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A Continuous-State Reinforcement Learning
Strategy for Link Adaptation in OFDM Wireless
Systems
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Abstract—Adaptive modulation and coding is a link adap- may require a great amount of memory in order to be

tation technique that exploits the knowledge of channel state stored, and they do not reflect the unique radio-frequency
information (CSI) to adapt the transmission parameters such characteristics of each device [3]

as modulation order and coding rate in order do maximize L h
the transmission throughput. Unfortunately the physical layer ~ Recently, a shift in the paradigm was proposed. The authors
transmission parameters are not optimally adjusted due to the of [4], [5] suggest the use of machine learning algorithms
changing state of the wireless channel. This paper presents aas a flexible framework to enable AMC. More specifically,

machine learning approach based on the concept of reinforcement e yse of machine learning techniques is first considered

learning and Markov Decision Processes for link adaptation . . . .

in orthogonal frequency-division multiplexing systems through in [5], Where_learmng_ _alg(_)rlthms .’:_lre envisioned to explore
adaptive modulation and coding. The proposed solution learns databases using classification algorithms. The databmﬁlw
the best modulation and coding scheme for a given signal-to- supply knowledge of past performance on packet transnmissio
noise ratio by interacting with the the radio channel on a online as a function of physical layer parameters. As expected this
and real-time fashion and, therefore, a computationally intensive approach has limited storage capacity and it requerieg@ons

training phase is not required. Simulation results show that undating of the databases during the course of wireless
the proposed technique outperforms the well-known solution P g 9

based on look-up tables for adaptive modulation and coding, N€twork operation.
and it can potentially adapt itself to distinct characteristics of In [3], [4], [6], the link adaptation is formulated as a
the environment or the receiver radio frequency front end. classification problem whose solution is obtained via the
Index Terms—Adaptive modulation and coding, continuous- k-nearest neighbors (KNN) algorithm. The authors propose
state policy improvement, link adaptation, machine learning, or- |ow dimensional feature set that enables machine learming t
thogonal frequency-division multiplexing, reinforcement learning  jncrease the accuracy of link adaptation in IEEE 802.11n sys
tems. As a drawback, the authors have proposed an heuristic
subcarrier ordering to achieve this feature set that mayaot
|. INTRODUCTION extensible to other systems or standards. Moreover the kNN
DAPTIVE modulation and coding (AMC) has been ofpproach heavily relies upon extensive trainning setedton
great interest as one alternative to increase the throughgatabases.
of wireless communication systems, especially considerin In [7] support vector machines are used to solve the
third generation (3G) and the next generation (4G) wirelegery same classification problem, while [8] uses an artificia
communication systems, for which even higher data ratesural network to deal with the link adaptation problem. The
are expected [1]. AMC exploits the knowledge of channelpplication of machine learning algorithms such as those pr
state information (CSI) to adapt the transmission pararset&iously cited, as well as other supervised learning apgresc
in order do maximize the link throughput. Currently oneely heavily on training sets and require large samples of
of the approaches used for this purpose is the consultatioput-output pairs from the function to be learned. Therefo
of look-up tables [2]. The main drawback of this strateggtatistics such as the packet error rate or the bit error rate
when considering orthogonal frequency-division multialg must be knowra priori. Moreover, their training phase occurs
(OFDM) and multiple-input multiple-output (MIMO) systemsoff-line, what makes them not well suited for learning in an
is the large error-rate variance that the tables exhibiaffixed environment of high variability as the mobile radio channel
value of low dimensional link quality metrics (LQM). Theseg~urthermore, neural networks and support vector machines
metrics are particularly difficult to devise due to sengifiv demand a computationally intensive training process [9].
of the link performance in terms of the defined metrics. Itis often impractical to obtain examples of desired bebavi
Moreover, look-up tables are not obtained in real time, thejfat are both correct and representative of all the sitnatio
Jdo P. Leite and Paulo H. P. de Carvalho are with the Microwane athat the transmlttgr might be ex.p.OSEd t(.)’ e.g.., the w!reless
Wireless System Laboratory (MWSL), Department of ElectriggiBeering, channel behavior, Impact of ampllfler nonlinearities, bator
University of Bradlia, Campus Universitrio Darcy Ribeiro, Asa Norte, CEP phase noise and other radio-frequency (RF) imperfections

709-900, P.O. Box 4386, Brasilia, DF, Brazil [10], and non-Gaussian additive noise and interference. Th
Robson D. Vieira is with Nokia Technology Institute, SCS @al, Bloco . . .. . .
F. 60. andar, CEP 70.397-900 Biliss DF, Brazil latter is of special concern for cognitive radio scenarios,
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of conventional networks due to the distinct transmission

characteristic of a cognitive terminal and a conventional 3| Agent

terminal [11]. In this situations the Gaussian assumpti@y m

not always hold [12]. In this sense, the techniques prelyous State | | Reward Action
mentioned are infeasible for on-line learning. This sutges

that other approaches should be considered. Environment |-

Reinforcement Learning and Markov Decision Processes
have recently attracted some attention to research in the
communications field, specially in the context of cognitive
radios. Instead of learning from examples provided by an

external supervisor, learning is here accomplished bycdyre and its relation with the reinforcement learning problem.

interacting with the environment. In this context, we prspo In Section IV the proposed algorithm for continuous-state

a reinforcement learning (RL) ap_proqch to dea_l W'th_th%inforcement learning is presented. Section V is devoted t
AMC problem. An external supervisor is not required, sinc

. . . . ) . ﬁresent the simulation results, and finally Section VI pnese
the interactions \{wth the environment prov.|de the Iearn]négome concluding remarks.
examples. By using past experiences obtained in real time,
an agent can learn the best modulation and coding schemes
to be used given the state of the channel and making minimal
assumptions about the operating environment. The decisionWe consider an OFDM system model based on the com-
of choosing a modulation and coding scheme is treated aghanication procedures of wireless standards such as Third-
Markov Decision Process whose objective is to maximize tigeneration Partnership Project (3GPP) Long Term Evolution
spectral efficiency of the system. (LTE) and Worldwide Interoperability for Microwave Access

In this paper, our contributions are: the modeling of adapti (WIMAX). The transmission is done on a packet-basis. A
modulation and coding as a k-armed bandit problem whose §yclic redundancy check (CRC) field is attached to every
lution is based on Markov Decision Processes and its solutiBacket before it is convolutionaly coded. The length of tite b
using a continuous-state reinforcement learning approaezh Stream is chosen so that data can be completely transmitted
the best of the authors knowledge, this formulation for theithin the transmission time interval. The modulation is
AMC problem has not been presented yet. uniform in the sense that every subcarrier is modulated with

Some considerations are required: we have opted for the same M-QAM constel_lat_ion for egch transmitted frame. An
approach based on a continuum of states. Since the s@ggquate guard interval is inserted in each and every OFDM
of the environment is described by the signal-to-noiseoratiSympol so that intersymbol interference (ISI) can be elated
determining the best partitioning of the state space can Bethe receiver side. _
problematical. Since the AMC thresholds are not known e assume that the channel may vary considerably between
a priori, a coarse discretization of the state space méjfferent OFDM symbols depending on the correlation of
lead to throughput loss in a specific region of operatioffding between two successively transmitted symbol, but it
A fine discretization leads to a very large number of stat€9€s not vary within one OFDM symbol (quasi-static block
that must be dealt by the algorithm. This trade-off is ndgding model). At the receiver, the signal is equalized giin
present in the continuous-state reinforcement learningreM 2€ro-forcing (ZF) equalizer and the data is decoded usiag th
over, in order to allow real time operation, this paper psgs Viterbi algorithm. Specific details will be given in Sectidh
a modification of the known On-line Least-Squares Policy
Iteration algorithm (LSPI) [13]. The performance of our I1l. REINFORCEMENTLEARNING THEORY

approach is then compared with the classical approach &f 100 The basic framework for reinforcement learning (RL) prob-
up tables. Simulations show that the reinforcement learifems is shown in Fig. 1. Aragentinteracts with the en-
technique can lead to throughput gains in scenarios Wiftonment by selecting actions to take and then perceiving
colored interference or uncompensated RF imperfections. the effects of those actions. This effects are translatéal in

It is important to remind that the main purpose of the paper new state and a reward signal. The objective of the agent
is not to investigate feature extraction to obtain optirdizeis to maximize some measure over the rewards [14]. Unlike
link quality metrics for link adaptation, like the techn&wf supervised learning, the agent must learn from experiences
subcarrier ordering based on post-processing signabigen generated by interacting with the environment.
ratio (SNR) presented in [4] (although this might a critical In our system, we are interested in maximizing the through-
issue in OFDM systems). Instead, we are concerned maiplyt for a given state of the environment — determined by the
with an on-line approach for AMC in order to not depenghean (SNR) value over all subcarriers in an OFDM symbol
on off-line training obtained from extensive simulatiorfd¢fte — by selecting the modulation order and the convolutional
physical layer for each modulation and coding rate. coding rate. In practice there is only a finite set of admissib

The remainder of this paper is organized as follows: Secticombinations between modulation order and coding rate.
Il describes briefly the OFDM system model. Section llIEvery pair of this set is considered an action. The transmitt
presents in detail the theory of Markov Decision Processsslects the best modulation and coding scheme just before

Fig. 1: Reinforcement learning interaction.

Il. SYSTEM MODEL
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each packet transmission. Since we do not discretize tlgeeran

of SNR values, the problem is classified as continuous-state V*(s) =V (s)

reinforcement learning. In the next sections we formallze t = max V™ (s),Vs € S @)

RL framework using the theory of Markov Decision Processes 4

(MDP), over which the solutions will be constructed. A more convenient way to characterize policies is by using

the state-action value function (Q-function) instead d& Yk
function. The Q-function denotes how good is to perform

_actiona when in states [9]. It gives the return obtained when,

Reinforcement learning problems can be formalized USiRGarting on a given state, the agent takes a given action and
the theory of Markov Decision Processes [15]. Initially St i ihen follows the policyr thereafter. It is defined as
assumed that the environment is a finite-state, discnete-ti

stochastic dynamic system. Latter a continuous-statesixte )
will be presented. Q" (s,a) =E {Z’ytrt|st_0 =5, ap—o = a} (3)
A Markov Decision Process is defined as a 4-tuple t=0

(S, A, P, R), where [13] Using the fact that the environment is described by a

o S ={s1,52,...s,} denotes the set of possible states arkovian transition model, (3) can be expressed as
that describe the dynamics of the environment;

e A = {ai,as,...a,} is the finite set ofm possible

A. Markov Decision Processes

actions that an agent may choose; Q" (s,a) = E{ro|si=o = s, at=0 = a}
e P:SxAxS — [0;1] is a Markovian transition model, s
whereP (s, a, ') is the probability of making a transition +E {Zﬁtﬂst—o = 5,01=0 = a}
to states’ € S when taking actior: € A in states € S; t=1
e R : §SxAxS — Ris a reward function, where — Z P(s,a,s')R(s,a,s")
R (s,a,s") represents the immediate payoff of the envi- oS (4)
ronment for the transition from to s’ when taking action )
a. +~E {Z 7t7“t+1\8t:0 = 8,01=0 = a}
It is common to express the transition function as t=0
P(s,a,s") = Pr(sip1 =58t =s,a; =a), where s;yq =R (s,a) + Z P(s,a,s') Q" (s',d'),
represents the state of the process at timel, s; the state oS

at time ¢t and a; the action taken after observing staie o )

The fact that there is not any time dependencyfonor R as Known as Bellman equation, indicates that the Q-function of

previously stated is due to the stationarity assumptiorhef tthe current state-action pair can be expressed in termseof th

MDP [16]. expectgd immediate reward of t.he current state-action laad t
A stationary deterministic policy defines the agent behay-Q-function of the next state-action pair.

ior and consists on a mapping from the states to the actions!t iS common to express (4) defining the Bellman operator

7 : 8 — A. The notationr (s) indicates the action that the T~ over@ (s, a) :

agent takes in state The state value of the policy, V™ (s),

also referred as as V-function, is the expected cumulative

reward that will be received while the agent follows the pgli L [Q (s,a)] = R (s,a) +~ > P(s,a,5) Q" (s,a) (5)

starting from states [9]. In the infinite horizon model, the s'€S
value of the policy is defined as: It is worthwhile to remark that for any initial value),
- successive applications @f, over ) converge to the state-
VT (s) =E thn 1) action value functionQ™ of the policy 7, since Q™ is the
prd fixed point of the Bellman operator [17]. This fact will be

) ) ) ) used when we introduce the continuous-state reinforcement
wherer; is the reward received at time instaht0 < v < learning.
1 is a discount factor for future rewards with respect to 1o optimal Q-function* (s, a), is the one that satisfies
the immediate reward. The discount factor determines t@a*(s a) = max Q7 (s, a). The B,ellr,nan’s optimality principle

importance of future rewards. A value close (tanakes the . .
P ates that a7ﬁy policy that selects at each state an actibn wi

. . t
agent consider only the current reward2 while a value closefhe largest Q-value (i.e., a greedy policy) is optimal [F8bm
1 makes the agent prize a long-term high reward. .
é4), we can write that

As might be expected, the reward depends on the stat
of the environment at timeé and the action that was taken. In
reinforcement learning problems, the objective of the adggen
to find an optimal policyr* (s) € A for eachs that maximizes
the cumulative measure of reward as defined in (1). In other
words, a policyV* must be found so that As a consequence, (2) is written as

@ () = R(5.0) +7 3 Pl )y () (6
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\%4 (s):?eaj{Q (S,(l) Qﬂ-(s,a):z(bk(s’a)wk
Y] =
= max R (s,a) + v Z P(s,a,s)V*(s) wy
e s'eS Wao (10)
- . - = [¢1(s,0) ¢ (s,a)] -

Once Q* (s,a) is known, the optimal policy can be de-
termined by taking the action with the highest value among wy
Q* (s,a) for each state € S, i.e. =o¢7 (s,a)-w

The basis functions are fixed and, in general, nonlinear
T (s) = meaj(Q* (s,a) (8) functions ofs and a. A common basis scheme is the radial
“ basis function (RBF). One advantage of radial basis funstio
When the transition model of the environment is knowrs that they only generalize locally i.e., changes in one afe
the optimal policy can be obtained by solving the system #1e state space do not affect the entire state space [14].
nonlinear equations generated in (7) using techniques asich One must select the parametavsso thatQ)™ consists on
dynamic programming [14]. a good approximation of)™. As derived in [13], [20], one
A more realistic application of reinforcement learning i¥/ay to find a good approximation is to force the approximate
when the environment model is not available. In other word®-function to be a fixed point under Bellman operator. First
we have no prior knowledge @R (s,a) and P (s,a,s’). In We write (4) in a matrix format:
such cases, exploration of the environment is required ¢éoyqu
the model. This is accomplished by algorithms such as SARSA Q" =R +1PQ” (11)
and Q-learning [19]. For illustrative purposes we desctii® \yhere Q™ and R are vectors of sizdS||.A|, and P is a
operation of the latter. Q-learning fin@* (s,a) recursively stochastic matrix of sizeS| | A| x |S||.A| that contains the
using the 4-tuples, a, s, 7), wheres and s are the states at yransjtion model of the process.
time ¢ andt + 1, a is the action taken when inandr isthe  To find an approximation for the Q-function, we start with
immediate reward due to takingat s. The updating rule is: g projected form of the Bellman equation 4 and the matrix
form (11)

Q(s.0) = Q(s,0)+a [r +ymaxQ(s'.a) = Q(s,0)| (9) 7,Q"~Q (12)

In a way similar to temporal difference learning algorithms
5], if a finite set of L sampleq(s;, a;, i, s.), i =1,2,..., L,
along with the policyr is provided, then we have all the
i éormation needed to implicitly finé in (11) and solve (12).
sing this observation and plugging (10)—(11) into (12) and
applying the definition provided in (5), (12) can be rewritte
as [13]:

whereq« is the learning rate.

As one might expect, these algorithms must balance t
need to collect informative data bgxploring novel action
choices for the given state space with the need to control
process well enough bgxploitingthe available knowledge ac-
quired so far. This is known as tlexploration vs. exploitation
dilemma[14].

As it was stated in section I, in order not to deal with the
discretization of the space of states, it is necessary teiden
a continuous-state approach to the algorithm of reinfoergm where
learning. This is done in the following subsection.

Aw = b (13)

1 L
= 13" [ (su) 6 (51,00

A=
- [¢ (siya;) p” (S;a”(‘s;))]

(14)
B. Continuous-State Reinforcement Learning

At this point we change our attention to continuous-state 4
reinforcement learning. Reinforcement learning in camnins
state-space demands function approximation to allow enti 1 E
uous states and actions without discretization. We can no b= qub(si,ai)m (15)
longer rely on a tabular representation of the Q-functiocesi i=1
this method is impractical for large (or potentially infiit  The matrices (14) and (15) can be update iteratively as the
state and action spaces. In this new framework, the exa¢h sample is drawn. This is performed by calculating
representation a)™ (s, a) is replaced by a parametric function .
approximatorQ™ (s, a) [13]. Ai =Aii1+ @ (si,a:) @ (s,a;)

A common parametrization is given by a linear combination — ¢ (s5,a;) dT (s), 7 (s5)) (16)
of [ basis functions [16], [18]: b; =b;_1 + ¢ (si,ai) 7
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The algorithm known as Leasts-Squares Temporal Diffeunlike [22], every new data is used to update the Q-function,
ence Learning for the State-Action Value Function (LSTD-(gccelerating the convergence of the method.

[13] processes a batch @f samples using (16) and solves the
linear system Algorithm 1 Modified LSPI

ALW = cL A7) 1. The current policyr is initialized randomly

When the number of samplds— oo, we haveA; — LA, 2. The matrixA and the vectoib in (13) are initialized
b, — Lb andw — w. Substituting the solution of (17) in (10), With
we obtain an approximation for the Q-function of the current A1 =6l
policy . This is known aspolicy evaluation The resulting b_1 =01
values are used for policy improvementi.e., the search for ~Whered is a small constant of ordei0=°, 1, is the
the greedy policy as defined in (8). This procedure is repeate ! > ! identity matrix and0;; is thel x 1 null vector
at the next iteration for a new batch of samples. This algorit 3- FOrt = 0:

is called LSPI (Leasts-Squares Policy Iteration) [13]. 4. The agent senses the current stgte
5. A random action; is taken with probabilitye;, and the

greedy action is taken with probability— ¢;.

IV. PROPOSED SOLUTION 6. As a result of the action, the environment might make
A. The Algorithm a transition to state,; and it generates a rewarg
7. Calculate A = ¢ (St, (Lt) d)T (St, CLt) —

In spite of the fact that LSPI is considered the highest T
level of development for policy improvement [18], one of ¢ X?Sﬁ&ff)lﬁés“ﬂ(st“))
its main drawbacks is that it improves the policy only after 9.by = by_1 + ¢ (56, a0) 7
. . - Mt t—1 ty Ut t
it runs LSTD-Q on large bath of samples to obtain an 10.W = A; b,
accurate apprommatpn for the Q-function, usually imptyi 11. Improve the policy using (s) = max ¢ (s, a) W
a quite large processing delay. On the other hand, one of acA
the main objectives of reinforcement learning is to leara tht2. End
environment and search for the optimal policy in an on-line
fashion [21], and not by processing batches of information.
On that ground we introduce a modified version of LSPI _
to evaluate the current policy using an adaptirgreedy B. Actions, States and Rewards
exploration strategy to improve the policy [19]. With this As mentioned in Section I, the set of actions consists

modification, the policy improvement can be performed o®n the admissible combinations between modulation order
line. and coding rate. The environment state is determined by the

The algorithm works as detailed in Algorithm 1. It isreceived SNR averaged over all subcarriers [2], which garie
important to observe that step 5, which is not present in tMédthin a continuum of real values.
original algorithm, implements the-greedy strategy to deal The considered reward functidis defined as the through-
with the exploration vs. exploitation dilemma, and step 1Put achieved when taking action when the environment is

searches for the greedy policy. at states, and it is given by
Since a great amount of exploration is usually requiked, )
should no approach 0 too fast. Moreover, due to the varigbili R(s,a,s") =logy (M) pa [l — PER (s,a)]  (19)

of the wireless channel, it is interesting to allow a certaiyerens. is the modulation order of action p, is the coding
degree of exploration to keep track of possible changesen e of actions and PER (s, a) is the packet error rate of the

policy. We consider the selection ef according to: action a over channel state. Since a CRC field is attached
. to every packet, the receiver can identify the packets trat a
€ = max (€f7 € ) ) (18)  received in error and the PER can be estimated directly tfirou

system measurements in a similar way to the one presented in
5%3] or [24]. This information is then used as feedback to the
transmitter adjust the most compatible modulation andrapdi
I§cheme (in terms of minimizing the PER).

wheree; < ¢; € [0;1], ¢; is a decay factor close to unity
and 7 is a constant to be chosen. On the first iterations
the algorithm, values ot, close toe; are selected — large
values ofe; lead to a more aggressive (random) exploratio
As time advancesg; decays to values closer g and the )
exploitation is more aggressive. According to (18), chogsi C- Complexity

ey # 0 always guarantees a certain amount of exploration.We briefly describe the complexity of the proposed frame-
It is important to point out that Algorithm 1 differs from thework, considering the number of complex multiplications as
version presented in [22]. Our approach is able to guaranteeomplexity metric. From Algorithm 1, the most expensive
some degree of exploration even after the convergence of thgeration involves a complexity af (l3) due to the linear
algorithm, a desirable feature in systems with high valitgbi system that must be solved (using naive approaches). Tke inn
ans temporal changes such as the wireless channel. Moreopesducts between the basis functions exhibits computaltion
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TABLE I: WINNER’s SCM Parameters. TABLE II: Modulation and Coding Schemes
Parameters Value Scheme Number (Actionm) Modulation Code Rate
Carrier frequency 2.0 GHz 1 QPSK 1/2
Mobile speed 10.8 m/s 2 QPSK 3/4
Number of antennas at Base Station 1 3 16QAM 1/2
Number of antennas at Mobile Station 1 4 16QAM 3/4
Scenario Suburban Macro 5 64QAM 2/3
Number of paths 19 6 64QAM 3/4

complexity of O (7). Hence the computational complexity ofbeforehand [27] [28]. The SNR thresholds were defined using
the algorithm is directly related to the dimension of thei®asa PER constraint 0f0%. For each simulation, it is necessary
and it is most influenced by the resolution of the linear systeto fix the packet size and the channel model.
in (13). One main disadvantage of look-up tables, besides the large
amount of memory and simulation time, it is the fact that
V. SIMULATION AND RESULTS the performance of the system depends also on the stdtistica

The performance of the proposed link adaptation scherghavior of the interference [29] and the Gaussian assompti-
using a continuous-space reinforcement learning approdée interference and Gaussian noise can be modeled aghavin
was evaluated through simulations and compared with tBesingle Gaussian distribution) may not hold [12]. Cleatligi

performance of look-up tables under several scenarios.  impractical to generate data to predict all possible sitnat
This same observation is valid for supervised-learninggla

approaches.

In a practical situation, the SNR thresholds are adjusted by
. and using long-term data collected from the radio interfac
roughly bgseq on those foqnd in 3GPP-LTE stan_dard. T ]. This approach requires not only some expertise from
transmission is performed in a 10 MHz bandwidth. Th e operator but it also does not guarantee to maximize the

system operates in a frequency-division duplexing faShI%’roughput since a lot of different scenarios are taken into

(FI;E)), n th|clh a rédlohfrangfe IS 1Qm§;‘ I%ngdgntd (;onltatlns ! count to obtain reasonable values to be used as thresholds
sublrames of ms. =ach subirame 1 dvided In'o < SI07S, afyg might lead to too optimistic or too pessimistic modiaat

of which carrying 6 OFDM symbols. The subcarrier spacin : :

is fixed at 15 kHz, and the cyclic prefix length was chose%nd coding schemes selection.
to be 1/16 of the OFDM symbol duration (approximately
4.6 us). The transmission is performed on basis of resourfe Reinforcement Learning Approach

blocks, defined as 6 OFDM symbols in the time domain andwe applied the modified LSPI in a set éf= 5 basis

12 subcarriers in the frequency domain. The transmitter afighctions for each of the 6 actions to approximate the value

the receiver are assumed to have single antennas. The sgtfétion. The basis were given by a constant term and 4 radial
allowable combinations of modulation and coding given iBasjs functions. For an actian

Table 1l. The forward error correction (FEC) is implemented

A. System Parameters
For simulation purposes, the transmission aspects

through convolutional coding with the coding rates of 1/3 2 1

or 3/4. The encoder consists of 1/2 rate coder with generator 1 6_%

[133,171] (in octal), and subsequent puncturing process to Vomro?

obtain 2/3 or 3/4 rate. ¢ (s,a) = : (20)
In order to perform more realistic simulations, a time- 1 'Js_,%)z

varying multipath channel has been considered. The chosen \/ﬁe 207

channel model is the Spatial Channel Model (SCM), which ] )

generates channel coefficients based on 3GPP channel m¥f¥re the location parameteys;, ..., are the centroids

specifications [25], as implemented by the scripts providgd ©f the radial functions, equally spaced over the suppost
WINNER SCM [26]. The parameters values are detailed iV 2 < 40. The square scale parameter was chosert as 2

Table | and they were used in all simulations, unless inditat[13]- The set of possible actions are the = 6 modulation
otherwise. and coding combinations given in Table II. The discountdact

was set iny = 0.65. To allow the exploration, we have set

B, Look-to Tables er = 0.05, ¢, = 0.95 and 7 = 0.01. These choices will be
. p justified latter.

The technique known as RawBER mapping [2] was used
to generate the look-up tables used for AMC link adaptation.
In RawBER mapping, the LQM is found by averaging oveP- Results
all the probability of uncoded bit errors at each subcarrier Fig. 2 shows the average spectral efficiency and packet error
The link between RawBER and PER is a regression generatatk as a function of the SNR. Since the reinforcement lagrni

by simulations in the AWGN channel, which can be preparebproach was applied under the same circumstances that the
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(a) Spectral Efficiency Fig. 3: Influence of the discount factey on the convergence of the RL
algorithm fore; = 0.95 andey = 0.05.
10°
= = = Look-up Table _ the immediate rewards and according to (16), the updats step
- Reinforcement Learning of the matrices are smaller, justifying the larger number of
w o frames to converge.
g 0% Fig. 4 shows the effect of the tunning values of thgreedy
« exploration strategy on the convergence of the reinforecgme
o . . . . .
= learning approach. As one can observe in Fig. 4(a), it is
g interesting to start the algorithm with an aggressive exgtion
§ 1072 strategy. Performing this way, the algorithm can learnefast
what actions are suitable for each one of the states, ingplyin
in a faster convergence. As shown in Fig. 4(b), there is not a
significant difference in the behavior of the algorithm foet
o 5 10 15 20 25 30 35 40 values ofe;. A larger value ofe; is only appealing in a high
Average SNR (dB) variability scenario, where tracking capabilities areiczdse
(b) Packet Error Rate (at the cost of not properly exploiting the optimal policyhis

situation will be considered later in this paper.
e At e e oieireciooty Fig: 8 shows the average spectral eficiency and packet error
SCenario. rate of both approaches considering a scenario where colore

interference is presented. This interference is compoded o

thermal noise (AWGN) and a second OFDM interference
look-up table was obtained and uses the same link qualihose signal format is similar to the one found in 3GPP-
metric, they perform exactly the same. The main differendd E standard and whose power is three times higher than the
is that the reinforcement learning technique operatesnen-lwhite noise variance. Except for very low or very high values
and there is no need of an expert (teacher) or extensimksignal to interference-plus-noise ratio (SINR), theseai
simulations over different scenarios. The best modulatiott gap of performance between the considered techniques. This
coding scheme is selected by a non exhaustive trial adifference can be larger than 1 bps/Hz depending on the SINR
error procedure, requiring little programming effort fgiseem  region. Here one of the problems of look-up tables (as well
training. as other supervised learning approaches) is exposed: it can

Fig. 3 and Fig. 4 consider the effect of some tunninge very difficult to obtain the proper data through simulatio

parameters on convergence behavior of the algorithm. Timeorder to construct the tables or train the algorithms esinc
mean square error (MSE) was calculated considering ttiey would depend on specific characteristics of the intierde
throughput difference observed between the current ingatovsignal. On the other hand, the proposed reinforcementitearn
policy (after the transmission of a given frame) and theropti scheme was able to learn from the environment, keeping the
modulation and coding for a given SNR. This result wagacket error rate under0%. This fact is further confirmed
averaged over all the observed states. As shown in Fig.i8,Fig. 6. It shows a second scenario of colored interference
the higher the discount factor, the faster the convergenceTais time, the interfering signal is composed of thermabkgoi
a cost of a higher MSE. As expected, a low value for thend an OFDM signal whose power is eight times higher than
discount factor implies a myopic behavior since it valuesenothe white noise variance. On the region of moderate values
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Fig. 4: Influence of the initial¢;) and final valuesdy) of e-greedy exploration Fig. 5: Average spectral efficiency and packet error rate hef look-up

probabilities on the convergence of the RL algorithm kegpjn= 0.65. table and the reinforcement learning technique under therbah macrocell
scenario and colored interference. The interference pinhree times higher
than the white noise variance.

of SINR, we have not only a gap on the troughput but also
higher values of packet error rate. time since we do not recompute the policies from scratch, but
Next we investigate the possibility of applying thewe continue the learning using the previous Q-values. Fig.
continuous-state reinforcement learning approach irmsdgos 7(b) shows how the values of PER and spectral efficiency
where the channel characteristics vary over time [3Nary in this situation. Although there is a slight increase
Fig. 7(a) shows the tracking capabilities of our adaptation the PER, this behavior is due to the performance of the
approach. We fixed the SINR value in 33 dB and th@odulation and coding scheme on the given scenario, as
interference behavior is the same as described in the previshown by previous analysis. We remark that the value of
paragraphs. During the transmission of the first 300 frameg, = 0.05 is able to provide enough exploration in this
we consider the case where only additive white Gaussiaiiuation so that a new optimal policy can be obtained.
noise is presented. From the frame 301 to the frame 500/t may seen that the convergence intervals presented so far
colored interference is presented. Its power is three timgsgggest that the proposed solution is not applicable to the
higher than the noise power. At last, for the frames frotime scale of the communication systems under study. It is
501 to 700, the interference power is eight times higher thamportant to remind that the duration of one LTE radio frame
the noise power. In the figure, the convergence time duriigy10 ms. The results show that convergence may be achieved
the transitions is emphasized (50 frames and 30 framesthin at most 5 seconds, which is very below the duration of a
respectively). The convergence after the transition in thgpical communication session. Moreover, the user equippme
scenario is considerable faster than the initial convasgenmight periodically exchange control information with thaske



JOURNAL OF COMMUNICATIONS AND INFORMATION SYSTEMS, VOL. 30, NO1, MARCH 2015. 55

4.5 0
.
41" ['= = = Look-up Table e il E
— i H &
< 35h Reinforcement Learning v | 10
I 1] —
= [an)
72} ) T
_\% 3r [] 1 -1
> ’ £
& 25¢ . i & -20
@ . 4
2 5
£ 2t ’ 1 525
[} o %]
— ¢ c
£ 15t ? ] § -30
g . =
=3 ’ -35
(] 1r ’ B
‘ 40
[ 4 -
05F /Al ] I I
Ad 45 ; ; L1 ; L ;
0 L . . . . . 0 100 200 300 400 500 600 700
0 5 10 15 20 25 30 35 40 Frame Number
Average SINR (dB)
- a) Convergence behavior
(a) Spectral Efficiency @ 9
4 107
100 ‘ ‘ : Spectral " !
= = = | ook-up Table 380 e | |
Reinforcement Learning \Efﬂmency b i : :\
» 3 6 L I.
-~ I
= LN 0 PER ‘
4 [} ~ T L 1 o
TR . N L34 N ; &
107} 2 ~ | )
Q = 32¢ 1 @
g 5 | | &8
: g | | i
= E 1 1 I.Ij
w = 2.8 | | 5
= = Fd I i) I}
% 107 5 o | 3
IS 226 [ | o
o o I | )
24 P 1
u |
22¢ Lo |
I I I
1072 i i i i i i i 9 : : | | ; | : 10°
0 5 10 15 20 25 30 35 40 0 100 200 300 400 500 600 700
Average SINR (dB) Frame Number

(b) Packet Error Rate (b) Spectral efficiency and packet error rate

Fig. 6: Average spectral efficiency and packet error rate e IDOk-Up g 7. Convergence behavior, spectral efficiency and pagker rate of the
table and the reinforcement learning technique under therbah macrocell | oinforcement learning technique under a time varying séerfar a SINR
scenario and colored interference. The interference powtiis case is eight ¢ o4 at the value of 33 dB.

times higher than the white noise variance.

of techniques based on supervised learning or the adjustmen

station and use this information to update the AMC mappimf a look-up table is almost impossible due to the great
for a specific configuration set. variety of scenarios and situation. Using the presentetinen-

Finally we consider a scenario where RF imperfectiorf§inforcement learning approach, this adaptation can e do
(phase noise and 1/Q imbalance) at the receiver side 4@ every receiver terminal.
introduced [32], both without compensation. More spedifjca
we have phase noise energy @013 rac?, random phase VI. CONCLUSION
imbalance of3° and amplitude imbalance df05. The results  In this paper, we have presented a solution to the adaptive
are shown in Fig. 8 As one can notice, an overall decreas®dulation and coding problem based on a machine learning
of spectral efficiency of the system is observed, yet the-looltamework using a continuous-state reinforcement legrnin
up table exhibits poorer performance when compared to takgorithm. In this framework, the maximization of the spatt
reinforcement learning technique. The RL approach was algificiency is treated as a Markov Process, where an unidimen-
to learn that in a high SNR region the use of a high ordsional link quality metric (the mean SNR) was used to idgntif
modulation such as 64QAM would increase the packet errtre state of the environment (the radio channel) and through
rate, decreasing the goodput. On the contrary, the look-iperactions with the environment an optimal policy, i.an
table has fixed thresholds, determined in advance in aringff-l association between the states and the actions (given by the
fashion, what does not allow it to adapt to the particulesiti different combinations of modulation and coding) was faund
of a given RF front end. It is also worthwhile to point out thaThe proposed scheme was shown appropriate for on-line and
in situations where RF imperfections are presented, the usal time applications since it does not depend on any oé-li
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Fig. 8: Average spectral efficiency and packet error rate of the look-up
table and the reinforcement learning technique under the suburban macrocell
scenario considering the presence of RF imperfections on the receiver side.

training phase. Moreover, it adapts to specific characteristics
of the environment and the receiver. The look-up tables with
fixed SNR thresholds tend to fail when applied in situations
dissimilar from those of which they were obtained.

Issues that were not mentioned and are considered for
further research is the presence of multiple antennas on the
transmitter and/or receiver side, as well as the improvement of
the dimensionality of the feature set and the use of nonuniform
QAM modulation over different subcarriers.
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