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The Bahl-Cocke-Jelinek-Raviv Algorithm Applied
to the Two-User Binary Adder Channel

Maria de Lourdes M. G. Alcoforado, Valdemar C. da Rocha Jr.

Abstract—The Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm
is a well known maximum a posteriori probability decoding
algorithm which has been proposed earlier for point to point
communication applications, employing block codes or convolu-
tional codes, and turbo codes. This paper describes an application
of the BCJR algorithm for decoding the output of a multiple
access channel called the noisy two-user binary adder channel,
in the presence of additive white Gaussian noise.

Index Terms—Error control coding, BCJR algorithm, multiple
access channel, turbo code, two-user binary adder channel.

I. I NTRODUCTION

T HE Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [1] is a
well known maximuma posteriori probability decoding

algorithm which has been proposed for point to point commu-
nication applications, employing block codes or convolutional
codes [1], and turbo codes [2]. In this paper we apply the
BCJR decoding algorithm to the two-user communication
system illustrated in Figure 1, where the channel is the two-
user binary adder channel (2-BAC) [3] with the addition of
noise. Convolutional codes are considered in the sequel but
the treatment for block codes is similar. In Figure 1 the two
sources are assumed to produce equally likely 0’s and 1’s
and the two encoders are binary convolutional encoders. For
transmission purposes the mapping0 → 1, 1 → −1 is applied
to the components inr ands to produce the vectorsv andw,
respectively, by means of the expressionsv

(l)
t = (1 − 2r

(l)
t )

andw(l)
t = (1−2s

(l)
t ), for 0 ≤ l ≤ n−1, wherev(l)t , r

(l)
t , w

(l)
t

and s
(l)
t denote components of the vectorsv, r, w and s,

respectively. In the noiseless case the 2-BAC outputyt, at time
t, is just the arithmetic sum of the binary inputsvt andwt,
i.e., yt = vt + wt ∈ {−2, 0, 2}, while in the noisy caseyt =
vt+wt+qt and the noisy 2-BAC output behaviour is described
by the conditional probabilityP (yt|vtwt), whereqt denotes a
sample of a time-discrete noise process which here we assume
to be additive white Gaussian noise (AWGN). In Figure 1,
consider for each user a binary ratek/n convolutional encoder,
wherek andn are positive integers andk < n. For simplicity
we assume each encoder has overall constraint lengthkν and
can be implemented byk shift registers, each of lengthν.
Let u = uN

1 = {u1, u2, . . . , ut, . . . , uN} and d = dN
1 =

{d1, d2, . . . , dt, . . . , dN} denote input binary data sequences
of lengthN from users 1 and 2, respectively. Letr = rN1 =
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{r1, r2, . . . , rt, . . . , rN} ands = sN1 = {s1, s2, . . . , st, . . . , sN}
denote binary(0, 1) encoder output sequences for users 1
and 2, respectively, wherert = (r

(0)
t , r

(1)
t , . . . , r

(n−1)
t ) and

st = (s
(0)
t , s

(1)
t , . . . , s

(n−1)
t ) denote the output subblocks as-

sociated with information blocksut = (u
(0)
t , u

(1)
t , . . . , u

(k−1)
t )

anddt = (d
(0)
t , d

(1)
t , . . . , d

(k−1)
t ), respectively.
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Fig. 1. Two-user communication system, where the channel isa noisy two-
user binary adder channel (2-BAC).

In order to use error-correcting codes in a noisy 2-BAC
and avoid the well known ambiguity resulting from the input
pairs (ut = 0, dt = 1) and (ut = 1, dt = 0), a construction
was proposed in [4] which employs the same error-correcting
code in systematic form, for both users in Figure 1, in a
serial concatenation with noiseless 2-BAC codes. However,
the construction described in [4] still leads to a form of
ambiguity expressed as the conditional probability equality
P{ut = 0, dt = 1|y} = P{ut = 1, dt = 0|y}, which forbids
the decoder of separating the symbols sent by each user in
the 2-BAC at time instantt, except for the trivial cases, i.e.,
whereut = dt. For this reason henceforth we consider always
distinct turbo codes for user 1 and user 2, respectively. It
follows that the potential ambiguity resulting from the input
pairs (ut = 0, dt = 1) and (ut = 1, dt = 0) will be resolved
by a joint decoder most of the time. The use of distinct codes
thus allows both the correction of errors due to noise and the
correction of errors due to the interference between users.

II. T WO-USER TRELLIS CONSTRUCTION

Because the 2-BAC is defined in terms of input pairs, at
any time interval the decoder must consider pairs of paths,
one from each single-user trellis. The a posteriori probabilities
of single paths are not defined, however, the a posteriori
probabilities of path pairs are defined. This leads immediately
to the concept of a two-user trellis [5]. The two-user trellis is
defined such that, at any given time slot, each distinct pair
of paths, one through each single-user trellis, corresponds
to a unique path through the two-user trellis, each branch
of the two-user trellis corresponds to a pair of branches,
one in each single-user trellis, and each state of the two-
user trellis corresponds to a pair of states, one in each
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Λ2i+j,t = log

∑

m

∑

m′ P{ut = i, dt = j, σt = m,σt−1 = m′, yt−1
1 , yt, yNt+1}

∑

m

∑

m′ P{ut = 0, dt = 0, σt = m,σt−1 = m′, yt−1
1 , yt, yNt+1}

. (1)

Λ2i+j,t = log

∑

m

∑

m′ P{yNt+1|σt = m}P{σt−1 = m′, yt−1
1 }P{ut = i, dt = j, σt = m, yt|σt−1 = m′}

∑

m

∑

m′ P{yNt+1|σt = m}P{σt−1 = m′, yt−1
1 }P{ut = 0, dt = 0, σt = m, yt|σt−1 = m′}

. (2)

single-user trellis, i.e., the two-user trellis stateσt at time
t is simply the contents of the two encoder shift registers.
Representing the state of each encoder as akν-tuple, we have
σt = (σ

(1)
t , σ

(2)
t , . . . , σ

(kν)
t , σ

(kν+1)
t , . . . , σ

(2kν)
t ).

The decoder task is to discover which path along the two-
user trellis is the most likely. If each single-user trellishas
Li states,i ∈ {1, 2}, then the two-user trellis will haveL1L2

states.
Let v + w = x = xN

1 = {x1, x2, . . . , xt, . . . , xN} denote a
ternary (−2, 0, 2) sequence of sub-blocks through the two-
user trellis or, equivalently, letx denote the output of the
noiseless 2-BAC, wherext = (x

(0)
t , x

(1)
t , . . . x

(n−1)
t ) and

x
(l)
t = v

(l)
t +w

(l)
t , 0 ≤ l ≤ n− 1. The noisy 2-BAC output is

the received vectory = yN1 = {y1, y2, . . . , yt, . . . , yN}, where
yt = (y

(0)
t , y

(1)
t , . . . , y

(n−1)
t ), y

(l)
t = x

(l)
t + q

(l)
t , 0 ≤ l ≤ n−1.

Example 1: Suppose that recursive rate1/2 convolutional
codes with encoders 1 and 2 in Figure 1 have, respectively,
transfer function matricesG1(D) = [1 1/(1 +D)] and
G2(D) = [1 D/(1 +D)]. Each single-user trellis has two-
states and the two-user trellis has four states as shown in
Figure 2. The branch labels in Figure 2 mean values of
ut, dt/x

(0)
t x

(1)
t , for example,1, 1/ − 2 + 2 connecting states

01 and 10 means that(u2, d2) = (1, 1) and (x
(0)
2 , x

(1)
2 ) =

(−2,+2).
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Fig. 2. Two-user trellis using rate1/2 convolutional codes with transfer func-
tion matricesG1(D) = [1 1/(1 +D)] andG2(D) = [1 D/(1 +D)].

III. BCJR DECODING FOR THE2-BAC

The decoding problem for the noisy 2-BAC for a long time
was left aside and the main goal in code construction for the 2-
BAC has been in most cases just to achieve high rates. Perhaps
the most serious difficulty for the practical use of the 2-BAC
model has been precisely the decoding problem. In the sequel
for simplicity we will consider systematic convolutional codes

of rate1/n, and will writePt(i, j) to mean the joint probability
P{ut = i, dt = j} at time slott, and will write Pt(i, j|y) to
mean thea posteriori probabilityP{ut = i, dt = j|y} at time
slot t given the received vectory. We employ the two-user
trellis [5], as described earlier, and compute the log-likelihood
ratios Λ1(ut, dt), Λ2(ut, dt) and Λ3(ut, dt) associated with
each decoded information pair(ut, dt), defined as follows.

Λ1(ut, dt) = log[Pt(0, 1|y)/Pt(0, 0|y)], (3)

Λ2(ut, dt) = log[Pt(1, 0|y)/Pt(0, 0|y)], (4)

Λ3(ut, dt) = log[Pt(1, 1|y)/Pt(0, 0|y)]. (5)

For simplifying notation we will denoteΛ1(ut, dt), Λ2(ut, dt)
andΛ3(ut, dt) by Λ1,t,Λ2,t andΛ3,t, respectively. For1 ≤
t ≤ N the decoder makes a decision on(ut, dt) by comparing
the P{ut = i, dt = j|y}, i ∈ {0, 1}, j ∈ {0, 1}, as follows.
Make ût = u and d̂t = d, if Pt(u, d| y) ≥ Pt(i, j| y), i 6=
u, j 6= d; whereu ∈ {0, 1}, d ∈ {0, 1}. Let σt denote the two-
user trellis state at time slott and letM denote the number
of distinct trellis states, i.e., let#{σt} = M . Let λi,j

t (m) =
P{ut = i, dt = j, σt = m|yN1 } or, equivalently, let

λi,j
t (m) =

P{ut = i, dt = j, σt = m, yN1 }
P{yN1 } . (6)

The a posteriori probability of a decoded data pair(ut, dt),
denoted asP{ut = i, dt = j|yN1 }, can be expressed in terms
of λi,j

t (m) asP{ut = i, dt = j|yN1 } =
∑M−1

m=0 λi,j
t (m), i ∈

{0, 1}, j ∈ {0, 1}, and thus equalities (3), (4) and (5) can be
written as follows.

Λ2i+j,t = log

∑M−1
m=0 λi,j

t (m)
∑M−1

m=0 λ0,0
t (m)

, (7)

where (i, j) ∈ {(0, 1), (1, 0), (1, 1)}. From (6) and (7) it
follows the equation (1).

By taking into account that events after timet are not
influenced by observationyt1 and the pair of bits(ut, dt) if
stateσt is known, it follows that (1) can be written as the
equation (2).

Following [1], let us introduce the probability functions
αt(m), βt(m) andγi,j(yt,m

′,m) as follows.

αt(m) = P{σt = m|yt1}, (8)

βt(m) =
P{yNt+1|σt = m}

P{yNt+1|yt1}
, (9)

γi,j(yt,m
′,m) = P{ut = i, dt = j, σt = m, yt|σt−1 = m′}.

(10)

Now we can express (2) in terms ofαt(m), βt(m) and
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γi,j(yt,m
′,m) as follows.

Λ2i+j,t = log

∑

m

∑

m′ γi,j(yt,m
′,m)αt−1(m

′)βt(m)
∑

m

∑

m′ γ0,0(yt,m′,m)αt−1(m′)βt(m)
,

(11)
where (i, j) ∈ {(0, 1), (1, 0), (1, 1)}, and αt(m) can be
recursively calculated [2], for1 ≤ t ≤ N , from γi,j(yt,m

′,m)
as

αt(m) =

∑

m′

∑1
i=0 γi,j(yt,m

′,m)αt−1(m
′)

∑

m

∑

m′

∑1
i=0 γi,j(yt,m

′,m)αt−1(m′)
. (12)

Considering that fort = 0 the initial state for the two-user
trellis is σ0 = 0, we have the boundary conditions

α0(0) = 1 andα0(m) = 0, for m 6= 0. (13)

Similarly, βt(m) can be recursively calculated fort =
1, 2, . . . , N − 1 as

βt(m) =

∑

m′

∑1
i=0 γi,j(yt+1,m,m′)βt+1(m

′)
∑

m

∑

m′

∑1
i=0 γi,j(yt+1,m

′,m)αt(m′)
. (14)

The appropriate boundary conditions, when we haveσN = 0
are

βN (0) = 1 andβN (m) = 0, for m 6= 0. (15)

However, since not always the encoder reaches the state
σN = 0, the following conditions can be used

βN (0) = 1/M andβN (m) = 0, for m 6= 0. (16)

From (10) it follows thatγi,j(yt,m
′,m) = P{σt = m|σt−1 =

m′}P{yt|ut = i, dt = j, σt = m,σt−1 = m′}P{ut =
i, dt = j|σt = m,σt−1 = m′}, where Pr{σt = m|σk−1 =
m′} denotes thestate transition probabilities of the two-user
trellis, defined by the encoder input statistics. We assume
that Pt(0, 0) = Pt(1, 0) = Pt(0, 1) = Pt(1, 1) = 1/4,
and since there are four possible transitions from each trel-
lis state we assume thatP{σt = m|σk−1 = m′} =
1/4 for each of these transitions;P{yt|ut = i, dt =
j, σt = m,σt−1 = m′} denotes thetransition probabili-
ties of the time-discrete Gaussian memoryless 2-BAC which
we write as P{yt|ut = i, dt = j, σt = m,σt−1 =

m′} = P{yt|xt}, where P{yt|xt} =
∏n−1

l=0 P{y(l)t |x(l)
t },

and P{y(l)t |x(l)
t } = (σ

√
2π)−1 exp

[

−(y
(l)
t − x

(l)
t )2/2σ2

]

;

P{ut = i, dt = j|σt = m,σt−1 = m′) is equal to either0 or
1. It follows thatP{y(l)t |x(l)

t = a} = P{r(l)t |u(l)
t = i, d

(l)
t =

j} = (σ
√
2π)−1 exp

[

−(y
(l)
t − a)2/2σ2

]

, where a = 2 if

(i, j) = (0, 0), a = 0 if either (i, j) = (0, 1) or (i, j) = (1, 0),
anda = −2 if (i, j) = (1, 1).
Let Bi,j

t denote the set of transitionsσt−1 = m′ → σt = m
that are caused by the input pairut = i, dt = j. We can further
expressγi,j(yt,m

′,m) as (17).
where x

(l)
t,i,j denotes the sub-block through the two-user

trellis associated with the transitionσt−1 = m′ → σt = m
and inputsut = i and dt = j. From (11) and (17) we can
rewrite (3), (4) and (5) in a compact form as (18).

We can now outline the operation of the BCJR decoder:

1) Initialise α0(m) andβN (m) according to (13) and (15)
or (16);

2) As soon as yt is received the decoder computes
γi,j(yt,m

′,m) using (17) andαt(m) using (12). The
obtained values ofαt(m) are stored for allt andm;

3) After the complete sequenceyN1 is received, the decoder
computes recursivelyβt(m) using (14). When theβt(m)
have been computed they are multiplied by the appropri-
ate αt(m) and γi,j(yt,m

′,m) to obtain (18) and make
decisions on(ût, d̂t).

We refer the reader to [6] where some performance curves are
presented for the BCJR algorithm applied to a turbo coding
system for the noisy 2-BAC.

IV. T URBO DECODING

Let (C1, C2) denote a pair of turbo convolutional codes
associated with user 1 (encoder 1) and user 2 (encoder 2) of
a 2-BAC, respectively, as illustrated in Figure 1.

Suppose the encoder forC1 employs the turbo code cons-
truction of Berrou et al. [2]. It follows that the encoder for
C1 consists of the parallel concatenation of two systematic
recursive binary convolutional codes,C−

1 and C
|
1, not ne-

cessarily identical. The respective inputs for both component
encoders use the same information bitsut, however in di-
fferent order due to the use of an interleaver in one of the
encoders. Similarly, the encoder forC2 consists of the parallel
concatenation of two systematic recursive binary convolutional
codes,C−

2 andC
|
2, not necessarily identical. The inputs for

both component encoders use the same information bitsdt,
however in different order due to the use of an interleaver in
one of the encoders, which must be identical to the interleaver
employed forC1. The transmission rate ofC1 is assumed to
be equal to that ofC2. Without loss of essential generality,
assume that each systematic recursive encoder has asymptotic
rate1/n.

Example 2: Let C−
1 and C

|
1 denote two binary recursive

systematic rate1/2 convolutional codes with identical poly-
nomial generator matrices

G1(D) =

[

1
1 +D2

1 +D +D2

]

.

Similarly, let C−
2 and C

|
2 denote two binary recursive sys-

tematic rate1/2 convolutional codes with identical polynomial
generator matrices

G2(D) =

[

1
D +D2

1 +D +D2

]

.

The corresponding encoders for users 1 and 2 are illustrated
in Figure 3 and Figure 4, respectively.

The decoder employed, illustrated in Figure 5, uses iterative
turbo decoding [7] to detect the most likely pairs(ut, dt) of
binary information symbols. The iterative algorithm employed
uses the BCJR technique [1], adapted for use in the 2-
BAC [8], making use of the 2-user trellis. The log-likelihood
ratios Λ1(ut, dt), Λ2(ut, dt) and Λ3(ut, dt) associated with
the pair(ut, dt) of information symbols from users 1 and 2,
respectively, are computed using expressions (1), (2) and (3).
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γi,j(yt,m
′,m) =

{

Pt(i, j) exp
[

−∑n−1
l=0 (y

(l)
t − x

(l)
t,i,j)

2/2σ2
]

, for (m,m′) ∈ Bi,j
t .

0, otherwise.
(17)

Λ2i+j,t = log

∑

m

∑

m′ Pt(i, j) exp
[

−∑n−1
j=0 (y

(l)
t − x

(l)
t,i,j)

2/2σ2
]

αt−1(m
′)βt(m)

∑

m

∑

m′ Pt(0, 0) exp
[

−∑n−1
j=0 (y

(l)
t − x

(l)
k,0,0)

2/2σ2
]

αt−1(m′)βt(m)
. (18)

+

+ +

+

+

+ +

+

Interleaver

r
(0)

r
(2)

r
(1)

ut

ut

Fig. 3. Encoder for turbo codeC1, employing two identical polynomial

generator matrices, namely
[

1 1+D
2

1+D+D2

]

.

+

+ +

+

+

+ +

+

Interleaver

s
(0)

s
(2)

s
(1)

dt

dt

Fig. 4. Encoder for turbo codeC2, employing two identical polynomial

generator matrices, namely
[

1 D+D
2

1+D+D2

]

.

The decoder operates as follows. The input to the first BCJR
decoder, denoted by the block labeled as DEC1 in Figure 5, is
fed with the received sequencesy(0) = {y(0)1 , y(0)2 , . . . , y(0)N }
and y(1) = {y(1)1 , y(1)2 , . . . , y(1)N }, where y

(j)
t was defined

earlier. DEC1 produces the soft outputsΛ1
1(ut, dt),Λ

1
2(ut, dt)

andΛ1
3(ut, dt), which are interleaved and are used to produce

estimates of thea priori probabilities of pairs of information
sequences to be fed as inputs to the second BCJR decoder,
denoted by the block labeled as DEC2 in Figure 5. The nota-
tion Λ1

1(ut, dt), Λ
1
2(ut, dt), Λ

1
3(ut, dt) is used to indicate the

soft outputsΛ1(ut, dt),Λ2(ut, dt) and Λ3(ut, dt) associated
with DEC1, respectively. The valuesΛ1

1e(ut, dt), Λ1
2e(ut, dt)

andΛ1
3e(ut, dt) represent the extrinsic information produced

BCJR

DEC1

BCJR

DEC2

Interleaver

Deinterleaver

Deinterleaver

Interleaver

y
(0)

y
(1)

y
(2)

y
(0)

L
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L
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L
3e

1

1

1

2

2

2

L
1e

L
2e

L
3e

2

2

2

L
1

L
2

L
3

Fig. 5. Iterative turbo decoder, containing two component decoders connected
in series.

by decoder DEC1.
The input to decoder DEC2 receives the sequencesỹ(0) and

y(2) = {y(2)1 , y(2)2 , . . . , y(2)N }. The sequencẽy(0) corresponds to
the sequencey(0) interleaved. Decoder DEC2 also produces
soft outputsΛ1(ut, dt),Λ2(ut, dt) and Λ3(ut, dt), denoted
as Λ2

1(ut, dt),Λ
2
2(ut, dt) and Λ2

3(ut, dt), to indicate the fact
that they are associated with DEC2, respectively. These soft
outputs are used to improve the estimates of thea priori
probabilities of pairs of information bit sequences(ut, dt)
input to decoder DEC1. Decoder DEC2 computes the log
likelihood ratiosΛ2

1(ut, dt), Λ2
2(ut, dt) and Λ2

3(ut, dt). The
valuesΛ2

1e(ut, dt), Λ2
2e(ut, dt) andΛ2

3e(ut, dt) represent the
extrinsic information produced by decoder DEC2. Such values
depend on the redundant information supplied by the encoders
C

|
1 and C

|
2. The extrinsic information produced by decoder

DEC2 is used as an estimate of thea priori probabili-
ties to decoder DEC1. The valueŝΛ2

1e(ut, dt), Λ̂2
2e(ut, dt)

and Λ̂2
3e(ut, dt) correspond, respectively, to the values of

Λ2
1e(ut, dt), Λ2

2e(ut, dt) andΛ2
3e(ut, dt) when deinterleaved.

As mentioned inSection I, the use of identical error-
correcting codes in systematic form for both users in the 2-
BAC suffers with a form of ambiguity expressed as P{ut =
0, dt = 1|y} = P{ut = 1, dt = 0|y}. In terms of the decoder
operation this ambiguity condition is expressed, equivalently,
in terms of log likelihood ratios asΛ1(ut, dt) = Λ3(ut, dt).
The occurrence of this log likelihood ratio equality, at anytime
instantt, forbids any trellis decoder of separating the symbols
sent by each user in the 2-BAC at time instantt, except for
the trivial cases, i.e., whereut = dt.

We notice that the key point which allows the decoder used
in this paper to separate from the received noisy sequence the
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two binary sequences, one for each of the two users, is the
fact that, in general,

Λ1(ut, dt) 6= Λ3(ut, dt)

or, equivalently,

P{ut = 0, dt = 1|y} 6= P{ut = 1, dt = 0|y},
when the turbo codes for user 1 and user 2 are distinct.

V. SIMULATION RESULTS

The standard Berrou and Glavieux [2] interleaver was
employed with blocklength 512. The curves obtained, relating
the bit error probability and signal to noise ratio for user 1and
for user 2 are illustrated in Figure 6 and Figure 7, respectively.
The encoders forC−

1 = C
|
1 in Figure 6 have polynomial

generator matricesG(D) =
[

1 1+D2

1+D+D2

]

and the encoders

for C−
2 = C

|
2 in Figure 7 have polynomial generator matrices

G(D) =
[

1 D+D2

1+D+D2

]

. The two curves labeled “Without
Turbo”, one in Figure 6 and one in Figure 7, are obtained
when the decoder recovers the binary data for each user by
running the received sequencey through DEC 1 only once.
As expected, when iterative turbo decoding is employed this
construction shows a significant performance improvement
with respect to the no-iterations (without turbo) case, with
a gain of approximately3dB for a bit error probability of
approximately10−2 by using2 iterations, for both users.
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Fig. 6. Bit error rate for user 1, for a rate1/3 turbo convolutional code with
polynomial generator matrix[1 (1 +D2)/(1 +D +D2)].

VI. CONCLUSIONS

The advantage of this construction, employing distinct turbo
codes, one for each user, comes from the possibility of directly
separating the binary data for each of the two users at the
receiver by using the BCJR [1] iterative decoding algorithm
applied to the received sequencey and the corresponding 2-
BAC trellis. In [9] the problem of designing good low density
parity-check codes (LDPC) is addressed, for the Gaussian
multiple access channel. However long codes are not attractive
for some practical cases due to loss of synchronization. In
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Fig. 7. Bit error rate for user 2, for a rate1/3 turbo convolutional code with
polynomial generator matrix[1 (D +D2)/(1 +D +D2)].

these cases, short codes are desirable. Recently [10], LDPC
codes have been investigated for the 2-BAC and the 3-BAC by
means of computer simulation and the results for the 2-BAC
are comparable to those presented here.

The complexity analysis of the BCJR algorithm for the 2-
BAC produces essentially similar results to those given in [1],
i.e., the algorithm requires large storage and considerable com-
putation, being practical only for short constraint lengths and
short subblock lengths. All the values ofαt(m) must be stored,
which requires roughlyτ22kν storage locations. The storage
size grows exponentially with constraint length and linearly
with block length. The number of computations in determining
the αt(m) (or βt(m)) for each t are M22k multiplications
andM additions of22k numbers each. The computation of
the γt(m

′,m) is quite simple and [1] suggests using a table
lookup. Computingλt(m) requiresM multiplications for each
t and computing thea posteriori probability of the input digits
requireskM/2 additions.
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cola Politécnica, Recife, Brazil, and in 1976 he
received the Ph.D. degree in Electronics from the
University of Kent at Canterbury, U.K. He joined
the faculty of the Federal University of Pernambuco,
Recife, Brazil, in 1976 as an Associate Professor
and founded its Electrical Engineering Postgraduate
Programme. He served as Department Chair (1992-

1996), and in 1993 he became Professor of Telecommunications.
He was editor for Coding Theory and Techniques, Journal of Commu-

nication and Information Systems, co-sponsored by the Brazilian Telecom-
munications Society and the IEEE Communications Society, and has been a
reviewer for a number of scientific journals including IET Electronics Letters,
IET Communications and IEEE Transactions on Information Theory. He has
also been involved in the organization of conferences in Brazil and abroad.

He is a founder (2002) and past President (2002-2004) of the IEEE
Information Theory Society Chapter, Brazil Council. He is founder (2003)
and Vice-President for two consecutive terms (2003-2011) of the Institute
for Advanced Studies in Communications. He is a founding member (1983)
of the Brazilian Telecommunications Society, served as Vice-President for
two terms (2000-2004) and as President also for two terms (2004-2008). He
joined the IEEE Communications Society in 1977 and the IEEE Information
Theory Society in 1981. He is a Member (1982) of the BrazilianSociety of
Applied and Computational Mathematics, and a Fellow (1992)of the Institute
of Mathematics and its Applications, UK.

During 1990-1992, he was a Guest Professor at the Swiss Federal Institute
of Technology-Zurich, Institute for Signal and Information Processing. In
2005-2006 he was a Visiting Professor at the Institute of Integrated Infor-
mation Systems, University of Leeds, UK, and in 2007 he was a Visiting
Professor at the Department of Communication Systems, Lancaster University,
UK.

Prof. da Rocha research interests are in applied digital information theory,
including error-correcting codes and cryptography. He haspublished over 100
engineering and scientific papers, including journal and conference papers, and
the book Communication Systems, by Springer, 2005, in co-authorship.


