥

∥

∥

∥

∥

M
∑

m=1

m [y (n + m) − y (n − m)]

∥

∥

∥

∥

∥

2

. (10)

The operational complexity involved in the evaluation of
MINTRISM and STM for a frame, according to Eqs. (8)
and (10) is displayed in Table I, where it can be verified
that TRISM requires one addition,p multiplications and one
division per frame more than STM for the location of event
centers, wherep is the LP order. But the greater stability of
TRISM evaluations allows for a reduction in the number of
refinement iterations in comparison.

III. L OCAL TEMPORAL DECOMPOSITION

The measures presented in Section II locate the internal
event centersCj for j = 1, 2, . . . , J−2. Additionally, endpoint
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n0n0 n0 + 2n0 + 2 n0 − 2n0 − 2 nn

Fig. 1. Location windows for the evaluation of TRISM (left plot) and STM (right plot), illustrated for a five-frame long case.

n0n0 n0 + 2n0 + 2 n0 − 2n0 − 2 nn

Fig. 2. General shape of event functions involved in the evaluation of TRISM (left plot) and STM (right plot), illustrated for a five-frame long case.

event centers are located atC0 = 1 andCJ−1 = N − 1. The
detected event rate is

fe =
J − 1

∑J−1
j=1 Cj − Cj−1

ff , (11)

whereff is the frame rate for LP analysis.
Each target vector is initially identified to the original LSF

vector at the event center just located, that is,

aj = y(Cj) (12)

for j = 0, 1, . . . , J − 1.

The two event functions,φj(n) andφj+1(n), for the current
superframen = Cj , Cj+1, . . . , Cj+1 − 1, are determined as a
function of the right-hand target vectoraj for the previous
superframe and the running estimateaj+1 for the right-
hand target vector of the current superframe by the optimal
procedure outlined in [13], which consists of the solutionsto
the sets of equations

[

aT
j aj aT

j aj+1

aT
j aj+1 aT

j+1aj+1

] [

φ̂j(n)

φ̂j+1(n)

]

=

[

aT
j y(n)

aT
j+1y(n)

]

(13)
for n = Cj , Cj+1, . . . , Cj+1−1. The estimated event function
samples in Eq. (13) are modified, if necessary, to lie in the
range from zero to unity, that is,

φj(n) = min
{

1, max
{

0, φ̂j(n)
}}

φj+1(n) = min
{

1, max
{

0, φ̂j+1(n)
}}

(14)

for n = Cj , Cj + 1, . . . , Cj+1 − 1.

Next, the right-hand target vectoraj+1 for the current
superframe is reestimated, given the left-hand target vector

and the sample values of the event functions in the current
superframe, by minimizing the square interpolation error

εj =

Cj+1−1
∑

n=Cj

‖e(n)‖
2

=

Cj+1−1
∑

n=Cj

‖y(n) − ajφj(n) − aj+1φj+1(n)‖
2 (15)

Setting the gradient ∂εj

∂aj+1
= 0 and rearranging terms, the

new estimate for the right-hand target vector is found to be

aj+1 =

Cj+1−1
∑

n=Cj

y(n)φj(n) − aj

Cj+1−1
∑

n=Cj

φj(n)φj+1(n)

Cj+1−1
∑

n=Cj

φ2
j+1(n)

. (16)

The LSFs in refined target vectors are tested for stability and
made stable by the procedure described in [9] if necessary.

By defining initial event functions as straight-line segments,
refinement can be carried out in either order, that is, event
functions first or target vector first. Both orders are testedin
the experiments described in Section IV.

Refinement is repeated until iterationI such that the relative
square interpolation error difference satisfies the inequality

ε
(I−1)
j − ε

(I)
j

ε
(I)
j

≤ δ. (17)

Also, lower complexity TD algorithms are used that con-
strain the two event functions in a superframe to be symmetric
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unity-complementary [9], [14], that is,

φj+1(n) = 1 − φj(n) (18)

for n = Cj , Cj + 1, . . . , Cj+1 − 1.

The computational complexity of overall TD analysis is
dominated by the second-stage iterative determination of next
event target and current and next event functions. Further,
the number of iterations in the second stage depends on
the method used for event function determination, either the
optimal or the symmetric procedures.

IV. EXPERIMENTS WITH TEMPORAL DECOMPOSITION AND

LINEAR INTERPOLATION

Speech spectral envelopes were obtained at a frame rate
of 200 Hz as the LSF vector representation that results from
tenth-order LP analysis of a 25 ms segment of speech extracted
through a Hamming window. The whole set of signals in the
test partition of the TIMIT database [15], [16] was resampled
at 8 kHz and LP-analyzed as just described, resulting in a total
of 1.037 million frames of speech.

Since TRISM is a more stable measure for event location,
event rate hardly varies with location window length2M +1.

However, by interposing a dead time ofM frames after each
event detection, frame rate can be controlled when using
TRISM. By this procedure event rates may be varied from
12 Hz up to 65 Hz whenM = 1, 2, . . . , 12. This same
variation in M causes event rates for STM to range from
around 12 Hz up to 50 Hz. Different event rates may also be
obtained with a fixed window length for all rates by varying
the original frame rate [14].

Interpolation error is measured as log spectral distor-
tion (SD) [17] between the original log spectral envelope
10 log10 Sn

(

ejω
)

and the interpolated log spectral envelope
10 log10 Ŝn

(

ejω
)

associated with the original LSF vectory(n)
and the interpolated LSF vector̂y(n), respectively. The log
SD is evaluated as the root mean square valueD(n) of the
difference between these log spectral envelopes over a 1000-
point uniform grid on the unit circle.

The minimum relative square interpolation error difference
for stopping refinement, defined in Eq. (17), was set toδ =
1 · 10−4, resulting in a mean number of refinement iterations
per superframe ranging from 5 to 10.

Two factors may be compared and contrasted by observing
Fig. 3, namely, the event location criterion and the order the
event functions and the target vectors are reestimated in each
refining iteration. For the MINSTM criterion, reestimating
the target vector last causes a decrease of about 0.20 dB in
distortion along most of the event rate range tested while for
MINTRISM the improvement is far from uniform, reaching a
maximum of about 0.20 dB at around 30 Hz but giving virtu-
ally coincident results below an event rate of around 15 Hz.
When target vectors are refined last, the MINTRISM criterion
displays a consistent decrease of 0.20 dB over MINSTM for
event rates below 30 Hz.

Next, a reference for goodness of fit was sought for the
TD algorithms by comparing their overall performance to
that of uniform linear interpolation. For the outline of the
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Fig. 3. MINTRISM versus MINSTM criteria for optimal TD with reestima-
tion of event functions and target vector in both orders.
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Fig. 4. MINTRISM and MINSTM criteria for optimal TD are compared
to uniform linear interpolation. Reestimation of event functions is followed
by target vector reestimation for MINTRISM TD and is done theother way
around for MINSTM TD.

10 20 30 40 50 60 70
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Mean event rate (Hz)

M
ea

n 
lo

g 
S

D
 (

dB
)

 

 

Uniform linear interpolation
Symmetric TD, MINSTM, target last
Symmetric TD, MINTRISM, target last
Optimized TD, MINTRISM, target last
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of event functions is followed by target vector reestimation.
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by target vector reestimation.
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Fig. 7. Percentage of framesn such thatD(n) > 4 dB for symmetric
MINTRISM TD, optimal MINTRISM and MINSTM TD and uniform linear
interpolation with reestimation of event functions followed by target vector
reestimation.

global domain of TD performance, just the lowermost and the
uppermost curves in Fig. 3 were selected for overlay with the
uniform linear interpolation curve in Fig. 4. It can be seen
that the distortion for optimal MINTRISM TD with target
refinement last is always lower than that of linear interpolation
by at least 0.4 dB for mean event rates below 33 Hz. Even the
upper distortion bound for optimal TD lies below the linear
interpolation distortion curve for all mean event rates below
about 36 Hz.

The symmetric low-complexity local TD algorithms are
compared to the best optimal TD algorithm and to uniform
linear interpolation in Fig. 5. For mean event rates below
30 Hz, the low-complexity MINTRISM TD performance is
uniformly 0.2 dB higher in distortion than the optimal al-
gorithm, whose distortion is lower than that of linear inter-
polation by 0.3 dB at the higher event rates to more than
0.5 dB at the lower rates. On the other hand, the performance
of the symmetric MINSTM TD algorithm traverses from the
meeting point with linear interpolation at about 37 Hz to a
virtual encounter with symmetric MINTRISM TD at about
12.5 Hz. The distribution along the frames of the log SD for
LSF interpolation may be better assessed through the analysis
of Figs. 6 and 7, which display the percentage of outliers in
the range above 2 dB and up to 4 dB and in the range above

4 dB, respectively. As a group, TD algorithms show from half
to one-fifth as much percentage of outermost outliers as linear
interpolation. Inside the TD group, the behavior of the best
symmetric TD algorithm is confined between those of optimal
MINTRISM TD and optimal MINSTM TD. The operation of
linear interpolation at 33.33 Hz may be taken as acceptable
since it is used in low-bit-rate coding [18], [10]. For the same
outermost outlier percentage, optimal MINSTM TD operates
at a mean event rate of 20 Hz and optimal MINTRISM TD
operates at around 15 Hz as shown in Fig. 7. This means
over two times a compression ratio for MINTRISM TD over
linear interpolation. These event rates include on average10
and 13 frames per superframe, respectively. In addition, low-
complexity symmetric MINTRISM TD operates at virtually
the same event rate as optimal MINSTM TD.

V. CONCLUSION

Variable-rate sampling and interpolation of LSF tracks for
speech signals has been analyzed and tested, using uniform
linear interpolation as a baseline for comparison. The proposed
algorithm features low algorithmic delay due to sequential
event location. Events are localized by the first stage of the
algorithm using the proposed minimum triangular interpo-
lation spectral measure (MINTRISM) criterion. The mean
realized event rate under MINTRISM is the least sensitive to
location window length among global and local TD criteria.
Refining target vectors after event functions improves the
spectral match, particularly at higher event rates, but theorder
of refinement is immaterial below a mean event rate of 20 Hz.

Over a mean event rate range from 12 Hz up to 35 Hz,
TRISM performs better than STM by 0.2 dB in log SD.
A lower complexity version of MINTRISM TD constrains
the two event functions in a superframe to be symmetric
unity-complementary and performs between MINSTM and
MINTRISM TD. They can interpolate a maximum of 10, 11
and 13 frames between adjacent events, for a uniform frame
rate of 200 Hz, within the interpolation distortion of standard
low-bit-rate speech coders.
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