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Adaptive Universal Codes for Integer Representation
Márcio J. de C. Lima and Valdemar C. da Rocha Jr..

Abstract—For a given arbitrary list of integer numbers, in
general there is no known single universal code which is an
overall optimum in the sense of representing the whole list with
the shortest average codeword length. This is the motivation in
this paper to introduce a class of adaptive universal codes based
on pattern codes, for integer representation. A construction of
adaptive universal codes is given, which is based on Fibonacci
codes. This construction is shown to perform well over a wider
range of integer values in comparison to known universal code
constructions.

Keywords: source coding, Fibonacci codes, algorithms, design
of algorithms.

I. INTRODUCTION

THE efficient encoding and decoding of an arbitrary list
of integer numbers, often in a compact representation

[1], [2], represents an interesting problem in areas such as
source coding theory [3]-[6], data compression [7]-[10], digital
data transmission theory [11], [12], synchronizable codes [11],
[13]-[15], theory of computational complexity [22] and data
base indexes for fast file access [16].
For a given arbitrary list of integer numbers, in general there

is no known single universal code which is an overall optimum
in the sense of representing the whole list with the shortest
average codeword length [1], [8], [9], [17], where by the length
of a codeword we mean the number of digits that it contains.
We were then motivated to try an alternative approach and
partially circumvent this difficulty by introducing adaptive
universal (AU) [18] codes based on pattern codes, originally
treated as prefix codes by Gilbert [3]. By an adaptive code we
mean a code represented by a set of two or more codes together
with a code selection rule. The code selection rule specifies
which code in the set is to be used, as a function of the range
of integers to be represented. Pattern codes have been studied
in detail by Lakshmanan [23] and it is worth mentioning that
they are related to a conjecture of Gilbert [3], studied later by
Guibas and Odlyzko [19], concerning the maximum number
of codewords allowed in a class of block codes known as
prefix-synchronized codes.
In the following, we consider a generalization of the uni-

versal codes introduced by Capocelli [14] of the kind related
to the Zeckendorf [20] representation of integers in terms of
generalized Fibonacci numbers, that have the capability of
locally confining errors. According to Capocelli [14], for a
given positive integer r, universal codes can be constructed by
considering the set of all binary strings of length greater than
or equal to r in which the sequence formed by a 0 followed
by r − 1 1’s, denoted as 01r−1, occurs only once as a suffix.
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These binary strings form a countably infinite set of prefix-free
codewords which we will denote by S = S(r, 01r−1). It was
also shown that the S codes are prefix-free and complete [21],
and universal in the sense of Elias [22],[23]. Furthermore,
S codes can be recognized by a finite-state automaton (i.e.,
they are regular codes) and thus cannot be asymptotically
optimal [24]. Moreover, S codes are synchronizable and
have synchronization delay equal to one, i.e., in case errors
occur and synchronization is lost, after a single codeword the
decoder recovers synchronization (more robust than most other
variable-length codes) [1],[12].
In the following, we introduce a construction for a class of

codes which enjoy properties similar to the S codes. However,
the codes in our construction perform well over a wider
range of integer numbers. These codes are denoted by A and
result from a combination of at least two universal codes.
In Section II, we present a basic introduction to classical
universal codes and show that the generalized Fibonacci
representation can be exploited to construct binary uniquely
decodable codes. In Section III we define Adaptive Universal
codes. In Section IV, we construct a class of codes, called
Fibonacci Adaptive Universal (FAU) codes, and compare
their performance with that of other universal schemes. In
Section V, we close this paper by presenting some comments
and conclusions.

II. CLASSICAL UNIVERSAL CODES

After examining various universal codes, [5]-[7], [11]-[14],
[22]-[25] the codes having the shortest average codeword
length were obtained with the Fibonacci codes known as
pattern codes [3]. This fact is illustrated in Table I, where
LΩ denotes the set of codeword lengths for code Ω and N
denotes a positive integer. The three rightmost columns in
Table I contain results from some of the proposed codes, to
be described later. A prefix-free code is any code with the
property that no codeword is a prefix of any other codeword.
Let p = p1p2 . . . pm denote an arbitrary binary string, or
pattern, of length m. We denote by l(p) the length of the
pattern p, i.e., the length of the pattern p = p1p2 . . . pm is the
positive integer m.
Definition 2.1: For a given binary pattern p of length m, a

pattern code (p-code) is a set T of binary strings of variable
length l+m, l ≥ 0, such that for any x1x2 . . . xlp1p2 . . . pm ∈
T , the pattern p = p1p2 . . . pm occurs only once as a suffix.
For example, the pattern p = 0111 of length four is a suffix in
the codeword 1100001000 0111. It is clear that every p-code
is a prefix-free code, and is therefore uniquely decodable.
Definition 2.2: For given integersN1 and N2, N1 ≤ N2, let

A and B denote codes for representing an integer i, N1 ≤ i ≤
N2. Code A is defined as uniformly better than code B in the
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TABLE I
COMPARISON OF CODEWORD LENGTHS FOR ELIAS CODES [22] γ , δ, ω, WANG CODES [5]W (2),W (3) ANDW (4), YAMAMOTO CODES [6] Y (2), Y (3)

AND Y (4), FIBONACCI CODES BY APOSTOLICO AND FRAENKEL [11] AF
(2)
1 AND AF

(3)
1 , FIBONACCI CODES BY CAPOCELLI [14] C(3) AND C(4), AND

PROPOSED ADAPTIVE FIBONACCI CODESA(3, 4), A(3, 5) AND A(4, 5).

!log2(N)" Lγ Lδ Lω LW (2) LW (3) LW (4) LY (2) LY (3) LY (4)
L
AF

(2)
1

L
AF

(3)
1

LC(3) LC(4) LA(3,4) LA(3,5) LA(4,5)

0 1 1 1 3,0 4,0 5,0 2,0 3,0 4,0 2 3 3 4 3 3 4
1 3 4 3 4,5 5,0 6,0 3,5 4,0 5,0 3 4 4 5 4 4 5
2 5 5 6 6,0 6,2 7,0 5,0 5,2 6,0 4 5 5 6 5 5 6
3 7 8 7 7,5 7,3 8,1 6,5 6,5 7,1 6 6 6 7 6 6 7
4 9 9 11 9,0 8,5 9,1 8,0 7,7 8,2 7 8 7 8 7 8 8
5 11 10 12 10,5 9,7 10,2 9,5 9,0 9,3 8 9 8 9 8 9 9
6 13 11 13 12,0 10,8 11,3 11,0 10,2 10,5 10 10 9 10 10 10 10
7 15 14 14 13,5 12,0 12,3 12,5 11,5 11,6 11 11 10 11 11 11 11
8 17 15 16 15,0 13,2 13,4 14,0 12,7 12,7 13 12 12 12 12 12 12
9 19 16 17 16,5 14,3 14,5 15,5 14,0 13,8 14 13 13 13 13 14 13
10 21 17 18 18,0 15,5 15,6 17,5 15,2 15,0 16 14 15 14 14 15 14
12 25 19 20 21,0 17,8 17,7 20,0 17,7 17,2 18 17 17 16 17 17 17
14 29 21 22 24,0 20,2 19,8 23,0 20,2 19,5 21 19 20 19 19 19 19
16 33 25 28 27,0 22,5 22,0 26,0 22,7 21,7 24 21 23 21 22 22 21
18 37 27 30 30,0 24,8 24,1 29,0 25,2 24,0 27 23 26 23 24 24 23
20 41 29 32 33,0 27,2 26,3 32,0 27,7 26,2 30 25 29 25 26 26 25
22 45 31 34 36,0 29,5 28,4 35,0 30,2 28,5 33 28 32 28 29 28 28
24 49 33 36 39,0 31,8 30,6 38,0 32,7 30,7 36 30 35 30 31 30 30
26 53 35 38 42,0 34,2 32,7 41,0 35,2 33,0 39 33 38 32 33 33 32
28 57 37 40 45,0 36,5 34,8 44,0 37,7 35,2 40 35 34
30 61 39 42 48,0 38,8 37,0 47,0 40,2 37,5 43 37

interval (N1, N2) when the codeword A(i), A(i) ∈ A,N1 ≤
i ≤ N2, has either the same length or a shorter length than
B(i), B(i) ∈ B, for any value of i, N1 ≤ i ≤ N2.
It is well known [1], [8], [14] that pattern codes known

as Fibonacci codes are so far the best for representing a list
of integers. However, when considering a sufficiently large
range of integers, the integer representation provided by a
single Fibonacci code is not uniformly better than that given
by another Fibonacci code (see Table I). This is also the case
for other families of universal codes.
Among other properties, we notice that Fibonacci codes

have an easy-to-understand structure, a simple indication of
codeword length, and as indicated in Table I they have a com-
pact representation for integer numbers over large intervals.
By C(m) we denote a Fibonacci code employing a pattern
of length m. For example, in Table II, C(3), C(4) and C(5)
denote Fibonacci codes with patterns p = 011, p = 0111 and
p = 01111, of length 3, 4 and 5, respectively.

A. Fibonacci codes
Fibonacci codes are binary codes constructed based on the

Fibonacci enumeration system [13], [20], [24]. The Fibonacci
enumeration system of orderm,m ≥ 2, [11], denoted as F (m),
can be used to represent any non-negative integer number,
employing the following:
a) a binary alphabet, e.g., {0, 1}, and
b) the fact that there is a unique manner of writing a given
integer which does not containm consecutive digits equal
to 1 [13],[26].

The representation F (2) is known as the Zeckendorf’s
representation [20]. The generalized sequence of Fibonacci
numbers of order r, r ≥ 2, is defined by the linear recursion

F (r)
s = F

(r)
s−1 + F

(r)
s−2 + · · ·+ F

(r)
s−r, s ≥ 1,

where

F
(r)
−r+1 = F

(r)
−r+2 = · · · = F

(r)
−2 = F

(r)
−1 = 0

and F
(r)
0 = 1.

Example 2.1: The enumeration system F (2) uses the Fi-
bonacci sequence of order two, consisting of the numbers
1, 2, 3, 5, 8, 13, 21, 34, . . . , as a basis. The F (2) representation
for the numbers 11 and 17 is 00101 and 101001, respectively,
as follows from

F(2)(11) = 0 · 1 + 0 · 2 + 1 · 3 + 0 · 5 + 1 · 8;

F(2)(17) = 1 · 1 + 0 · 2 + 1 · 3 + 0 · 5 + 0 · 8 + 1 · 13.

Examples of Fibonacci codes are presented in Table II,
specifically, codes C(3), C(4) and C(5), which belong to
the family of Fibonacci codes presented by Capocelli et al
[14],[24],[25], following the common practice in the literature
of showing only some initial part of the integers. In general,
for a given integer m, m > 2, C(m) denotes a pattern
code, as introduced by Capocelli, consisting of the set of all
binary strings of length greater than or equal to m in terms of
generalized Fibonacci numbers.

III. ADAPTIVE UNIVERSAL CODES
Our proposal for constructing Adaptive Universal (AU)

codes consists of combining two or more pattern codes so that
the resulting adaptive code benefits from good properties of the
component codes and pays a small penalty in efficiency. We
call the reader’s attention to the fact that, as explained in the
following, each codeword representing a positive integer in an
adaptive universal code begins with an identification pattern of
0’s and 1’s of fixed length, which uniquely specifies the suffix
of the Fibonacci code being used to construct that codeword.
Given an arbitrary list of positive integers, for coding pur-

poses this list can be subdivided into nonoverlapping intervals.
The purpose of an adaptive code is to represent all intervals
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TABLE II
FIRST 16 CODEWORDS OF CODES C(3), C(4) AND C(5).

N C(3) C(4) C(5)
1 011 0111 01111
2 0 011 0 0111 0 01111
3 1 011 1 0111 1 01111
4 00 011 00 0111 00 01111
5 01 011 01 0111 01 01111
6 10 011 10 0111 10 01111
7 11 011 11 0111 11 01111
8 000 011 000 0111 000 01111
9 001 011 001 0111 001 01111
10 010 011 010 0111 010 01111
11 100 011 011 0111 011 01111
12 101 011 100 0111 100 01111
13 110 011 101 0111 101 01111
14 111 011 110 0111 110 01111
15 0000 011 111 0111 111 01111
16 0001 011 0000 0111 0000 01111

with the same accuracy of the best pattern code for each
interval. Let C1, C2, . . . , Cs denote s pattern codes with disjoint
codebooks, i.e., such that Ci∩Cj = {φ}, i &= j, 1 ≤ i ≤ s, 1 ≤
j ≤ s.
Definition 3.1: An adaptive code A(C1, . . . , Cs), is a multi-

pattern code with a codebook consisting of subsets of
codewords of s disjoint pattern codes C1, C2, . . . , Cs, i.e.,
A(C1, . . . , Cs) ⊂ C1 ∪ C2 . . . ∪ Cs.
A specific codebook construction for A(C1, C2, . . . , Cs) is

described in subsection III-A.

A. Codebook construction rule for A(C1, . . . , Cs)

Without loss of generality, let {C1, C2, . . . , Cs} denote a set
of s disjoint pattern codes, for which l(p1) is the shortest
pattern length. The idea behind the rule for constructing the
codebook for A(C1, C2, . . . , Cs), s ≥ 2, is to select codewords
as short as possible. This rule is described as follows:

• The first codeword is represented by the binary sequence
p1 = p1p2 . . . pm1 (the shortest pattern), p1 ∈ C1.

• Except for the first codeword, other codewords are pro-
duced as follows:
1) Let i = 1.
2) Use the binary sequence q1q2 . . . qa, of length a =

)log s*, that specifies in Ci those codewords beginning
with q1q2 . . . qa.

3) Append to q1q2 . . . qa an unused shortest binary se-
quence x1x2 . . . xl, l ≥ 0, where l = 0 means a void
sequence.

4) Append to q1q2 . . . qax1x2 . . . xl the binary sequence
representing the pattern pi, thus forming a codeword
of length T = a+ l +mi from Ci.

5) Go to step 2 and continue in this manner, selecting
codewords from code Ci, as long as there are code-
words of length T in Ci. Otherwise, go to step 6.

6) Make i+ 1 → i. If i ≤ s, go to step 2. Otherwise, go
to step 7.

7) Make l + 1 → l.
8) Go to step 1.
Summarizing, the codebook construction rule for

A(C1, . . . , Cs) produces codewords X that are binary

sequences, such that one codeword has the form p1p2 . . . pmi

and the remaining codewords have the general form
q1q2 . . . qax1x2 . . . xlp1p2 . . . pmi

.
Example 3.1: Let s = 2 and let A(C1, C2) =

A(C(3), C(4)), where C(3) and C(4) denote Fibonacci codes,
as defined by Capocelli [14], with patterns p1 = 011 and
p2 = 0111, respectively. Since s = 2, it follows that
a = )log2 2* = 1, and the first digit in each codeword of
A(C(3), C(4)) identifies whether it belongs to C(3) or C(4).
Specifically, codewords in A(C(3), C(4)) that start with q1 =
0 come from C(3) and codewords that start with q1 = 1 come
from C(4). The first 16 codewords of codes C(3), C(4) and
A(C(3), C(4)) are shown in Table III, where the codewords
in A(C(3), C(4)) that came from code C(4) are written in
boldface type. By the codebook construction rule, the first
codeword in A(C(3), C(4)) is the pattern 011, and the second,
third and fourth codewords are 0011, 00011, 01011, all from
C(3), since up to length 4 there is no codeword beginning
with 1 in C(4) with a length equal to or shorter than 4. The
next codeword beginning with 0 in C(3) is 000011, of length
6, and we notice that C(4) offers 10111, which begins with 1
and has length 5, and is thus selected for A(C(3), C(4)), and
so on.
Example 3.1 serves the purpose of illustrating our construc-

tion but is by no means restricted to the Fibonacci codes
introduced by Capocelli [14]. In fact, it is important to point
out that our construction of universal adaptive codes allows the
freedom to choose any binary number to represent a pattern.
In the next section, we present a specific algorithm to

construct an adaptive universal code by selecting codewords
from two Fibonacci codes, without having to construct the
codebook for the Fibonacci component codes.

IV. CONSTRUCTING FIBONACCI ADAPTIVE UNIVERSAL
CODES

Although Definition 3.1 indicates how to combine two or
more pattern codes to produce an adaptive code, in general
this is not practical because it would imply constructing first
the pattern codes, containing possibly a long list of codewords
each, and then combing them. For that reason we present now
a procedure that produces an adaptive code without the need
for the intermediate step of constructing the component pattern
codes. As illustrated in Table I, the integer representation
provided by a single Fibonacci code is not uniformly better
than that given by another Fibonacci code over a sufficiently
large range of integers. This is also the case for other families
of universal codes, when used for integer representation. Along
the same reasoning adopted in Section III we propose the
construction of Fibonacci Adaptive Universal (FAU) codes by
combining two Fibonacci codes so that the resulting adaptive
code benefits from good properties of the component codes.
The possibility of combining more than two codes still needs
further investigation before a practical algorithm is devised.

A. Construction
For given positive integers u and v, u < v, let C(u) and

C(v) denote Fibonacci codes [14]. We now show how to
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TABLE III
THE FIRST 16 CODEWORDS OF PATTERN CODES C(3), C(4) AND ADAPTIVE CODE A(C(3), C(4)).

N C(3) C(4) A(3, 4)

1 011 0111 011
2 0 011 00111 0 011
3 1 011 10111 00 011
4 00 011 000111 01 011
5 01 011 010111 10111

6 10 011 100111 000 011
7 11 011 110111 001 011
8 000 011 0000111 010 011
9 001 011 0010111 100111

10 010 011 0100111 110111

11 100 011 0110111 0000 011
12 101 011 1000111 0001 011
13 110 011 1010111 0010 011
14 111 011 1100111 0100 011
15 0000 011 1110111 0101 011
16 0001 011 00000111 1000111

17 0010 011 00010111 1010111

18 0100 011 00100111 1100111

19 0101 011 00110111 1110111

TABLE IV
NUMBERS USED FOR CONSTRUCTING THE ADAPTIVE CODE A(3, 4) FOR k ≤ 8.

k 0 1 2 3 4 5 6 7 8

F
(2)
k 1 1 2 3 5 8 13 21 34

F
(3)
k 1 1 2 4 7 13 24 44 81

G
(3)
k 1 2 4 8 15 28 52 96 177

Sk = G
(3)
k−2 + F

(2)
k 1 1 3 5 9 16 28 49 86

Mk = Mk−1 + Sk 1 2 5 10 19 35 63 112 198
Ik 1–1 2–2 3–5 6–10 11–19 20–35 36–63 64–112 113–198

combine C(u) and C(v) to produce a FAU code, denoted by
A(C(u), C(v)), or A(u, v) for simplifying the notation.
We denote as BA(u,v)(N), BA(u,v)(N) ∈ A(u, v), the

codeword representing the positive integer N in A(u, v). Let
G

(u)
k =

∑k
i=0 F

(u)
i and let Sk = G

(u)
k−(v−u)−1 + F

(u−1)
k ,

where G
(u)
k = 0, k < 0. Let Mk = Mk−1 + Sk, for k ≥ 0,

where Mk = 0 for k < 0. Finally, let Ik denote the interval
Ik = [1 + Mk−1,Mk]. For a given positive integer N , the
associated codeword BA(u,v)(N) of the adaptive code A(u, v)
is constructed as follows.
1. If N = 1, then emit the codeword BA(u,v)(1) = 01u−1.
2. If N > 1, then find k, such that N ∈ Ik.
3. Compute Q = N −Mk−1 − 1.
4. If Q ≤ F

(u−1)
k − 1, then BA(u,v)(N) consists of the

symbol 0 followed by the binary sequence represented
by F (u−1)(Q), having length k − (u − 2). If necessary,
fill F (u−1)(Q) with zeroes on the left in order to occupy
all k − (u − 2) places. Append the suffix for codewords
from C(u).

5. If Q ≥ F
(u−1)
k , then BA(u,v)(N) consists of the sym-

bol 1 followed by the binary sequence represented by
F (v−1)(Q − F

(u−1)
k ), having length k − (v − 2). If

necessary, fill F (v−1)(Q − F
(u−1)
k ) with zeroes on the

left in order to occupy all k− (v−2) places. Append the
suffix for codewords from C(v).

Example 4.1: We describe next how to combine the Fi-
bonacci codes C(3) and C(4) to produce the FAU code

A(3, 4). For a given positive integer N , the associated code-
word of the adaptive code A(3, 4) is constructed as follows.
1. If N = 1, then emit the codeword BA(3,4)(1) = 011.
2. If N > 1, then find k, such that N ∈ Ik.
3. Compute Q = N −Mk−1 − 1.
4. IfQ ≤ F

(2)
k −1, then BA(3,4)(N) consists of the symbol 0

followed by the binary sequence represented by F (2)(Q),
having length k−1. If necessary, fill F (2)(Q) with zeroes
on the left in order to occupy all k − 1 places. Append
the suffix 011, of code C(3).

5. If Q ≥ F
(2)
k , then BA(3,4)(N) consists of the symbol 1

followed by the binary sequence represented by F (3)(Q−
F

(2)
k ), having length k − 2. If necessary, fill F (3)(Q −

F
(2)
k ) with zeroes on the left in order to occupy all k− 2
places. Append the suffix 0111, of code C(4).

Example 4.2: Continuing with Example 4.1, we consider
now generating the codeword BA(3,4)(15) representing the
integer N = 15 using code A(3, 4). Please refer to Table IV
and Table V. Since N = 15 > 1, we can start from step 2.
2. N = 15 > 1, and the value of k for which N = 15 ∈ Ik,
i.e., for which 10 < N ≤ 19, is k = 4;

3. Compute Q = N −Mk−1 − 1 = 15− 10− 1 = 4;
4. Since Q ≤ F

(2)
4 − 1, emit the symbol 0 and represent

Q as F (2)(Q) = F (2)(4) having length k − 1 = 3, i.e.,
as F (2)(4) = 101. Finally, the codeword BA(3,4)(15) =
0101 011 is produced.

Table IV shows the numbers involved in the construction
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TABLE V
DEVELOPMENT OF ADAPTIVE CODE A(3, 4).

N A(3, 4) Q

1 011 –
2 0 011 0
3 00 011 0
4 01 011 1
5 1 0111 0
6 000 011 0
7 001 011 1
8 010 011 2
9 10 0111 0
10 11 0111 1
11 0000 011 0
12 0001 011 1
13 0010 011 2
14 0100 011 3
15 0101 011 4
16 100 0111 0
17 101 0111 1
18 110 0111 2
19 111 0111 3

of A(3, 4) for k ≤ 8. Figure 1 illustrates a typical behavior
of our construction of FAU, in comparison with the respective
component codes. Notice that code A(3, 4) performs better
than code C(4) for codeword lengths t, t < 11, and performs
better than code C(3) for t ≥ 11, where NΩ(t) denotes the
number of distinct codewords with length t by scheme Ω.
Example 4.3: The numbers required for the construction of

codes A(3, 5) and A(4, 5) are presented in Tables VI and VII,
respectively, for values k ≤ 8. Codes A(3, 5) and A(4, 5) are
constructed from the combination of Fibonacci codes C(3)
and C(5), and codes C(4) and C(5), respectively, using
the general construction described in Section IV-A. Figure 2
illustrates the fact that code A(3, 5) performs better than code
C(5) for codeword lengths t, t ≤ 12, and performs better than
code C(3) for t ≥ 15.
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Fig. 1. Comparison of the number of length-t codewords for the binary
representation with Fibonacci codes C(3), C(4) and Adaptive code A(3, 4).
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Fig. 2. Comparison of the number of length-t codewords for the binary
representation with Fibonacci codes C(3), C(5) and Adaptive code A(3, 5).

V. COMMENTS AND CONCLUSIONS
In this paper we introduced Adaptive Universal codes to

represent integers by combining two or more pattern-like
codes, in particular, Fibonacci codes. This method represents
a new approach to the classic problem of the compact repre-
sentation of an arbitrary list of integers. As an application of
our construction technique, we chose Fibonacci codes as the
component codes since they showed the best individual perfor-
mance among various other codes (see Table I). As it happens
so far with all known coding constructions for the integers,
our construction is also sub-optimal in the sense that adaptive
codes are asymptotically longer than the logarithmic represen-
tation [11], [24]. However, the construction of adaptive codes
represents an interesting alternative to the problem of coding
for arbitrary symbols, represented by integers, frequently in
a compact representation, in many practical applications that
use universal codes.
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