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Resumo: 0 efeito da anisotropia dieletrica no comportamento das frequencias res sonantes de antenas de microfita 
acopladas e investigado. Na analise, a tecnica dos potenciais vetoriais de Hertz, no dominio espectral, e usada para 
determinar as expressoes dos componentes dos campos, enquanto 0 metodo dos momentos (Galerkin) e usado para 
resolver a equacao matricial obtida pela imposicao das condicoes de contorno da estrutura em estudo. Os substratos das 
antenas de microfita sao compostos por dois materiais dieletricos anisotropicos uniaxiais. Os eixos opticos nestas camadas 
dieletricas sao orientados perpendicularmente ao plano-terra. Resultados nurnericos sao apresentados para a frequencia de 
ressonancia na geometria em analise. Foi observada excelente concordancia com resultados disponfveis na literatura para 
antenas de microfita acopladas sobre substratos isotropicos. 

ABSTRACT: The effect of the dielectric anisotropy in the behavior of the resonant frequencies of coupled microstrip 
patches is investigated. In the analysis, the Hertz vector potentials technique, in the spectral domain, is used to determine 
the field components expressions, while the moment ( Galerkin ) method is used to solve the matrix equation obtained by 
imposing the boundary conditions of the structure under consideration. The microstrip patches substrates are composed by 
two uniaxial anisotropic dielectric materials. The optical axes in these dielectric layers are oriented perpendicularly to the 
ground plane. Numerical results are presented for the resonant frequency for the geometry under consideration. Excellent 
agreement was observed with results available in the literature for coupled microstrip patches on isotropic substrates. 

Keywords: microstrip antennas, microstrip patches, resonant frequency, anisotropic materials 

1. INTRODUCTION 

In the last two decades, a growing interest in the analysis of microstrip resonators has been observed because of their 
application in the development of microstrip patch antennas [1]. The main advantages of the microstrip resonators, 
compared to the conventional ones, are: low weight and volume, and because they are easy to build and mount on plane 
and curved surfaces [2]-[3]. 
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The first reported works in the literature were dedicated to the analysis of microstrip patches and resonators on isotropic 
dielectric substrates. Nevertheless, because of the fact that most of dielectric materials used in microwaves are anisotropic 
ones, the effect of the dielectric anisotropy has been considered by several authors [2]-[6]. 

By the way, results for microstrip patches on planar structures with magnetized ferrimagnetic substrates are available in 
the literature [3], [7], [8]. 

Furthermore, the study of planar coupled resonators on anisotropic substrates has been considered by several authors for 
both suspended stripline [9] and microstrip [10] resonators. to determine the structure resonant frequency. 

In this work. results for the resonant frequency of coupled microstrip patches,mounted over two different anisotropic 
dielectric layers are presented, as well as the effect of the dielectric anisotropy in the resonant structure performance 
( Fig,I). 

In the analysis for the resonant frequency of a single microstrip patch, the Hertz potentials theory, in the spectral domain, 
in combination with the moment method is used, For the case of coupled microstrip patches, the analysis is performed by 
considering the even and odd modes theory, taking advantage of the symmetry of the structure considered. 

2. THEORY 

The structure considered in this work is shown in Fig. 1. Regions I and 2 are anisotropic dielectric ones, being 

characterized by the electric permittivity tensor E ( j = 1, 2 ), Region 3 is air. The patches and the ground plane arej 

perfectly conducting, The conducting patch thickness is neglected. 
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Fig, I - Coupled patches. 

Since the optical axis of the anisotropic dielectric regions I and 2 are oriented along the y direction ( Fig, I ), their 

electric perrnittivities, E. (j = 1.2), are given by 
.I 

E 
XXI 
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In this analysis. the determination of the resonant frequency of a single microstrip patch over two anisotropic layers is 
required, In order to do that. the Hertz vector potentials are defined to be along the optical direction ( y in Fig. I ) 
according to 

Ill.' =Il(fiy (2) 

1117 = Il1iy (3) 

Then. the wave equations for TIe and TIh are obtained from Maxwell's equations, in the spectral domain, for each 

dielectric region in Fig, 1, The Fourier transformation is defined by [2] 

tp(CX,~)=f= f= 'P('- _),)(cxx+~.:-), t 
-oc -oc ., ~ - t (/_\.(/~ (4) 
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1 f~ f~ - - )"(a.Y + r:t~)
Ifl(x,z) =--0 Ifl(ex,~)c 1-'4 dexd~ (5)

(2rc t -~ -~ 

where 'P(x, z) is a generic function.
 

By using (4) and (5), the wave equations for TIej and TIhj for dielectric region j (j = 1,2 in Fig. 1 ) are obtained as
 

(6)
 

(7) 

respectively, where 

(8) 

(9)
 

For region 3, which is filled with air, equations (6) to (9) remain valid, if £xx3 and t yy3 are set equal to 1. 

The electric and magnetic fields components, for dielectric region j ( j = 1, 2, 3 ) are determined, in the spectral domain, 
from Maxwell's equations and are expressed by 

- -]ex" an"C]
E "= coJ.l ~IT "- -"---" (10)

X) 0 h) £ " av 
xx) . 

2­
1 a IT " 

E "=co 2J.l £ fi + c_1 (11)
}} 0 0 C) £ " a~,2 x·v " 

r:t an " 
if "= -coJ.l exn "- -)_I-'-~ (12)

ZI 0 II) £ " av 
.n) " 

ani"- " y -H = - )ex---co£ ~IT " (13)
X) ~v 0 C]
 

- 2 2­"» = (ex + ~ )IT hj (14) 

ani" - "7] ­
H "=-)~--+co£oexIT " (15)

zl a\ C) 

The solutions of the wave equations (6) and (7) are expressed, in a general form, as 

ii "=B(ex,~)cosh(rv)+l/(ex,~)senh(rl) (16)
C]) C]·) et 

nil) = A;cex, ~) senh(r h/.1') + .J~ (ex,~) cosh(r hl Y) (17) 

respectively, for dielectric region j ( j = 1,2 ). In dielectric region 3, which is an open one, the expressions for TIe3 and 

TIh 3 are 
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fie] ==B3(a,~)e-YO(\-dl-d2) (18) 

fi ==.-!3(a,~)e-YO(l'-dl-d2) (19)h3 

respectively. 

The unknown coefficients Aj , Bj, Ai' and B/ are determined by imposing the boundary conditions at the interfaces, for 
the electric and magnetic field components, which are: 

== 0 emy == 0 (20)Etl
 

ttl == em y = d, (21)
Et 2 

fin == em y = d, (22)H t2 

-
em y = d12 (23)t2 == t3 

r-r ~3 - ff ~2 == em y = d 12 (24)r(
k _ • 

H 3 - H 2 =-J em y = d l2 (25)x x z 

where the subscript "t" means tangential components and Ix and Iz are the transformed current density components on 

the conducting patch. 

After determining the expressions for A j ,B j ,A; and B;, in dielectric region j U=1,2,3), the field components, in the 

Fourier domain, are obtained by using (10) to (15). 

At the conducting patch plane, y == d, + d2 , ( Fig. 1 ), the transformed electric field components, Ex and Ez' are 

expressed as function of the transformed current density components, I x and I ' as shown belowz 

..... ............, ......, ......
 

E == Z J + Z J (26)x xxx xzz 
..... ........... ...... .....
 
E == l .J + L J (27)z zx x z: z 

where Zxx , Z , Z and Zzz are the impedance matrix components, or dyadic Green's functions for the microstripxz zx 

patch. 

Once the impedance matrix [Z] was obtained, the moment method (Galerkin ) is used to determine the complex resonant 

frequency for the microstrip patch [2], [3]. 

In the moment method, the current density components Ix and Izare expanded as a combination of basis functions, Ixm 

and I zm ' respectively, as 

.\1 

i, == L C IJI.J.\"IJI (28) 
1)/=1 

"Y 

I. == L dn.J:n (29) 
17=1 

where Cn and d, are unknown constants. 

By taking the scalar product of (26) and (27) by I xp (p==l ,...,M) and I zq (qe l ,... ,N), respectively, one obtains 

LK;~!clJI + LK;~~!dJ) == 0 pe l ,... ,M (30) 
111 n 

LK,~~!cl!! + LK,~~!dn == 0 q=l, ...N (31) 
JJI n 

where 
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(32) 

(33) 

(34) 

A C

j 

C
, = f f 2__ ]T]_·.dad~ (35)

[ j __ - I _(j 

Non-trivial solutions for (30) and (31) are obtained by imposing det[K] = 0, where the matrix [K] components are given 
by (32 to (35). The solutions for this equation are the resonant frequencies for the single microstrip patch. 

To determine the resonant frequency for coupled microstrip patches (Fig. 1 ), the electric current density components are 
expressed as functions of those considered in the analysis of a single microstrip patch, according to [10] 

}YC (a, ~) = [- ~e - jU(s, +11) + eI U( " +Ir) ]}\(a, ~) (36) 

.Jcc(a, ~) = [~e-jU(S, +11) + "IU(I, +11) pc(a, ~) (37) 

where ~ = 1 for the even mode and ~ =-1 for the odd mode. 

3. RESULTS 
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2 - Resonant frequency versus patch Fig. 3 - Resonant frequency versus patch 
length: d, = 0.1524 cm, d2 =0.0508 length: d1 = 0.1524 cm, d2 = 0.0508 
em, w = 0,01 em, Sx = 0.02 ern, £xx2 = em, w = 0.01 em, Sx = 0.02 em, £xx2 

5.12, £w2 = 3.4 (boron nitride ), Erl = 1,0. 9.4, £w2 = 11.6 ( sapphire), lOr! = 1,0. 

As it is shown in Fig. 2, for suspended coupled microstrip patches, the resonant frequencies for the even and odd modes 
decrease when the patch length, L, is increased. Note that an equalization is obtained at L = 6 mm, or nearby. The 
structural parameters considered in the determination of the resonant frequencies are shown in Fig. 2. regions 1 and 3 are 
air-filled, while region 2 is filled with pyrolytic boron nitride (p.b.n)[2], for which £xx2 = 5.12 and £yy2 = 3.4. 

In Fig. 3, the numerical results obtained for suspended coupled microstrip patches on sapphire ( £xx2 = 9.4 e £yy2 = 11.6 ) 
are shown [2]. Lower values for the resonant frequencies, for a given L, are obtained in this structure compared to the one 

using p.b.n (shown in Fig. 2 ), as expected. Note that there is no equalization between the even and odd mode results. 
Nevertheless, for low values of L, from 4.0 to 5.0 ern, the differences between the even and odd mode results are smaller. 

41 



Revista Brasileira de Telecomunicacoes
 

Volume 10, nurnero 1, Dezembro de 1995
 

Fig. 4 shows the effect of the dielectric anisotropy ( in region 1 ) on the resonant frequency for single and coupled 
microstrip patches on a double layer. Dielectric region 2 is alumina filled ( £r2 =9.6 ). The anisotropy ratio, nxlny (for 

region 1 in Fig. 1 ), is given by 

L!!.3- = JE	 (38)\ 

17" E 11. 

As it is shown in Fig. 4, as nxlny increases, the resonant frequency increases for both single and coupled microstrip 
patches. It was observed that the results for both even and odd mode resonant frequencies approach the results for the 
resonant frequency of a single microstrip patch, when Sx 
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A comparison between the results of this work ( d, = 0 and 2 = 2 = 10.2 ) with those available in the literaturet xx t yy

for coupled patches on a single isotropic layer ( t
r 

= 10.2 ) [10] is presented in Fig. 5, showing an excellent agreement 

for the structural parameters considered. Different values of L were assumed. 

Fig. 6 shows the behavior of the resonant frequency as function of the normalized spacing, s/W, (around 100), which is 
F; = 5.61 + jO.OOll Ghz. Fig. 7 shows the resonant frequency versus the anisotropy ratio for coupled patchess on two 
1 zvers, forr several values of d, /d, (Fig. I ). 

A comparison between the results of different techniques is shown in Tables I to IV, for single microstrip patch on 
isotropic and anisotropic substrates, respectively.A good agreement is observed. 

4. CONCLUSION 

The analysis and numerical results for the resonant frequencies of parallel coupled microstrip patches over anisotropic 
substrates was presented. 

:>; the determination of the resonant frequency for a single microstrip patch ( particular case ), the Hertz vector potential 
and the moment methods were used. A determinantal equation was obtained, which solutions are the complex resonant 
frequencies of the structure considered. 

The resonant frequencies of parallel coupled microstrip patches was performed by using the even and odd mode theory. 
The electric current density components for these modes were expressed as functions of that used in the analysis of a 
sing lc patch. 

A ~ooJ agreement between the results of this work and those available in the literature for the particular case of coupled 
patchc- on a single isotropic dielectric layer was observed. The method presented here can be used to analyze other planar 
structurcv, Including those with magnetized ferrimagnetic substrates 

, 
I \ 

d (em) L (em) w (em) measured cavity moments I this 

II [1] [11] work.. 

_~ dh '... J<c'onant frequency for different techniques' 

o 127 I 2.00 3.0 2.26 2.23 2.28 2.31 

Ii I : o 127 I 0.95 1.5 4.49 4.35 4.58 4.69 
:)~f------+----

III : 1.90 3.0 2.24 2.18 2.29 2.35 

I (I : t)'254 II 0.90 1.5 4.23 3.90 4.50 4.47 

", O()79 I 2.50 4.0 3.94 3.84 3.89 3.92 
, ,,, 

(J,()79 I 1.25 2.0 7.65 7.42 7.61 7.66 

.., .." 0.152 I 2.50 4.0 3.84 3.71 3.81 3.83 

2.22 0.152 I 1.20 2.0 7.72 7.12 7.55 7.63 

Tab. II· Resonant frequency· dl=O.O, d2 = 0.158 em, L = 1.0 em, txxZ= 9.4, tyyz= 2.35. 

I w ( em ) I F r + jFi ( GHz ) I F r + jF; (GHz) [2] I 

I 1.5 I 7.718 + jO.235 I 7.773 + jO.233 I 

I 0.2 I, 8.055 +jO.091 8.112 + jO.112 II 

Tab. III· Resonant frequency - dl=O.O, d2 = 0.127 em, L = 0.6 em, w = 0.4 em, txxZ = 9.6. 

I nx/ny I Fr + jF; ( GHz ) I Fr ( GHz ) [2] I 

I I 7.653 + jO.029 I 7.68 I
 

I 2 I 12.135 + jO.3191 12.19 I
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Tab. IV - Resonant frequency - dl = 1.651 mm, d2 =0.254 mm, d3 =0.0, L =0.4 ern, w =0.1 ern, trl = 1.0, Cyy2 =9.6. 

I nx/ny I r, + jF i ( GHz ) Fr ( GHz ) [2] III 

1 1'7.845 + jL4l9 17.77 
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