
Torsten Braun, Jochen H. Schiller and Martina Zitterbart:
Transport Protocols Using Parallelism and VLSI Components

Implementation of Transport Protocols Using
Parallelism and VLSI Components

Torsten Braun, Jochen H. Schiller and Martina Zitterbart
University of Karlsruhe, Institute of Telematics
Zirkel 2, 76128 Karlsruhe
Phone: +49721608-[3982,4003,4026], Fax: +49721388097
Email: [braun.schiller.zit]@telematik.informatik.uni-karlsruhe.de

Service requirements and performance needs are increasingly demanding in emerging high perfor
mance communication subsystems. Well-suited protocols and efficient protocol implementation tech
niques form the core of such systems. Applying parallelism and introducing VLSI components (0

overcome system bottlenecks represent promising approaches towards highly efficient implementa
tions. This paper discusses experiments with parallel protocol implementations and introduces a
protocol especia!ly designed to support parallelism. Moreover. a parallel VLSI architecture is intro
duced enabling fine-grained parallelism among protocol functions as well as coarse grain parallelism
among connections. Dedicated VLSI components are used for potential bottleneck functions, such as
timer and memory management or retranmission support.

1 Introduction

During the last few years the communication world has seen remarkable changes.
Applications are becoming increasingly complex and require higher performance. A
wider variety of communication services steadily increases the demands on communi
cation subsystems. The transmission technology has evolved from data rates of several
megabits per second to data rates exceeding a gigabit per second. However, current
communication subsystems cannot deliver the available network performance to the
applications.

Several research efforts on implementing high performance communication subsys
tems have been undertaken during the last few years covering aspects, such as software
optimization, applying parallelism, using hardware support and dedicated VLSI com
ponents. A comprehensive overview on parallelism in communication subsystems can
be found in [1]. Some of the approaches deal with efficient implementations of
standard protocols, such as OSI TP4 or TCP (e.g., [2], [3]). Others developed protocols
specially suited for parallel implementations, such as XTP [4], TP++ [5], MSP [6], [7],
AXON [8] or PATROCLOS [9]. Moreover, [10] and [11] specifically deal with the
VLSI implementation of simple protocols. The parallel VLSI architecture presented in
this paper is especially targeted towards more complex communication protocols, such
as connection oriented protocols. Moreover, the architecture is highly independent of
the specific protocol to be implemented and, thus, serves as a sound basis for the
emerging environment of communication protocols. In addition, the presented archi

83

Revista da Sociedade Brasileira de Telecomunicacoes
Volume 9, munero 1, Dezembro de 1994

tecture forms a key part of a framework that eventually should cover efficient and
flexible automated protocol implementations from protocol specifications,

This paper is structured as follows. Section 2 reports on experiments with parallel
protocol implementations and summarizes design requirements for protocols suitable
for parallel implementations. In Section 3, a parallel VLSI implementation architecture
is presented. A summary and an outlook on future work is given in Section 4.

2 Parallel Protocol Implementation and Design

2.1 Implementation of Standard Protocols

The use of parallelism at the point of bottleneck generally is a suitable approach to
improve the performance of computing systems [12]. Considering processing speeds
and memory bandwidth as major bottlenecks for high performance communication
subsystems, the use of multiprocessor platforms forms an adequate approach to
increase their performance.

Implementations of standard protocols like OSI and TCP/IP on parallel architectures
lead to performance gains [1], [3]. However, mainly pipelined parallelism can be
achieved [13] because of the subdivision of OSI systems into hierarchical layers and
the high data dependencies among the protocol functions. Most of the approaches
provide a rather coarse grained level of parallelism using protocol entities or protocol
stacks as basic parallel building blocks [14].

Due to the highly different complexity of protocol layers, the mapping on multiproces
sors often leads to implementations which are not very efficient because of the
unbalanced processor load (e.g., TCP and IP, OSI-TP4 and OSI-CLNP) [15]. Protocol
functions as atomic units for the parallelization are more promising. However, to
extract parallelism at the functional level, detailed protocol analysis is required [16].
Generally, standard protocols which are based on single extended finite state machines
(FSMs) are not designed to support parallelism.

2.1.1 Parallel Protocol Implementation

SNR and XTP have been the first protocols based on parallel FSMs. SNR [17] is an
end-to-end protocol for high speed networks with a relatively simple functionality. It
is decomposed into seven processes, which have been implemented on a multiproces
sor system based on M68030 processors [17]. In order to decouple control and user
data processing, connection state parameters are exchanged periodically by control
packets independent of user data transfer.

84

Torsten Braun, Jochen H. Schiller and Martina Ziiterbart:
Transport Protocols Using Parallelism and VLSl Components

A more sophisticated protocol supporting parallelism is XTP [4]. Parallelism has been
considered during the design process and has resulted in the specification of multiple
FSMs [18]. Moreover, a fixed header format is used to simplify header generation and
analysis. Furthermore, XTP clearly separates between send and receive parts which
can be implemented concurrently without significant interactions and almost inde
pendently of each other. Thus, handling of duplex traffic can be supported efficiently
[19]. Moreover, the distinction of information packets, which mainly contain user data,
and control packets, which contain control information (e.g., for flow control or
acknowledgement) simplifies parallel processing of user and control data.

Such features are extremely helpful in designing and implementing a high performance
parallel XTP on multiprocessor architectures. However, our experiences have also
shown that the XTP specification still includes some drawbacks hindering more
efficient parallel implementations [20]. For example, the use of different types for
information and control packets is not really reflected in FSM processing. Several
FSMs are involved in user data and control processing. Another disadvantage is the
tight co-operation among FSMs performed by signalling events and by sharing com
mon data bases. Communication overhead caused by event signalling among the FSMs
and by context information updates is a major limiting factor. Most of the FSMs need
to access the connection state information which forms the most important data base.
However, the concurrent access of different FSMs to this data base sequentializes their
processing.

2.2 Parallel Protocol Design Guidelines

Based on the analysis of XTP FSMs and the performance results of a corresponding
multiprocessor implementation [19], we derived the following guidelines for protocol
architectures appropriate for parallel processing [20]:

Data dependencies among protocol functions hinder parallel processing
considerably. Some protocol functions are directly data dependent, i.e., their
output data forms the input data needed by another function. Additionally,
semantical dependencies can occur if multiple outputs of different functions
have to be combined to calculate the final result (e.g., different concurrent
header analysing functions). The different results have to be combined for a
decision about the correctness and about subsequent processing steps.

•	 A more loosely structuring of control and data processing by separating them
permits a higher degree of parallelism. Independent FSMs for every packet type
can allow for highly concurrent processing. The exchange of control packets,
which is often triggered by data transfer, can be decoupled from data transfer by
requesting control packets explicitly, or by periodic state exchange.

85

86

Revista da Sociedade Brasileira de Telecomunicacoes
Volume 9, numero 1, Dezembro de 1994

•	 An orthogonal design of control functions with minimized interactions can
provide high degrees of parallelism. This can be achieved by a strict subdivision
into independent protocol functions (e.g.. separation of acknowledgement from
rate control). Such an approach allows for a modular design, which also supports
a flexible protocol configuration as introduced in [21].

•	 In order to minimize communication overhead among protocol functions, event
signalling should be reduced to a minimum. Infrequent periodical signalling
may also be sufficient in contrast to signalling events for every received packet.

•	 Local resources should be used instead of global resources in order to avoid
consistency problems and access conflicts. The control functions should operate
on independent state variables and use separate control packets.

2.3 PATROCLOS: AHighly Parallel Protocol Architecture

Based on the protocol design guidelines presented above, a highly parallel protocol
architecture (named PATROCLOS) has been designed [9]. It uses a fine granularity
based on a protocol function oriented decomposition into basic modular building
blocks to simplify parallel implementation. Parallel FSMs are the atomic building
blocks of the PATROCLOS architecture. FSMs belonging to the same PATROCLOS
entity exchange messages for co-operation. Periodical information exchange among
FSMs is used to reduce the communication overhead.

PATROCLOS consists of two types of FSMs: interface and protocol FSMs. [lite/face
FSMs are located at the interfaces to the application and the network. They are only
involved in local communications within a single protocol entity. Protocol FSMs
communicate directly by separate so-called FSM protocols with the corresponding
FSMs at the peer entity (cf. Figure 1). They are designed to allow for parallelism
between send and receive part. Moreover, they decouple connection state information
exchange from user data exchange. For every FSM protocol a separate PDU is defined
as well as individual error recovery mechanisms and timers are used. The PDUs
contain only the absolutely necessary information for their dedicated protocol function
implemented by the FSM. Multiplexing of PDUs by different FSMs is avoided to
support a higher degree of parallelism. Every protocol function is mapped onto a
dedicated FSM.

Tors/en Braun, Jochen H. Schiller and Mar/ina Zitterbart:
Transport Protocols Using Parallelism and VLSI Components

application oriented application oriented

rredium access and medium access and 0 protocol data FSMs
physical layer (1-2a physical layer (l-2a o protocol control FSMs

• interface FSMs

layers (5-7)

FSM protocols

layers (5-7)

T

l
trans port subsystem
(layers 2b-4)

Figure 1· Architecture of PATROCLOS

For the implementation of PATROCLOS a specially suited hybrid multiprocessor
architecture has been designed [20]. Performance evaluations show significant im
provements compared to similar implementations of other protocols. The receive
throughput is limited to 6300 packets/s by the time of the data receive process to
analyse a data PDU. The achievable send throughput is limited to 8000 packets/s by
the time to format a packet. A TCP/IP implementation [3] running on the same
platform as used for performance evaluation of PATROCLOS achieves less than 3000
packets/so

The bottleneck processes of that TCP/IP implementation require approximately the
double processing time as the PATROCLOS bottleneck processes. One reason there
fore is that a lot of control functions within the TCP/IP bottleneck processes such as
acknowledgement processing or flow control have been moved to dedicated protocol
control FSMs of the PATROCLOS architecture. The performance results indicate that,
generally, parallel protocol processing and, especially, parallel processing of control
and user data functions is a successful approach towards high performance communi
cation subsystems.

3 Parallel VLSllmplementation Architecture

The inherent parallelism of protocols, such as PATROCLOS, can be applied to parallel
VLSI implementation architectures. The VLSI architecture presented in this section
additionally implements parallelism among different connections. The architecture
generally distinguishes protocol independent and protocol dependent components.

87

88

Revista da Sociedade Brasileira de Telecomunicacoes
Volume 9, numero 1. Dezembro de 1994

3.1 General Architecture

The architecture (cf. Figure 2, [22]) consists of two data memories, for the receive side
(receive RAM) and for the send side (send RAM), respectively. They are managed by
specialized extended memory management units (EMMUs). The network unit, the
applications, and the connection processors (CPs) can access the data memories via
the EMMUs. The use of pointers avoid data copies during protocol processing.
Operations on the memory, such as segmentation / reassembly and allocation / deallo
cation, are completely handled by the EMMUs. Applications may read and write data
via DMA.

A key feature of the architecture is the replication of identical CPs similar to [11] for
different connections. They include registers, arithmetic logical units (ALUs), timers,
and other components required in a protocol implementation. The main purpose of the
remaining components (management, A_MUX, N_MUX, N_DMX) is the distribution
and collection of relevant data. Received data is divided into user data and a protocol
header. User data is written into the Receive RAM. The protocol header together with
a reference to the user data is delivered to the N_DMX that forwards it to an appropriate
CPo

network unit

I
I send ~+--.--+--+.....

i

RAM

)

I'~
!
~I

management A_MUX

Figure 2 - Overview ofthe VLSI implementation architecture

The N_MUX collects protocol headers and references to user data to be sent to the
network. The CPs cooperate with an application component via management and
AJv!UX. The manager maps a request for connection establishment onto a CP depend
ing of its actual load, which then is responsible for handling that connection properly.
Therefore, this architecture exploits the interconnection parallelism. The mapping
information is distributed to the A _MUX, N_MUX and N_DMX.

The four components management, A_MUX, N_MUX and N_DMX are connected to
the CPs via dedicated busses. The connections between CPs and EMMUs are used for
issuing commands to the EMMUs. For example, for segmentation support a pointer to

Torsten Braun, Jochen H. Schiller and Martina Zitterbarr:
Transport Protocols Using Parallelism and VLSf Components

the user data and the length of a segment is given to the send EMMU that returns a list
of pointers to the segments.

The main components inside a connection processor are the FSM processing units that
perform all protocol functions. The FSMs of a formal protocol specification can be
mapped onto these processing units (e.g., protocol and interface FSMs of PATRO
CLOS or single FSMs of standard protocols). All FSM processing units work inde
pendently; they communicate via asynchronous signals, thus, enabling concurrency
among different protocol functions. FSMs use global or local Timers. In case of global
timers, multiple CPs can issue commands (e.g., start, restart) to such timer components.
In addition, there is a globalALU to manipulate global registers that store all variables
used by more than one FSM (e.g., in XTP, d. 2.1.1). FSMs issue a command to the
ALU that performs the required operation on the data and may return a result (e.g., in
case of comparisons). To guarantee consistency, FSMs can access the registers through
theALU only. Components within the CP are interconnected via a connecting element.
To provide a maximum of t1exibility they are designed with identical interfaces.

<Ii
ri
ai

r-__~do

queue P---->~ roFSM __--- ao

Figure 3 - FSM processing unit

The FSM processing unit (d. Figure 3) is the basis for implementation of parallel FSMs
described in a protocol specification. Each of the processing units consists of local
registers, a local ALU, and a control unit. Local ALUs are customized for the
individual requirements of the corresponding FSM. An ALU can be as simple as an
adder or as complex as a management unit for a dynamic list. To decouple FSMs from
each other and from other units inside a CP, each FSM utilizes a separate input queue.
Signals to an FSM will be inserted into this queue according to the implicit mechanisms
of the protocol specification language SDL (asynchronous communication). Further
more, an FSM has an interface to issue signals to other components.

Due to its modular design, this architecture can be adapted to different protocols. For
example, XTP needs global variables and global timers and, therefore, a global ALU

89

Revista da Sociedade Brasileira de Telecomunicacoes
Volume 9, numero 1, Dezembro de 1994

with registers and global timers are required. PATROCLOS needs local variables and
local timers only and, thus, the global components are not required.

3.2 Protocol Independent Components

Protocol independent components can be used for the implementation of different
protocols. They are fixed in their general structure but flexible enough to be adapted
to different requirements. They comprise so-called system functions as well as support
functions for protocol functions.

3.2.1 System Functions

System functions perform work related to, e.g., timer management or memory man
agement. They are independent of the protocols and, thus, can be used by different
protocols. Two components for system functions are already implemented: an ex
tended memory management unit (EMMU) and a list manager for a dynamic list of
timers.

The EMMU receives commands from the applications, the network, and the CPs. It
allocates and deallocates memory for user data and protocol headers and it manages
the required pointers and data structures. It is assumed, that protocol headers are of a
fixed format, i.e., a fixed size and a fixed position for each field in order to allow for
fast header parsing. User data may have flexible length.

The timer management unit can receive commands to insert, delete and reset a timer
value as well as to report the actual value of a specific timer. If a timeout has occurred,
the unit independently issues an alarm signal to the appropriate receiver. Every entry
in the timer data structure contains an InitiatorlD, a Timerblame, and a timeout value.

3.2.2 Support Functions

Time critical parts of a protocol function are not the state transitions itself, but the
management of data structures, such as context data. Examples are segmentation /
reassembly and retransmission of data.

One of the main arguments against hardware architectures is their lack of flexibility,
e.g., for handling dynamic lists. However, for some protocol functions dynamic lists
are essential. One example is the list that holds all data used for retransmission.
Therefore, some protocols need a list of gaps representing spans of bytes not yet
correctly transmitted. The sender has to retransmit those bytes if it guarantees correct
and complete transmission. A retransmission manager has been developed that man
ages gaps and can be used for gaps in received data to support the acknowledgement
function or for gaps in acknowledgments of transmitted data to support the retrans
mission mechanism. Every entry contains the following fields: conn_id, gap_start,

90

Torsten Braun, Jochcn H. Schiller and Martina Zitterbart:
Transport Protocols Using Parallelism and VLS! Components

length, next. Conn_id indicates the appropriate connection, gap_start and length hold
the lowest unacknowledged sequence number and the length of the gap, next points to
the next entry of the list. The functions of the retransmission manager are:
setJ5ap(conn_id, sequence number, length), to insert a new gap, deletegaptconn Ld,
sequence number, length), to delete (parts of) a gap, and getJ5ap(colll1_id, ptr,
sequence number, length, next), to read the content of the register identified by ptr.

Moreover, there are commands to update registers holding the highest received
sequence number and the highest acknowledged sequence number per connection.
Besides range checking of all fields in a command, the retransmission manager has to
join gaps in case of a register overflow. Therefore. the closest gaps are combined to a
single gap.

3.3 Protocol Dependent Components

Protocol dependent components are units that must be (partially) changed if another
protocol is implemented. The control unit of an FSM that controls the state transitions
and all other operations of the FSM is protocol dependent. Using many protocol
independent functions only the FSM state transition tables and the registers have to be
adapted to protocol changes. These tables consist not only of (state, nextstate)-pairs,
but also of low-level calls of system functions, protocol support functions, and general
ALU functions. Up to now changes in the protocol description have to be manually
mapped onto changes in the state transition tables.

3.4 Implementation and Simulation Environment

The architecture with its components and interconnections is currently being described
with the hardware description language YHDL to allow simulations and synthesis.
Based on the description in YHDL, parts of the architecture have already been
simulated with a YHDL simulator for validation purposes (discrete event simulation).
The protocol used for simulation includes connection management, acknowledgment,
retransmission, and other typical functions of transport oriented layers. To retrieve
better estimates considering space and time requirements, parts of the design have been
synthesized with a high level synthesis tool (Synopsys). An implementation of a list
manager for timers using 20 MHz standard cell technique has a performance of more
than 3 million insertion operations in the average case. The implementation of the unit
to handle lists for retransmissions with 1.0 um CMOS results in an area consumption
of only 28800 gates for control logic.

91

Revista da Sociedade Brasileira de Telecomunicacoes
Volume 9, numero 1, Dezembro de 1994

4 Summary and Future Work

The demand for high performance communication subsystems is steadily increasing
during the last few years. Although there have been considerable research efforts, there
is still a lack of high performance solutions. The parallel VLSI architecture presented
in this paper enables the implementation of such systems by applying parallelism at
different levels of granularity and by using the support of dedicated VLSI for potential
bottleneck components.

However, the pure design and implementation of a system capable of serving demand
ing applications cannot be considered as the ultimate goal. Rather, once such a system
is designed, there should be some focus on how the implementation productivity can
be improved and, even more importantly, how the methods and concepts can be
applied to different system environments and communication protocols. Therefore,
two main issues form the target of our future work on the presented architecture:
providing flexible communication support and enabling automatic or semiautomatic
implementation of such advanced communication subsystems from high level protocol
specifications.

Flexible communication support can more easily be implemented by pure software
solutions. However, by properly designing the protocols and the implementation
environment flexibility may also be achieved using hardware-oriented approaches or
dedicated VLSI architectures. In our case, the design principle of designing a protocol
out of a set of almost autonomous protocol functions (specified as FSMs) enables a
high degree of flexibility. These building blocks are mapped onto dedicated VLSI
components that may be parametrized according to individual application needs.

Automated protocol implementations from high level specifications increase the pro
ductivity of protocol implementations. They are usually applied to pure software
solutions only. Mostly, even the system environment (such as operating system or
workstation architecture) are not considered. We are targeting towards an approach
that facilitates the mapping of, e.g., SDL specifications onto VHDL descriptions for
the different components of a communication subsystem. Such an approach includes
a high potential for efficient implementations suitable for the emerging gigabit net
working environment and the increasing variety of application requirements.

5 References

[1]	 Zitterbart, M.; Parallelism in Communication Subsystems; in: Tantawy,
A.N.(ed.): High Performance Networks Frontiers and Experiences, Kluwer
Academic Publishers, 1994.

[2]	 Ito, M.; Takeuchi, L.; Neufeld, G.; Evaluation ofa Multiprocessing Approach for
OS! Protocol Processing; Proceedings of the First International Conference on

92

Torsten Braun, Jochen H. Schiller and Martina Zitterbart:
Transport Protocols Using Parallelism and VLSI Components

Computer Communications and Networks, San Diego, CA, USA, June

8-10,1992.

[3]	 Riitsche, E.; Kaiserswerth, M.; TCP/IP on the Parallel Protocol Engine, in:
Danthine, A; Spaniol, O. (eds.): High Performance Networking, IV, IFIP,
NorthHolland,1993,pp.1l9-134.

[4]	 Strayer, W.T.; Dempsey, B.J.; Weaver,AC.;XTP: TheXpress Transfer
Protocol; AddisonWesley Publishing Company, 1992.

[5]	 Feldmeier, D.C.;An Overview ofthe TP++ TransportProtocol; in: Tantawy
AN. (ed.): High Performance Communication, Kluwer Academic Publishers,
1994.

[6]	 La Porta, T.F.; Schwartz, M.;A High-Speed Protocol Parallel Implementation:
Design andAnalysis; in: Danthine, A; Spaniol, O. (eds.): High Performance
Networking, IV, IFIP, NorthHolland, 1993, pp.13S-1S0.

[7]	 Haas, Z.;A Protocol Structure for HighSpeed Communication over
BroadbandlSDN; EEE Network Magazine, Vol. 5, No.1, January 1991,
pp.64-70.

[8]	 Sterbenz, J.P.G.; Parulkar, G.M.;AXONHost-NetworkInterfaceArchitecture for
Gigabit Communications; in: Johnson, M. J. (ed.): Protocols for HighSpeed
Networks, II, NorthHolland, 1991, pp. 211-236.

[9]	 Braun, T.;A Parallel Transport Subsystem for CellBasedHighSpeedNetworks;
Ph.D. Thesis (in German), University of Karlsruhe, Germany, VDIVerlag,
Dusseldorf, 1993.

[10] Krishnakumar, AS.; Kneuer, J.G.; Shaw, AJ.; HIPOD: An Architecture for
HighSpeedProtocolImplementations; in: Danthine;A; Spaniol, O. (eds.): High
Performance Networking, IV. IFIP, NorthHolland, 1993, pp.383-396.

[11] Balraj, T.; Yemini, Y; Putting the Transport Layer on VLSI - the PROMPT
Protocol Chip; in: Pehrson, B.; Gunningberg, P.; Pink, S. (eds.): Protocols for
HighSpeed Networks, III, 1992, NorthHolland, pp. 1934.

[12] Stone, H.S.; High Performance ComputerArchitecture; AddisonWesley
Publishing Company, 1987.

[13] Zitterbart, M.; Parallel Protocol Implementations on Transputers Experiences
with OSI TP4, OSI CLNP, and XTP; IEEE Workshop on the Architecture and

93

94

Revista da Sociedade Brasileira de Tclccomunicacoes
Volume 9, numero 1, Dezembro de 1994

Implementation of High Performance Communication Subsystems, Tucson, AZ,
USA., February 17-19,1992.

[14] Jain, N.; Schwartz, M.; Bashkow, T.R.; Transport Protocol Processing at Gbps
Rates; Proceedings of the ACM SIGCOMM 90, September 24-27,1990,
Philadelphia, USA, pp.188199.

[15] Braun, T; Rutsche, E.; Kaiserswerth, M., Zitterbart, M.; Implementation of
Communication Protocols for HighSpeed Networks on the Parallel Protocol
Engine; internal report.

[16] Koufopavlou, O.G.;Tantawy, A.N.; Zitterbart; M.; Parallelization ofTCPIIPfor
Vel}' High Speed Networks; 17th Annual IEEE Conference on Local Computer
Networks, Minneapolis, MN, USA, 13.16. September 1992, pp. 576-585.

[17] Sabnani, K; Nctravali, A.; Roome, w.; Design and Implementation ofa High
Speed Transport Protocol; IEEE Transactions on Communications, Vol. 38, No.
1L November 1990, pp. 2010-2024.

[18] Protocol Engines Inc.; XTP Protocol Detinition; Revision 3.4, July 17, 1989.

[19] Braun, T.; Zitterbart, M .;A Parallel Implementation ojXTP on Transputers; 1
6th Annual IEEE Conference on Local Computer Networks, Octoher 1417,1991,
Minneapolis, MN. pp. 172-179.

[20] Braun, T; Zitterbart, M.; Parallel Transport System Design; in: Danthine, A;
SpanioL O. (eds.): High Performance Networking, IV, IFIP, NorthHolland, 1993,
pp.397-412.

[21] Zitterbart, M.; Stiller, S.; Tantawy, A.;A Modelfor Flexible High-Performance
Communication Subsystems; IEEEJSAC, May 1993, pp. 507-518.

[22] Schiller, J.; Braun, T: VLSI-lmplementationArchitecturefor Parallel Transport
Protocols; IEEE Workshop on VLSI in Communications, Stanford Sierra Camp,
Lake Tahoe, CA. USA, September 15-17,1993

Torsten Braun, Jochen H. Schiller and Martina Zitterbart:
Transport Protocols Using Parallelism and VLSI Components

Torsten Braun received the diploma degree and the doctoral degree in computer
science from the University of Karlsruhe (Germany) in 1990 and 1993, respectively.
He is currently a postdoctoral researcher at INRIA Sophia Antipolis (France). His re
search interests are efficent implementation techniques for communication protocoo
Is and their application in flexible communication systems. Dr. Braun is a member of
IEEE, German Society of Computer Science (GI), and working group NI6.4 of the Ger
man Standardization Institute (DIN).

Jochen H. Schiller is a PhD student at the Institute of Telernatics, Department of Com
puter Science, University of Karlsruhe, Germany. He received his diploma degree in
computer science from the University of Karlsruhe in April 1993. Currently, he is
working in the High Performance Networking Group at the Institute of Telernatics,
From the "Deutsche Forschungsgerneinschaft (DFG)" he is supported by a scholarship
and he is member of the Graduiertenkolleg "Controllability of Complex Systems". He
is also student member of the IEEE since 1993. His research interests include design
and evaluation of high-speed transport systems with primary interest in the implemen
tation of transport systems in VLSI and in the design of correct construction methods
for high performance communication subsystems.

Martina Zitterbart received the diploma degree in computer science and the doctoral
degree from the University of Karlsruhe, Germany, in 1987 and 1990, respectively.
Since 1987 she has been a Research Assistant at the Institute of Telematics, University
of Karlsruhe. From January 1991 to January 1993, she was a Visiting Scientist at the
IBM Thomas J. Watson Research Center, Yorktown Heights, NY. She is currently
managing the High Performance Networking Group at the Institute of Telematics, Her
primary research interests are in the areas of high performance transport systems and
interworking in the environment of emerging gigabit networks. She is a member of
IEEE and the German Society of Computer Science (GI).

95

