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Abstract—The state-of-the-art video compression standard,
the hybrid predictive-transform H.264/AVC codec, has lead to
substantial performance improvement compared to other existing
standards. Performing predictions is a computational demanding
task and optimizing this stage may result in substantial encoding
speedup. In this paper, we propose more efficient approaches
to implement the H.264/AVC prediction stage. The first idea is
to use original data rather than reconstructed ones to perform
prediction tests before choosing the best mode. The residue,
however, is evaluated using previously decoded data in order
to avoid drifting. The second approach is to employ a subset
of dominant prediction modes instead of testing all modes
recommended by the H.264/AVC standard. The subset is updated
frame-by-frame using macroblock sampling. Results for high
definition sequences show that the quality loss is negligible
allowing us not only to parallelize the inter-prediction stage but
also to reduce total complexity.

Index Terms—H.264/AVC, inter-frame prediction, reduced
complexity.

I. INTRODUCTION

H ISTORICALLY, processor manufacturers have re-

sponded to the demand for more processing power

primarily with faster processor speeds. However, higher clock

speeds imply in higher power consumption and heat. For that

reason, manufacturers have been moving its strategy from pure

clock-oriented projects to embrace multi-core architectures.

Image and video processing can be considered as driven

forces that motivate this computational power pursuit. There-

fore, it is not surprisingly to observe that the state of art

video compression standard, H.264/AVC [1], is a computation-

hungry application. The H.264/AVC coder has been well

described in the literature [2]-[3].

When encoding high definition sequences, complexity is an

issue and real-time video coding is challenging. As the com-

putational complexity of H.264/AVC is mainly concentrated

in the prediction stage, making it more efficient seems to be a

key to allow for real-time coding. The present work suggests

new strategies in this direction. The first idea proposes to

parallelize the prediction module to allow for real-time coding

exploring the advent of multi-core architectures. Another idea

is to suppress least frequent prediction modes in order to save

complexity.

This paper is organized as follows. Section II gives an

overview of the H.264/AVC macroblock prediction and anal-

yses prediction complexity. A method to reduce the computa-

tional complexity is presented in Section III. The experimental

results are shown and discussed in Section IV, while the

conclusions are finally presented in Section V.

II. MACROBLOCK PREDICTION IN H.264/AVC

H.264/AVC is a hybrid video codec, i.e. along with a

transform module, it has a prediction module, a differential

stage and a feedback loop [2]. The prediction stage uses previ-

ously reconstructed samples as input to the prediction model.

This avoids mismatches between encoder and decoder data,

allowing for synchronous decoding. However, H.264/AVC has

a rather complex prediction stage composed by a set of

prediction models.

In Fig. 1, the H.264/AVC encoder block diagram is shown

and the prediction stage is highlighted. Note that the coder is

divided into temporal (Inter) and spatial (Intra) models. “Inter”

prediction generates a prediction macroblock from one or more

previously encoded video frames using block-based motion

estimation and compensation. This model is responsible for

almost 90% of the complexity of an H.264/AVC baseline

encoder [4]. Important advances from earlier video standards

include the support for a range of block sizes (16×16 and

down, as in Fig. 2), and refined motion vectors (quarter-sample

resolution for the luminance component). In “Intra” prediction,

a prediction block is formed based on planar extrapolation

of previously encoded and reconstructed neighbouring pixels.

The prediction is subtracted from the current block, prior to

encoding. The 4×4- and 8×8-pixel blocks allow for a total

of nine optional prediction modes for luminance, while the

16×16-pixel blocks allow for only four modes as illustrated

in Fig. 3. The encoder typically selects the prediction mode for

each block that minimizes the difference between the predicted

block and the block to be encoded.

Fig. 2. Macroblock and submacroblock partitions for motion compensation
in Inter Prediction.

A prediction for the current macroblock is created from

image samples that have already been encoded either in the

same frame or in a previously encoded one. This prediction

is subtracted from the current macroblock and the residue is

compressed and transmitted, along with information required
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Fig. 1. H.264/AVC encoder block diagram indicating the prediction stage.

(a)

(b)

Fig. 3. Intra prediction modes and their respective planar extrapolation
directions for (a) 4×4/8×8 blocks and (b) 16×16 blocks. In (a), mode 2
is DC prediction.

by the decoder in order to repeat the prediction process

(motion vectors, prediction modes, etc.). The decoder creates

an identical prediction as the encoder, and adds it to the

decoded residual block. The encoder bases its prediction on

encoded and decoded image samples (rather than on original

video frame samples) in order to ensure that the encoder and

decoder predictions are identical.

The H.264/AVC prediction stage is built upon a myriad of

tests applied to choose the best prediction mode in a rate-

distortion (RD) sense. It is intuitive that encoding complexity

reduction can be achieved through simplifying the prediction

module, particularly the motion estimation step.

Sub-optimal fast motion estimation techniques were pro-

posed [5], [6] and incorporated in the H.264/AVC reference

software1. In exploring the variety of macroblock partitions

available in H.264/AVC, there are works [7], [8] that apply

motion estimation only for the most probable partition. Intra-

prediction tests can also be reduced by means of selection of

the most probable best mode according to heuristics [9], [10].

1JM Available: http://iphome.hhi.de/suehring/tml/

Another approach is to generalize the rate-distortion analysis

to add a complexity optimization variable. This concept is well

suited to the emerging field of wireless digital video com-

munications, where energy and delay constraints are stringent

[11],[12].

In order to profile the H.264/AVC (High Profile) encoder we

used gprof2 and JM12.3 to encode a high definition video

sequence (Pedestrian Area), with rate-distortion optimization

turned on, four-frame reference buffer and fast full-search

motion estimation [1]. Results are presented in Tables I and

II.

TABLE I

RELATIVE COMPUTATIONAL COMPLEXITY FOR HD PEDESTRIAN AREA

INTRA-FRAME ONLY, IN JM12.3 H.264/AVCHigh Profile CODING.

Coding Stage Percent [%]

4×4 Intra Prediction 25,2
8×8 Intra Prediction 20,9
16×16 Intra Prediction 6,1

Other Stages 47,8

Total 100,0

TABLE II

RELATIVE COMPUTATIONAL COMPLEXITY FOR HD PEDESTRIAN AREA IN

JM12.3 H.264/AVCHigh Profile CODING AND VARIOUS MOTION

ESTIMATION SEARCH WINDOW SIZES.

Window Size (pixels)

Coding Stage 8 16 32 64 128

Motion Estimation 65,8% 78,5% 90,8% 97,1% 99,1%
4×4 Intra Prediction 6,1% 3,8% 1,6% 0,5% 0,1%
8×8 Intra Prediction 4,9% 3,2% 1,3% 0,4% 0,1%
16×16 Intra Prediction 1,4% 1,0% 0,4% 0,1% 0,0%

Other Stages 21,8% 13,5% 5,9% 1,9% 0,7%

Total 100,0%

Table I indicates H.264/AVC Intra-prediction modes com-

plexity contributions. We observe that the prediction complex-

ity for 4×4 and 8×8-pixel blocks is greater than 16×16 ones.

2http://www.gnu.org/software/binutils/
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This is due to the larger number (nine) of prediction modes

available for 4×4 and 8×8 blocks.

Complexity estimates presented in [4] are extended in Table

II, where different motion search window sizes were applied

to H.264/AVC high definition video sequence encoding. We

observe that the encoder spends great part of execution time in

Motion Estimation due to the extensive tests required to find

the best match.

III. COMPLEXITY-EFFICIENT CODING

A. Open-loop to enable parallelism

In the HD video coding, usually only a low level of dis-

tortion is tolerated, which implies a high degree of similarity

between the compressed video and its original version. So,

if we employ original data in prediction tests instead of

reconstructed ones, it is likely that the best prediction mode

chosen using original data will be the same mode chosen when

using reconstructed data. The proposed method, described in

Fig. 4, consists in applying original data to choose the best

prediction mode, but to use locally decoded data in the motion

compensation process, in order to avoid drifting.

In Fig. 4, the prediction tests do not depend on recon-

structed/decoded data as compared to Fig. 1. They only depend

on original data. The search for the best prediction mode, the

most time consuming stage of an H.264/AVC encoder, can be

parallelized given that we do not need to wait for previously

encoded/decoded data. Thus, the prediction loop is opened

(see Fig. 4). All data/modes used to evaluate the residue are

available to the decoder. One can potentially reduce encoding

time by a factor of n through the parallel work of n frame

prediction engines.

Some aspects of encoder implementation on PC-based plat-

forms still have to be addressed. High-definition encoding

requires the processing of a huge amount of data, which should

be stored in memory and also transferred to and from the

processor. Therefore, bus throughput may be a bottleneck to

the whole process.

B. Prediction Mode Bias

The H.264/AVC prediction stage is rather complex due to

the many tests of various prediction modes available to each

macroblock. For instance, to encode P-frames in H.264/AVC

High Profile, we can use the following set of Inter- and Intra-

frame prediction modes:

• P16×16: motion compensated prediction for 16×16 pix-

els macroblocks;

• P16×8: motion compensated prediction for 16×8 pixels

macroblocks;

• P8×16: motion compensated prediction for 8×16 pixels

macroblocks;

• P<=8×8: motion compensated prediction for mac-

roblocks whose size is less then or equal to 8×8 pixels;

• I16MB: intra prediction for 16×16 pixels macroblocks;

• I8MB: intra prediction for 8×8 pixels macroblocks;

• I4MB: intra prediction for 4×4 pixels macroblocks;

• SKIP: zero residue motion compensated prediction for

16×16 pixels macroblocks.

(a)

(b)

Fig. 4. Proposed parallel prediction structure (a) and the new encoder scheme
for parallel prediction.

When compressing high definition 1080p video sequences

(1920×1080 pixels per frame in progressive scan), we verify

that the prediction modes used to encode the signals are often

repetitive. The frequency profile of selected prediction modes

for different sequences and resolutions, ranging from QCIF

(176×144 pixels) to 1080p, is presented in Figs. 5 through 7.

We can observe that as we increase the resolution, prediction

modes tend to polarize themselves around larger macroblock

partitions, even though the Riverbed sequence does not strictly

follow this trend. In general, some computational effort can

be saved when encoding high definition video sequences

by avoiding small-sized partitions in motion compensated

predictions.

C. Reduced Mode Set Prediction

The previous analysis suggests that the encoder can save

time if it avoids testing the less frequent prediction modes.

In order to achieve complexity reduction based on frequency

distribution of best prediction modes, we randomly select

macroblocks to preview the frequency distribution of the next

frame. Then, we select the dominant modes, i.e. the modes

which correspond to 80% of the choices, according to the

following algorithm:

Let each frame have N macroblocks. For the n-th P- or

B-frame

1. Randomly select a set S of NS macroblocks
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Fig. 5. Best prediction modes occurrence frequency for Pedestrian Area
sequence.
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Fig. 6. Best prediction modes occurrence frequency for Riverbed sequence.

of the n-th frame. The remaining N −NS

macroblocks form the complement set S′.

2. Test all prediction modes for macroblocks in set S,

in order to pick the best mode.

3. Test only dominant modes for macroblocks in S′.

4. Set dominant mode set D as empty.

5. Rank best modes in set S.

6. Assign the most chosen modes to D until

they could account to at least 0.8×N .

7. Set n← n + 1 and repeat.

Even though the best mode frequency distribution is not

stationary, our tests have shown that this is a good approxima-

tion for adjacent frames. Errors in determining the dominant

modes will be reflected in a small degradation on the encoder

RD performance.

An important issue is the sampling population size, NS,

which will be used in the prediction of next frame dominant

modes. The smaller Ns is, the larger the savings, but the worst

the performance.

IV. EXPERIMENTAL RESULTS

A. Open-Loop Prediction

The open-loop prediction method was implemented in

JM10.23 and evaluated using the first 50 frames of standard

3JM Available: http://iphome.hhi.de/suehring/tml/
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Fig. 7. Best prediction modes occurrence frequency for Rushhour sequence.
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Fig. 8. Rate-distortion curves for HD sequence Pedestrian Area. OL stands
for open-loop.

test sequences Pedestrian Area, Sunflower, Riverbed and Rush-

hour. We varied the QP (quantization parameter) in the range

12 ≤ QP ≤ 36. RD plots are presented in Figs. 8 through

11, comparing the methods with and without an open-loop

[13]. The average PSNR differences between RD-curves are

indicated. From the plots, we can observe a negligible quality

loss when using original data rather than reconstructed ones in

the H.264/AVC prediction step. This is due to eventual mis-

matches between the best prediction modes. At high rates, the

RD curves tend to overlap. This is expected because the lesser

the quantization, the closer the original and reconstructed

blocks.

The technique was also evaluated at CIF (352×288 pixels)

resolution (see Figs. 12 through 14). In this case, performance

losses are more significant due to prediction mode mismatches.

The technique was also evaluated for an IPBBBPBBP...

GOP configuration, where 21 frames of each HD video

sequence were encoded. The results are presented in Fig. 15

to 18. In this case, performance drop appears to be very small

and may be acceptable for most applications.

B. Reduced Mode Set Prediction

The statistical analyzer proposed in Sec. III-C was imple-

mented in JM12.3 H.264/AVC reference software. For each

sequence we used 20 frames. Fast full-search motion estima-

tion was used and the results were obtained by varying the
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Fig. 9. Rate-distortion curves for HD sequence Rush Hour. OL stands for
open-loop.
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Fig. 10. Rate-distortion curves for HD sequence Riverbed. OL stands for
open-loop.

QP (quantization parameter) over the range 12 ≤ QP ≤ 36.

Figure 19 presents RD performance curves for “Pedestrian

Area” sequence, for different sampling population
(

NS

N
100%

)

.

We observe that the performance difference is very small.

A more detailed approach is to plot the average difference

between the performance curves for different sampling popula-

tion sizes, as show in Figs. 20 and 21. The average PSNR and

bitrate differences between RD-curves were evaluated. [13]

The time savings are shown in Fig. 22, which relates

complexity savings against the population size of fully-tested

macroblocks, using the proposed method for different HD

sequences.

Figure 22 suggests that the size of the fast-predicted mac-

roblock population for the set of test sequences has a direct

relation to the complexity savings.

There is a small performance loss when predicting only

through dominant modes due to eventual mismatches. The rate

loss is kept below 5% if the population size remains above

10%. Even though computational savings are relatively small,

fast full-search motion estimation was already enabled. The

encoder carries on 4×4-pixel block motion estimation and

proceeds to larger partitions motion estimation by grouping

the results (SAD/SSD) of previously stored blocks. Thus, for

sequences where the intra-predicted macroblocks are more

Fig. 11. Rate-distortion curves for HD sequence Sunflower. OL stands for
open-loop.

Fig. 12. Rate-distortion curves for CIF sequence Mobile. OL stands for
open-loop.

Fig. 13. Rate-distortion curves for CIF sequence Foreman. OL stands for
open-loop.

frequent, like Riverbed, the computational savings are greater

due to the fact that motion estimated prediction modes are not

included in the dominant set for some frames.

We also implemented our method for UMHexS motion

estimation [5] in JM13.2 H.264/AVC reference software. We

computed 50 frames of each sequence and varied the popu-

lation size from 1% to 50%. Results are presented in Figs.

23 through 25. The computational savings are greater than for
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Fig. 14. Rate-distortion curves for CIF sequence Coastguard. OL stands for
open-loop.

0 20 40 60 80
35

40

45

50

55

Rate (Mbps)

P
S

N
R

 (
d

B
)

                  Pedestrian IBBBP      

 Average PSNR difference: 0.18 (dB)

 

 

JM10.2

JM10.2 OL

Fig. 15. Rate-distortion curves for HD sequence Pedestrian Area encoded
according to IPBBBPBBP... GOP. OL stands for open-loop.
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Fig. 16. Rate-distortion curves for HD sequence Rush Hour encoded
according to IPBBBPBBP... GOP. OL stands for open-loop.

fast full-search case. Nevertheless, the rate and quality losses

have also increased.

For “Riverbed” sequence, the complexity reduction profile

is shown in Fig. 26. This sequence is very challenging

because of the difficulty in getting good matches through

motion estimation, incurring in a high number of intra-coded

macroblocks. This characteristic was properly “tracked” by

our algorithm. Complexity reduction profile plots from HD
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Fig. 17. Rate-distortion curves for HD sequence Riverbed encoded according
to IPBBBPBBP... GOP. OL stands for open-loop.
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Fig. 18. Rate-distortion curves for HD sequence Sunflower encoded
according to IPBBBPBBP... GOP. OL stands for open-loop.
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Fig. 19. Different tested population size rate-distortion curves for Pedestrian
Area. The curves are essentially co-located.

sequence Sunflower are shown in Fig. 27.

A more general GOP configuration wass used to evaluate

the method performance when encoding B-frames. The first 21

frames from the previous HD sequences were encoded using

JM12.3 and the following presets: RD-optimization turned

on, 4-frame reference buffer, UMHexS motion estimation and

IPBBBPBBBP.... GOP configuration. Results are presented in

Figs. 28 through 30
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sequences.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

Fully−Tested Population [%]

R
a

te
 I

n
c

re
a

s
e

 [
%

]

Average Rate Increase vs. Population Size

 

 

Pedestrian

Riverbed

Rushhour

Sunflower

Fig. 21. Average Rate Increase vs. Population size for different HD video
sequences.
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Fig. 22. Time savings vs. Population size for different HD video sequences.

From Figs. 28 to 30 we observe that the computational

savings, besides inferior to UMHexS results, remain greater

than for fast full-search case. Nevertheless, the rate and quality

losses have also increased. Again, the algorithm was capable

of tracking some specific features from the test sequences:

“Riverbed” suffered lesser penalties and achieved the best

complexity savings because the algorithm could avoid tests

of motion compensated modes due to their lower statistic

occurrence.
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Fig. 23. Time savings vs. Population size for different HD video sequences
using UMHexS motion estimation.
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Fig. 24. Average PSNR Drop vs. Population size for different HD video
sequences using UMHexS motion estimation.
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Fig. 25. Average Rate Increase vs. Population size for different HD video
sequences using UMHexS motion estimation.

The performance of the proposed technique can still be

improved because the authors believe that separating the dom-

inant modes obtained from P-frames from the ones obtained

from B-frames allows for a better match of the next dominant

modes. In the actual implementation, the motion compensated

frames use previous frames statistics to decide which are the

dominant modes; we suggest that P-frames statistics may be

used to predict dominant modes in the next P-frame meanwhile
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Fig. 26. Complexity reduction profile for Riverbed using UMHexS motion
estimation.
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Fig. 27. Complexity reduction profile for Sunflower using UMHexS motion
estimation.
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Fig. 28. Time savings vs. Population size for different HD video sequences
using IPBBBPBBP... GOP.

B-frames statistics may be used to predict dominant modes in

the next B-frame.

V. CONCLUSIONS

We propose a method to search for the best prediction mode

in H.264/AVC for high-definition sequences. Rather than using

previously decoded macroblocks, we propose to use the origi-

nal macroblocks. In other words, we open the prediction loop.
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Fig. 29. Average PSNR Drop vs. Population size for different HD video
sequences using IPBBBPBBP... GOP.
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Fig. 30. Average Rate Increase vs. Population size for different HD video
sequences using IPBBBPBBP... GOP.

While the original image data is used for the prediction mode

decision, the residue is formed using locally decoded data.

Hence, drifting is avoided. In our tests, the performance loss is

negligible in most cases. Its main advantage is that it allows for

the parallelization of the implementation since all prediction

modes and motion vectors can be tested simultaneously. This

may enable real-time H.264/AVC compression of HD material

using massively-parallel computing systems that do not share

memory buses.

Another contribution is a reduced-complexity method to

carry the prediction mode tests in H.264/AVC for high-

definition sequences. Instead of testing all available prediction

modes, we search for a “dominant” mode subset. Our tests

have shown that the RD performance is barely affected by

the prediction mode test skipping, while achieving significant

complexity reduction. The method does not require a new

decoder implementation because only non-normative codec

aspects are modified.

As a future research, we plan to implement a complexity-

controlled H.264/AVC encoder based on a test-skipping strat-

egy. We also plan to benchmark video compression on

massively-parallel computing systems.
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