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Optimized Subvector Processing in Split Vector
Quantization

Miguel Arjona Ramı́rez

Abstract— Split vector quantization (SVQ) is efficient but
suboptimal. Here a renormalization process is proposed for
intraframe splitting and joining of subvectors, which integrates
gracefully with trained interframe prediction. Renormali zation
increases the availability of codevectors for the quantization
of each subvector in ordered vectors such as the line spectral
frequency (LSF) vectors. For 16-dimensional LSF vectors from
wideband speech, renormalized SVQ (RSVQ) is shown to achieve
a savings of 4 bit/frame over standard SVQ, reaching transparent
coding at 42 bit/frame. Further, predictive RSVQ saves an addi-
tional 4 bit/frame for transparent coding down to 38 bit/fra me.

Index Terms— split vector quantization, line spectral frequen-
cies, vector prediction, speech analysis, speech coding.

I. I NTRODUCTION

SPLIT vector quantization overcomes the curse of dimen-
sionality inherent in vector quantization by splitting the

vector into lower-dimensional subvectors. It is particularly
efficient when the distortion measure used for quantizationis
separable. In particular, it is widely used for the quantization of
line spectral frequency (LSF) vectors that represent the short-
term spectral envelope of speech signals [1].

However, an amount of suboptimality remains that is re-
ferred to as the split loss [2]. It may be partially counteracted
by classified vector quantization (VQ) [3] and by combining
split VQ with multistage VQ [4].

In a different approach, a method is proposed that increases
the availability of usable codevectors in the split codebooks
when the vectors are ordered. An important case are the LSF
vectors. In particular, wideband speech is used here to extract
them.

The method consists of two actions. First, in the training or
in the encoding phase, the bandwidth for the current split is
normalized to cover the range defined by the previously coded
LSFs in the neighboring splits. Second, the band spanned by
the codevectors in the split is renormalized to close the gap
between the left and right neighboring splits in the vector to
be decoded. Previously, for narrowband speech, normalization
of LSF vectors has been used per se [5] or combined with
classified VQ [6].

Still, the performance may be improved by predictive
RSVQ (renormalized SVQ), which introduces interframe cod-
ing along with the inherent intraframe coding in RSVQ. This
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further enhances the decrease in split loss provided by renor-
malization as explained in Section IV, which is followed by
the results in training and performance evaluation in Section V
right before the conclusion. Before that, RSVQ is describedin
Section III following the discussion about distortion measures
in Section II.

II. D ISTORTION MEASURES AND VECTOR PARTITIONING

The log spectral distortion (SD) is the most usual measure
of distortion for assessing the quantization performance for pa-
rameter vectors that represent the spectral envelope of speech
signals. This is due to its correlation with human perception,
at least within the distortion range covered by usual rate range,
and to the transparent coding rules set forth by Paliwal and
Atal in their introduction of SVQ [1] for narrowband speech,
which essentially state for transparent quantization that

1) The mean SD is about 1 dB.
2) There is no outlier exceeding 4 dB in SD.
3) The number of outliers having SD in the range from

2 dB to 4 dB is less than 2%.

Later, these criteria were verified to hold for wideband speech
as well [3].

For LSF vectorsf andf̃ with synthesis filters having power
spectral densities (PSDs)P (f) andP̃ (f), respectively, the SD
is defined by

DS

(

f , f̃
)

=

√

∫ 1

0

(

10 log10 P (f) − 10 log10 P̃ (f)
)2

df,

(1)
wheref is the cycle frequency in cycle/sample.

However, Eq. (1) is too complex to be used for designing
the codebook in the training phase of the quantizer and even
on encoding and decoding because the full-dimension LSF
vector is needed for computing its PDF. Besides, particularly
for SVQ, a separable distortion measure contributes to an
initial decrease in split loss. In general, a weighted Euclidean
distance is used instead. In particular, we use the following
dynamically weighted square measure [1]

d
(

f , f̃
)

=
(

f − f̃
)T

W
(

f − f̃
)

(2)

whereW is the diagonal weighting matrix with main diagonal
entries

wii = P r (fi) (3)

for i = 1, 2, . . . , p, where p is the dimension of the LSF
vectors andP r (fi) stands for therth power of the PSD at
frequencyfi. The exponent of the PSD is set tor = 0.3.
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For split VQ, LSF vectorf = {fi}
p
i=1

is partitioned as

f =
[

ϕT
1 ϕT

2 · · · ϕT
ς

]T
,

where ς is the number of partitions or splits and theith
subvector consists of

ϕi =
[

fδi
fδi+1 · · · fδi+Di−1

]T
(4)

with initial LSF index δi and dimensionDi. Overall, the
beginning and end boundaries areδ1 = 1 andδς +Dς−1 = p.

Likewise, the reconstructed LSF vector̃f =
{

f̃i

}p

i=1

is
partitioned as

f̃ =
[

ϕ̃T
1 ϕ̃T

2 · · · ϕ̃T
ς

]T
,

where the reconstructed subvector for theith split after split
vector quantizing with theith codebook is

ϕ̃i =
[

f̃δi
f̃δi+1 · · · f̃δi+Di−1

]T
(5)

Now it is observed that the distortion measure in Eq. (2) is
separable in split components, that is,

d
(

f , f̃
)

=

ς
∑

i=1

di (ϕi, ϕ̃i) , (6)

where the distortion component due to theith subvector is

di (ϕi, ϕ̃i) =

δi+Di−1
∑

j=δi

wjj

(

fj − f̃j

)2

. (7)

III. R ENORMALIZATION OF SUBVECTORS

Renormalization enables a major reduction in split loss. As
shown in Section II, by using a separable distortion measure,
some amount of split loss is prevented from the outset. This
means that there is no information about split loss in the
cumulative split distortion that we can use in order to reduce
the split loss any further.

Nonetheless, as we can see from the distribution of LSF
vectors in the training database shown in Fig. 5, presented
in Section V, the bands spanned by nearby splits overlap
considerably, sometimes reaching the second neighbor.

Based on the observation above, it is postulated that much of
the split loss originates when the effective size of the codebook
is reduced by the enforcement of the stability relations

0 < f̃1 < f̃2 < · · · < f̃p−1 < f̃p < 1/2 (8)

which exclude from the search the split codevectors that do
not obey them. For instance, when coding theith subvector,
only those codevectors are considered for which it holds that

fδi
> f̃δi−1, (9)

that is, the lowest LSF in the split must be greater than the
highest quantized LSF in the previous split.

One possibility for normalization of theith split is to set
its lower band edge to the quantized value of the largest LSF
coefficient in the lower split of the current framem in the
training database, or of the frame to be encoded, as

fiL(m) = f̃δi−1(m), (10)

and letfiU = 1/2 be the upper band edge. We will call this
version of RSVQ the sequential RSVQ and it is represented
in Fig. 1, which indicates that the original lower band edge
is mapped to the normalized zero frequency and the Nyquist
frequency is mapped to the normalized unity frequency. Next,
keeping the relative positions within the split band, the LSF
subvector to be quantized in theith split is normalized as

f ′

j(m) =
fj(m) − fiL(m)

fiU − fiL(m)
(11)

for j = δi, δi + 1, . . . , δi + Di − 1. Then, the normalized
subvectorϕ′

i(m) is quantized asϕ̃′

i(m), selected from the
codebook for theith split.
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Fig. 1. Normalization as performed by sequential RSVQ at theith split.

In the decoding phase, as shown in Fig. 2, theith subvector
is reinserted by mapping the normalized zero frequency to the
lower band edge set by the highest frequency in the next lower
split and by mapping the normalized unity frequency to the
Nyquist frequency. More specifically, the lower band edge for
renormalization of the LSF subvectorϕi(m) is identical to
the highest quantized LSF in the preceding split of the same
LSF vector and is set as

f̃iL(m) = f̃δi−1(m) (12)

to be used for the renormalization that generates the quantized
subvectorϕ̃i(m) as

f̃j(m) =
(

fiU − f̃iL(m)
)

f̃ ′

j(m) + f̃iL(m) (13)

for j = δi, δi + 1, . . . , δi + Di − 1.
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Fig. 2. Renormalization as performed by sequential RSVQ at the ith split.

Another sequencing order for normalization is used in inter-
laced RSVQ, which is anchored in the two splits neighboring
the one under quantization as shown in Fig. 3, mapping the
original lower band edge to the zero frequency and the original
upper band edge to the unity frequency. More specifically, the
lower band edge for theith split is determined by Eq. (10),
similarly to the sequential case, and the upper band edge is
set as

fiU (m) = f̃δi+1
(m), (14)
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that is, the upper edge is the lowest LSF value in the following
split.
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Fig. 3. Normalization as performed by interlaced RSVQ at theith split.

Now, renormalizations in the decoding phase use the same
assignment for the lower band edge of theith split in themth
frame as described by Eq. (12), but the upper band edge now
is adaptive and set by

f̃iU (m) = f̃δi+1
(m) (15)

to be used in the renormalization of the selected codevector
ϕ̃′

i(m) according to

f̃j(m) = (fiU (m) − fiL(m)) f̃ ′

j(m) + fiL(m) (16)

for j = δi, δi +1, . . . , δi +Di−1. Naturally, both the(i−1)th
and the(i + 1)th split must have been quantized first with
standard SVQ.

In an experiment reported in Section V, the sequential
version is found to be superior to the interlaced one by a
small margin.

IV. PREDICTIVE SPLIT QUANTIZATION

Nearby frames share a considerable amount of correlation
that may be removed by a linear predictor. In fact, a linear
predictor can remove covariance if the mean subvector is
subtracted. We use the mean subvectorϕi for the training
database to get the centered subvectorsνi(m) = ϕ(m) − ϕ

for splits i = 1, 2, . . . , ς.
Now, for the centered subvectors, autocorrelation coeffi-

cients are enough for prediction. A first-order vector-valued
moving-average predictor is used around the subvector quan-
tizer as shown in Fig. 4, whereαi is the scalar prediction
coefficient,ν̃i(m) is the reconstructed centered subvector for
themth frame,ri(m) is the prediction residual subvector and
r̃i(m) is the codevector selected by the split vector quantizer.
Finally, the reconstructed LSF subvector is found by restoring
the mean subvector as

ϕ̃i(m) = ν̃i(m) + ϕi. (17)

In predictive RSVQ, the vector processing in the quantizer-
predictor loop works in much the same way as for standard
SVQ except for the subvectors to be quantized, which are the
normalized subvectorsϕ′

i(m) instead of the original subvec-
tors ϕi(m).

Given the structure drawn in Fig. 4, starting from the
corresponding memoryless quantizer, the prediction coefficient

Q(.)

−

+

+

νi(m)

ν̂i(m)

ri(m) r̃i(m)

ν̃i(m)αiz
−1

Fig. 4. First-order predictive vector quantizer for centered subvectors in the
ith split.

αi is adjusted iteratively by minimizing the norm square of
the residual vector

ri(m) = νi(m) − αν̃i(m − 1) (18)

over theN frames in the training database. This leads to the
prediction coefficient estimate

αi =
Rν̃iν̃i

(1)

Rν̃iν̃i
(0)

(19)

by means of the correlation coefficients, which are computed
as

Rν̃iνi
(1) =

Di
∑

j=1

N−2
∑

m=0

ν̃ij(m)νij(m + 1) (20)

Rν̃iν̃i
(0) =

Di
∑

j=1

N−2
∑

m=0

ν̃2
ij(m), (21)

whereN is the number of frames in the training database,Di

is theith split dimension and the centered subvector in theith
split is represented in terms of its entries as

ν̃i =
[

ν̃i1 ν̃i2 · · · ν̃i,Di

]T
. (22)

In training sessions reported in Section V, the split predic-
tion coefficients have converged to values lying between 0.8
and 0.9.

V. QUANTIZER TRAINING AND EVALUATION

The designs and tests reported here used the TIMIT speech
database[7]. The speech signals were segmented with asym-
metric Hamming windows at a rate of 50 Hz using the 3GPP
AMR wideband coder [8] to provide the linear prediction
coefficients used to obtain the LSF vectors. Then the training
partition, having 705,580 frames, was used for design and
the test partition with 257,852 frames was assigned to the
quantization tests.

A preliminary test was performed to find out which of the
two sequences of split quantization performs better. The test
was performed at 46 bit/frame with (9,10,9,9,9) bit/split for
the 5 splits having dimensions (3,3,3,3,4), respectively,with
results displayed in Table I. Both RSVQ versions perform
considerably better than SVQ but the sequential RSVQ version
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TABLE I

COMPARISON AMONG SEQUENTIAL AND INTERLACEDRSVQAND

STANDARD SVQ FOR 16-DIMENSIONAL LSF VECTORS IN

(3,3,3,3,4)-DIMENSIONAL SPLITS AT A RATE OF46 BIT /FRAME,

INCLUDING MEAN LOG SPECTRAL DISTORTION AND TWO CLASSES OF

OUTLIERS.

Algorithm Mean Outliers
SD 2 – 4 dB > 4 dB

(dB) (%) (ppm)
Standard SVQ 0.924 0.46 0
Sequential RSVQ 0.821 0.22 0
Interlaced RSVQ 0.837 0.22 0
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Fig. 5. Marginal density functions for endpoints in splits 1through 5 over
the training partition of the database.

is found to be slightly better than interlaced RSVQ. So it was
chosen for the following tests.

The distributions in the training database of the LSF values
at the endpoints of the splits are shown superimposed in Fig.5,
where the overlapping is seen to be significant.

The tests involving memoryless quantizers covered the
range of rates from 40 bit/frame to 46 bit/frame using the
same dimensional splitting above and a summary of their
results is shown in Tables II and III. It is noted that SVQ
performs transparently from 46 bit/frame upwards since the
number of outliers> 4 dB is nonzero for the rate just below.
On the other hand, for RSVQ transparent coding extends
down to 42 bit/frame since the mean SD rises above 1 dB
at 41 bit/frame. Therefore, RSVQ saves 4 bit/frame over SVQ
for memoryless quantizers.

For predictive quantizers, the results are presented in Ta-
bles IV and V, where a decrease of around 0.3 dB in mean
SD can be observed at 46 bit/frame due to the predictor.

Transparent coding starts at 41 bit/frame for predictive
SVQ and at 38 bit/frame for predictive RSVQ since out-
liers above 4 dB make their appearance when the rate is
decreased by 1 bit/frame in both cases. Therefore, prediction
saves 5 bit/frame for SVQ and makes the savings for RSVQ
reach 8 bit/frame. It is further observed that the 38 bit/frame

TABLE II

PERFORMANCE OF STANDARD SPLIT VECTOR QUANTIZATION FOR

16-DIMENSIONAL LSF VECTORS IN (3,3,3,3,4)-DIMENSIONAL SPLITS,

INCLUDING MEAN LOG SPECTRAL DISTORTION AND TWO CLASSES OF

OUTLIERS.

Bit rate Mean Outliers
Per frame Per split SD 2 – 4 dB > 4 dB
(bit/frame) (bit/split) (dB) (%) (ppm)

40 (8,8,8,8,8) 1.175 2.55 19
41 (8,9,8,8,8) 1.127 1.92 19
42 (8,9,9,8,8) 1.072 1.15 40
43 (8,9,9,9,8) 1.046 1.09 40
44 (9,9,9,9,8) 1.019 1.01 40
45 (9,9,9,9,9) 0.962 0.59 40
46 (9,10,9,9,9) 0.924 0.46 0

TABLE III

PERFORMANCE OF RENORMALIZED SPLIT VECTOR QUANTIZATION FOR

16-DIMENSIONAL LSF VECTORS IN (3,3,3,3,4)-DIMENSIONAL SPLITS,

INCLUDING MEAN LOG SPECTRAL DISTORTION AND TWO CLASSES OF

OUTLIERS.

Bit rate Mean Outliers
Per frame Per split SD 2 – 4 dB > 4 dB
(bit/frame) (bit/split) (dB) (%) (ppm)

40 (8,8,8,8,8) 1.047 1.29 0
41 (8,9,8,8,8) 1.003 0.96 0
42 (8,9,9,8,8) 0.968 0.75 0
43 (8,9,9,9,8) 0.938 0.59 0
44 (9,9,9,9,8) 0.907 0.51 0
45 (9,9,9,9,9) 0.855 0.26 0
46 (9,10,9,9,9) 0.821 0.22 0

transparent coding threshold for predictive RSVQ lies just
3 bit/frame above the informal lower bound derived in [3].

VI. CONCLUSION

Split vector quantization is the most efficient suboptimal
method when used in isolation, particularly for LSF memory-
less vector quantization. A renormalization process has been
proposed for wideband LSF SVQ which reduces its split loss
by an amount of 4 bit/frame as measured by the transparent
coding threshold rate. Further, one-step predictive VQ hasbeen
used and proven capable of reducing the transparent coding

TABLE IV

PERFORMANCE OF PREDICTIVE STANDARDSVQ FOR 16-DIMENSIONAL

LSF VECTORS IN (3,3,3,3,4)-DIMENSIONAL SPLITS, INCLUDING MEAN

LOG SPECTRAL DISTORTION AND TWO CLASSES OF OUTLIERS.

Bit rate Mean Outliers
Per frame Per split SD 2 – 4 dB > 4 dB
(bit/frame) (bit/split) (dB) (ppm) (ppm)

39 (8,8,8,8,7) 0.829 3021 23
40 (8,8,8,8,8) 0.778 1703 16
41 (8,9,8,8,8) 0.745 1288 0
42 (8,9,9,8,8) 0.723 981 0
43 (8,9,9,9,8) 0.702 803 0
46 (9,10,9,9,9) 0.616 244 0
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TABLE V

PERFORMANCE OF PREDICTIVERSVQFOR 16-DIMENSIONAL LSF

VECTORS IN (3,3,3,3,4)-DIMENSIONAL SPLITS, INCLUDING MEAN LOG

SPECTRAL DISTORTION AND TWO CLASSES OF OUTLIERS.

Bit rate Mean Outliers
Per frame Per split SD 2 – 4 dB > 4 dB
(bit/frame) (bit/split) (dB) (ppm) (ppm)

37 (7,8,8,7,7) 0.796 2145 4
38 (7,8,8,8,7) 0.768 1869 0
39 (8,8,8,8,7) 0.740 1555 0
40 (8,8,8,8,8) 0.697 756 0
46 (9,10,9,9,9) 0.544 101 0

threshold by an additional 4 bit/frame, reaching transparent
coding at 38 bit/frame.
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