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Performance Evaluation of a Joint Precoding and
Channel Prediction scheme for Multiuser MIMO
OFDM Systems in Time Varying Wireless Channel

Jaao P. Leite, Paulo H. P. de Carvalho, and Robson D. Vieira

Abstract—Multiple-input, multiple-output (MIMO) communi- traditional MIMO systems, provided that channel state infor-
cations have attracted considerable attention in the last years. In mation (CSI) is available at the transmitter [2]-[4]. By means
particular, multiuser MIMO (MU MIMO) systems are able ©0 4t hrecoding, the spatial properties of the channel can be
offer higher link capacity of MIMO systems as long as channel loited and th i interf b itigated [3
state information (CSI) is available at the transmitter, so that the eXP 9' € arl € muitiuser inter ergnce can be mitigated [3].
spatial properties of the channel can be exploited by precoding. This is particularly true for the downlink or broadcast channel,
However, the time varying nature of the channel may cause in which it is possible to achieve interference suppression
CSl to be outdated, thus degrading the overall performance and therefore users can receive their data symbols free from
of the system. Within this context, channel prediction can my,1tiyser interference without any coordination among them.

provide up-to-date channel CSI and reduce the performance . . ) ;
loss. This paper presents a channel predictor based on the set-TW0 different approaches have been studied [5]: the first one,

membership partial update affine projection (SM-PUAP) filtering  based on linear precoding and processing, is considered one
as way to compensate the outdated CSI caused by the temporalof the most promising approaches due to its simplicity [6].

variations of the communication channel in a multiuser MIMO  The second one, based on nonlinear precoding techniques, was
OFDM (orthogonal frequency division multiplexing) system. A inspired by the Dirty Paper Coding (DPC) concept and can

realistic standardized channel model is considered to evaluate hi th it . f the MIMO broad t ch |
the predictor and its influence on the broadcast channel of a achieve the capacity region of the roadcast channe

multiuser MIMO scenario. The performance of the predictor is  [7], [8]. The major example of the first category of precoding
also compared to the well-known adaptive algorithm recursive techniques is the zero-forcing precoding [9], whereas the
least squares (RLS). Simulation results show that the SM-PUAP yector perturbation precoding [10] is an example of the second
predictor has lower computatl_onal cost_and superior performance category. In either case, channel state information (CSI) must
when compared to the classical algorithm. be available at the transmitter.

Index Terms—Adaptive filters, broadcast channel, channel  The transmitter can obtain CS| from two schemes: in
prediction, multiuser multiple-input multiple-output communi- — g04 ency.-division duplexing (FDD), a feedback from the
cations, orthogonal frequency division multiplexing, time-varying . . . . ’ .
channels. receiver is used, since uplink and downlink channels are
uncorrelated. In time-division duplexing (TDD), the trans-
mitter can obtain CSI using the reciprocal property of the
o ) _channel [11]. In either case, due to system constraints, such
O RTHOGONAL  frequency division — multiplexing a5 the time-varying nature of the mobile wireless channel,

' (OFDM) and systems with multiple antennas, Ogcheduling algorithms and feedback delay, the CSI may be
multiple-input, multiple-output  (MIMO), are consideredyigated, and this mismatch can severely degrade the data
essential techniques for the next generation cellular systeMge and the performance of the system. In this manner,
also rgferred to as 4G (fourth generqtign), considering the faghk channel response needs to be predicted far ahead for
that high data rates and spectral efficiency are expected eygfhple transmission and to explore full capabilities offered
for high mobility users [1]. Using a cyclic prefix extension oi)y multiuser MIMO systems [12].
the transmitted symbol, OFDM mitigates the influence of the |, this paper, it is presented a multiuser MIMO OFDM
multipath propagation and channel selectivity, eliminating thg,3nnel prediction scheme based on the concept of set-
inter-symbol interference (ISI). Multiple-input multipIe—output,m:}mbership partial update affine projection filtering (SM-
te.chniques are capable of increasing the capacity qf a SyStp[Ilep) as a way to compensate the outdated CSI caused
without the need to allocate extra bandwidth, since they the temporal variations of the communication channel.
provide new degrees of freedom to be explored in the spatigli membership filtering algorithms can achieve fast rate of
dimension. . . ~ convergence due to the adaptive step size for each update and

MIMO techniques applied to multiuser communicationgey present reduced update rate from its data selective nature,
(known as multiuser MIMO, or MU MIMO) have beenpegides low misadjustment after convergence, since the new
attracting conS|dera_1t_)Ie attentlon_. They are of_ partlcuIar_mtere?r,crbut data will not be used unless innovation is implied. This
due to the capability of offering higher link capacity offeatyre is particularly attractive if unnecessary computation
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To the best of our knowledge, although precoding [14],
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[16] and adaptive filtering have already been addressed i H, - .
the literature, and in particular the use of the set-membershi Y S ser !
algorithm for channel prediction, as exposed in [13], the#; | 1

NS
issues of realistic models for outdated CSlI, including a time- : 157 - N/
varying channel model and feedback delay, have not ye "—:—-— Precoding }J N
been fully considered. Different from [13], a partial update - ! ’
version of the algorithm is investigated in this paper. Moreover, | . . ’
the effect of channel prediction on precoding techniques ha'x ;: . N -
| Lo
|

_ ! ) _ N
been also not yet considered in the literature. Based on thi _____________' N
exposition, the main contribution of this work is to propose N, antennas User K

the application of the SM-PUAP algorithm as an adaptive  Base Station
MIMO channel predictor. The proposed prediction scheme is
based on a parallel single-input, single-output (SISO) channe
decomposition approach [17].

In summary, the main contributions of our work are as
follows:

« Modification of the prediction algorithm proposed inusers, each one with a single receive antenna. There is also
[13]. More precisely, we present a version based anfeedback channel that allows users to send channel state
the concept of partial update of the coefficients of thimformation to the base station, providing it with the means
adaptive prediction filter; required to precode the information symbols and thus it can

« The proposal of a prediction architecture based on tléiminate the multiuser interference.
decomposition of the MIMO channel into several SISO Let ug(n,2?) be the complex modulated symbol to be
channels in order to reduce the complexity of joint MUransmitted to thek-th user on theZ?-th subcarrier of the
MIMO channel prediction; n-th OFDM symbol. Precoding ook(n, ) is carried out to

« Performance evaluation of the SM-PUAP and RLS chaobtain the precoded symbagi(n, &2). The signal received by
nel predictors on a realistic channel model, the 3GRRek-th user at theZ-th subcarrier of tha-th OFDM symbol,
(Third Generation Partnership Project) Spatial Channéénoted byr(n, £2), can be represented as follows:

Model;

« Performance evaluation of the joint operation of both r(n, 22) = Hy(n, 2)Wy(n, 2)u(n, 2)
channel precoding schemes and channel prediction algo- K
rithms. + Y Hi(n, Z)Wi(n, 2)ui(n, 2) + z(n, 2)

In order to address all the issues previously mentioned, };ﬁ 1)

a reallstlp channel. model and delayed feedback, in addition —H(n, 2)W(n, 2)u(n, 2) +z(n, 2)

to realistic simulations based on the 3GPP LTE (Long Term
Evolution) standard, are taken into account when analyzing =Hn,2)X(n.2) +z(n 2),

the performance of two well-know precoding schemes: zertor k=1,...,K and 2 =1,... ,Npgr.

forcing precoding (ZF) and vector perturbation precoding In (1), z(n, 2?) is a component of additive white Gaussian
(VP). The performance of the proposed predictor is themise of zero mean and variance of. The 1x Ny channel
compared to the RLS algorithm by means of simulations. Thector between the base station and kit user is given by
proposed predictor has superior performance when compared

to the classical algorithm. Unlike other predictors proposed in He(n, 2) = [H{1(n,2) ... Hf (0 2)], (2
the literature [14]-[16], it does not rely on the knowledge
channel correlation or the choice of step size.

F_or that matter, this paper is organized as following (_je- H(n, 2) = [HI(n,@) H-|K—(n’<@)]T’ 3)

scribed: In Section I, the MIMO OFDM system model is

presented. The proposed prediction scheme is presentedfl theNr x Nr matrix

Section 1ll. Section IV contains the simulation results and

Section V presents the concluding remarks. W(n,2)=[Wi(n,2) ... Wk(n,2)] “4)
Notation We adopted the following conventiofi:)", ()™, represents global precoding matrix.

(-)" denote transpose, Hermitian transpose, and conjugateThe complex information symbol vector is given by
respectively.(-)Jr refers to the Moore-Penrose pseudo-inverse,

I represents the identity matriX, represents the null vector u(n, ) = [ul(n,@) uK(n,@)]T, (5)
and ||-|| denotes the 2-norm, given Hiy||? = vHv.

Feedback channel
Fig. 1: MIMO broadcast channel.

Olfhe combinedK x Nt channel matrix is

and

Il. SYSTEM MODEL

We consider the downlink of a multiuser MIMO OFDM
system withNpgt subcarriers. A block diagram is shown in
Fig. 1. There is a common base station with antennas = [Wi(n2) ... Wk(n2)] :
transmitting different symbols on each subcarrietal Ny uk (n, )

ui(n, &) ©)
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is the precoded symbol vector. It is important to notice thaxponential complexity inNt [19], [20]. Unlike the zero-
according to (1) the precoding is performed on a subcarrier Harcing precoding, the vector perturbation precoding is capable
sis. Moreover, we assume that the channel frequency respoofeachieving the capacity region of the broadcast channel.
may vary considerably between different OFDM symbols, but
it does not vary within one OFDM symbol. We also assume I1l. THE PREDICTION SCHEME
that an adequate guard interval is inserted in each and everyrom the exposed so far, updated channel state information
OFDM symbol so ISI can be eliminated [18]. is required in order to perform the precoding of the information
Although (6) was obtained using a linear precoding scherggmbols. When CSI is not present at the transmitter, it is not
(since it can be written as a product of matrices), the modsbssible to perform precoding, as can be seen from (7) and
is easily extended to nonlinear precoding schemes. For t{@. Furthermore, if imperfect CSl is present at the transmitter,
matter, one has to consider that the precoded symbol veat®s interference suppression cannot be accomplished, leading
is given byx(n, &) =f(u(n,2?)), wheref is a function (not to severe degradation on the performance of the system.
necessarily linear) of the symbol vector This issue will be further addressed on Section IV, where
Next, a few precoding schemes for the downlink of mukimulation results will be shown. Due to the time-varying
tiuser MIMO systems are reviewed. More specifically, ongature of the wireless channel, CSI might be outdated at the
linear precoding technique and one nonlinear precoding te¢hansmitter. To provide updated channel information, channel
nique are introduced. prediction must be considered.

A. Zero-forcing Precoding A. Channel Decomposition

The zero-forcing precoding, or channel inverse precoding,Béfore proceeding with the adaptive algorithm for chan-
is the simplest form of precoding and it allows the complefé€! prediction, some observations must be made. First, the
suppression of the interference originated from symbols Bfédiction of the MIMO channel will be made separately
other users [6]. At the base station, for a given instant and® €ach channel coefficient. That is, the prediction of the
given subcarrier, the information vectofn, 2) is multiplied ~C0efficients of the matrixtH(n, &) is decomposed intdr
by the pseudo-inverse of the combined channel matrix givearallel predictors, one for each channel associated with its
by (3). If the number of users is less or equal to the numb&SPective transmitting antenna [17]. Although suboptimal, this
of transmit antennas, all co-channel interference as preserfiB@roach can greatly reduce the complexity required by joint
in (1) is canceled. channel prediction schemes [17], [21]. S

Mathematically, the precoding matrix is chosen as Secondly, even though 'Fhe channel prediction is perfprmed

separately for each spatial channel, one must predict the

+ channel response for each one of the subcarriers. In practical

Wz (n, #) = (H(n,2)) (7) terms, itis extremely undesirable to use separated predictors
=H"(n,2) (H(n, 2)H (n, g))*l for each subcarrier, since their number can be of the order of

) _ ~ thousands [16]. This obstacle can be overcome using a time

Usually, x(n, &) is normalized to meet a transmissionjomain approach to carry on the prediction, as described in
power constrained. The transmitted signal is then given by[14]_ The time-varying channel Coefﬁciemgil(my), for the

values ofl = 1,...,Ny, are related tdw'{il(n,l), the channel
x(n, 2) 1 W2k (n, 2)u(n, 2) (8) impulse response, byMprT-point Discrete Fourier Transform

VIWze(n, 2)u(n, 2| (OFD):
Despite its ;lmpllmty, the_ use of the_ inverse of the combined Hfl (n,2) = 2 hlil (n,| )e7]271'9’|/NDFT7 (10)
channel matrix leads to signal-to-noise ratio (SNR) loss and =0

consequent cgpacity degradation, especially for ill-conditionGghe e the variablewas used to index the multiple paths of the
channel matrices [9]. channel impulse response, with<d < L. Lety¥, (n,I) denote

the estimated channel response for the channel coefficient
B. Vector Perturbation Precoding b (n,1).

To avoid the capacity loss generated by the channel in-Under the assumption that the coefficients of the channel

version precoding, the vector perturbation precoding wigpulse response can be statistically characterized as wide

proposed. In this precoding technique, the symbol vector §ENS€ stationary uncorrelated scattering (WSSUS), the pre-
perturbed by an integer vector as follows [10]- diction scheme consists on decomposing the channel impulse

response intd. 4+ 1 parallel single-input single-output (SISO)
_ predictors [14]. Considering that the design of an optimal
X(n, ) = (u(n, #) + 1) Wze (n, Z)u(n, 2) © prediction filter (such as the Wiener filter) requires prior
where 7 is a positive real number and is a complex knowledge of the statistics of the channel and, on the other
vector whose real and imaginary parts are integer elemerttand, the time varying characteristics of the channel may not
The optimum value of the perturbatiory is the one that always be known, an adaptive channel predictor is necessary
minimizes the norm|jx(n, 2)||>. This is an integer-lattice to perform the tracking of the nonstationary channel. Using
least-square problem, which can be solved using sphdéine above observations, we can write the prediction scheme
encoder algorithms. Nevertheless, the exact solution requieess
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A coefficient update belongs to the set formed by the @st
h(n+p,1) =wl' (n)y(n,1) ,1 =0,...,L. (11) constraint setsy?(n,l). This intersection is given by

It is important to remark that from (11) onwards, we have n-Q n
dropped the subscrip(s); ; and the superscrip@t)kto avoid an w(nl) = ﬂ H0(i,1) ﬂ (),
intricate notation. As exposed at the beginning of the section, i=1 j=n-Q+1 (15)
the prediction will be carried out for each one of the seatial
channels and by each one of the users, so thar and (-) — " n,1) N y(n,).
are implied on the formulation.

In (11), we havew, = |wy ...WM,L,]T as the vector Wheneverw,(n) ¢ yQ(n,l), we state the following opti-
of the predictor coefficients and the vector of regressonsization criterion for updating the vector of coefficients:
y(n,1)=[y(n,1)...y(n—M+1,1)]" , which is the input of the
prediction filter. The value op is called prediction horizon, min|\w|(n+1)—w|(n)|\2

and denotes the number of OFDM symbols the channel is . T . (16)
predicted ahead. The value Bf is the number of coefficients subject toyg(n,!) =Y (n—p,hw(n+1) = 1(n),
of the filter used for channel prediction, i.e. denotes the where
number of samples that are being used to model the behavior
of the channel as an auto-regressive (AR) process. Its choice T
compromises a tradeoff between accuracy and computational Yo =M(n.1) y(n—11)...y(n=Q+1L,D]",  (17)
complexity.
The predicted channel coefficierti§n+ p, #7) are obtained
from the predicted impulse response via a DFT: Y(n—p)=[y(n-pl)...y(n—p-Q+11)],  (18)
L
H(n+p,2) =Y h(n+pe i&?/Norr - (12) y(n,1) =[n(n,1) wn0)... M)’ (19)
= The term defined in (17) contains the desired outputs from
B. Set-Membership Filtering theQ last time instants, and (19) specifies the points belonging

o _ to the sety®(n,1).
The set-membership filtering is a framework applicable to The minim(izat)ion problem in (16) can be solved using the

filtering problems that are linear in parameters. Instead method of Lagrange multipliers, and it is given by [22]:
specifying only one solution to the problem of designing the '

filter coefficients, it works by setting an upper boupdn the =

magnitude of the estimation errdin(n,1) —wf'y(n—p,|. It~ wi(n+1) =w(n)+Y(n—p,1) [Y'(n—p,HY(n—p,1)] " x

is worthwhile to say that this bound is a design parameter, [e(n1)—y"(n,1)]

usually varying with specific applications [22]. Its value is (20)

related to the desired rate of updating after convergende,e(n,l)| > v. If |e(n,1)| <y, than there is no need for an

the observation noise and the final misadjustment (after tbpdate and

convergence of the algorithm). Setting a value too small for

v might lead to an empty set of feasible solutions, whereas wi(n+1) =w(n). (21)

setting a value too big might lead to inconsistent estimates. ) .

Some rules of the thumb have been suggested in the set'—n (20), the terme(nl is the prediction error vector,

membership filtering literature in order to choose this uppggpressed as

bound properly [23], [24]. _ vTin *
For a chosen bound, there are several estimates for the e(n,) =yo(nh =Y (n—p,hwi(n+1)

coefficients wi. The constraint set is defined as the set e(n,!)

containing all vectors with estimation errors whose magnitude e(n—-11) (22)

is upper-bounded by at an instant: : ’

e(n—Q+1,1)

A1) ={w e ™ h(n ) —wlly(n—p,1)| <y} (13) wheree(n—i,l),i=2,...,Q stands for thea posteriori error
at iterationn—i ande(n,l) = y(n,1) —w[* (n)y(n— p,1) is an
approximation of the prediction error at the instantVe shall
n reinforce this is an approximation since we do not have access
y(nl) =720, (14)  to the true channel responkén, ), but only to its estimation
=1 y(n,l). In most practical cases, howevgtn,|) ~ h(n,l) for
) ] o channel estimation in high SNR regime [25].
C. Set-Membership Affine Projection (SM-AP) The only requirement on the parametg(n,|) so far is
The membership set defined in (14) suggests that the updii@t it must belong to the constraint set, that|jg(n,!)| <.
of the filter coefficients may be carried on using informatioRrom the choice of (19), particular solutions for (20) can
from more than one constraint set. Using the concept of affibe obtained. For instance, the choigg,|) = 0 implies that
projection, we are going to consider the case in which thiee a posteriori error are forced to zero at the la& time

The membership set is defined as
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instants. Considering this case, the updating equation (20) wilhere CN(n,I) is the matrix defined in such a way that
be identical to the conventional affine projection algorithr@y(n,l)w;(n+1) = Cn(n,l)w;(n), and onlyN coefficients are

[23] whenevemw, (n) ¢ y(n,I). updated. This matrix can be constructed using the relation
Another simple version, used through the rest of the pap@i(n,l) = I — Cn(n,l), whereCy(n,l) is a diagonal matrix
can be obtained by choosing selecting the coefficients to be updated in the instarit has
) ) N nonzero elements equal to one placed at the positions of the
() =en—i+11),i=2....Q coefficients to be updated. These positions are the elements
A UA) ' (23)  from the sets(n,l).
n(n, )_Y\e(n7|)| It can be shown that a recursive update equation can be

Geometrically, we are minimizing the Euclidean distanc@und using the Lagrange multipliers [26]. The new rule is

|wi(n41) —w; (n)[|?> while keeping thea posteriori error .
constant at the iterations—i, i = 2,...,Q. In this case, (20) wi(n+1) =w(n)+Cn(n Y (n—p,Ry"(n,1) 29)
reduces to [22], x [e"(n,1) =y (n,1)]

where

wi(n+1) :W|(n)+Y(n—p,I)(YH(n—p,I)Y(n—p,I)y1

x a(n,1)e(n, 1)1, Ry(n.1)=YT(n—p.Cx(n.)Y(n—pl).  (30)

(24) If an update is needed, the set of indexes must be chosen
1 v i le(n.1)] in order to minimize the norm
B — e i le(n )] >y B X
a(n,l) = { o " thewise 0 @) Iwi(n+ 1) —wi(m)] = [[Ryj(n) ef ()~ n(m)] % (31)
In [27], it is stated that finding the index sef(n,l) that
1=01 O...O]T. (26) minimizes (31) is a binary integer programming and it cannot

- be solved in a computational efficient way, but some heuristics
In order to guarantee than+p,1) =y(n.1) for all values 5.0 provided. As might be expected, the choice.fn,l)

of n=0,...,p—1, the initial state of the filter is chosen to b‘?jepends on the form of the vectpn, |). If the elements of the

- vector are chosen according to (23), a very simple procedure

wi(n)=[10...0" ,n=0,...,p—1, (27)  can be formulated, as described in [26]. We first rank the
columns ofYT(n,1) according to their Euclidean norm. The

D. Set-Membership Partial Update Affine Projection (SM- N coefficients that will be update are those that multiply the
PUAP) columns ofYT(n,I) with the N larger Euclidean norms.

The partial update strategy is a very attractive way to Intuitively, as exposed in [23], it can be observed in (29)
; Ve filtari ; jthat for a fixed value of|e”(n.I)—y(n 1)||, the Euclidean
reduce the complexity of adaptive filtering algorithms. While S N ’ oeneEe
the recursion loop of a conventional algorithm adapts amstance between consecutive coefficient vectors is minimized

the filter coefficients, the partial update is a framework ifi Rn(n.1) is maximized. It seems reasonable that a natural

which N out of the M coefficients are updated (naturaIIy,ChOice for the cpefficients_tq be updated in a given instant
those that will be multiplied by the elementsYof(n,1)

N < M). This strategy is particularly appropriate due to th@® u
least-perturbation property of the affine projection algorithiith larger norms. Once the coefficients to be updated are
[23]. i.e. , the algorithm tries to reduce theosteriori error at  determined, (24) is used.

each iteration. This behavior is further enforced by assuri Computational Complexity

that only a subset of coefficients is allowed to be updated. ) ) o
The idea can also be applied on the set-membership approact1® computational complexity of the prediction step de-
reducing even further the computational costs of (21) and (2&8gribed in (12) is¢’(NrNort log; Norr +NrML), regardless

the update equations. of the adaptive algorithm. In terms of complexity, the differ-
The coefficients to be update are selected using an FfC€ between the predictors relies on the cost of updating the
dex set.7(n,1) = {lo(n,1),--- ,In_2(n,1)}, where the indexes predictor coefficients. From the results presented in [14], one

are chosen from the set of all available coefficients. THg @ble to infer that the update of RLS has a computational
optimal choice of the indexes (and consequently the co&@mplexity Of_ﬁ(NTMZL)- Considering (24), the SM-PUAP
ficients to be updated) must minimize the Euclidean norfS computation complexity at most equal &o(NrQ*ML),
\|W|(n+1)*W|(n)H2- The objective function to be minimizedthe complexity of the classical affine projection algquthm
in order to update the coefficients of the Set-Membership P&3]- Generally, the number of reus€< M, so the affine
tial Update Affine Projection is given as follows. A coefficienProjection algorithm is computationally less complex than
update is performed ifv(n) ¢ yQ(n,1), as already stated. RLS.

Mathematica"y [26]’ IV. SIMULATION RESULTS

min|jw; (N+1) —w, (n)HZ In order to evaluate the performance of the proposed channel

predictor, several simulations were performed. We considered
- y (28) a structure similar to the downlink of 3GPP LTE standard.
Yo(n,) =Y ' (n—p,Hw*(n+11) =y(n,1) Next it is presented the fundamental characteristics of the
Cn(n ) [wi(n+1) —w(n)] =0 system, the simulation scenario and the results.

subject to:
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) One radio frame, 10 ms | TABLE |: SCME Channel Parameters
I One slot, Ty = 0.5 ms I
e S0t o s I Parameter Value
I I
40 " 4 | 3 ‘ ____________ #18 #19 Carrier frequency 2 GHz
User speed 5 m/s, 30 m/s

Number of antennas at base station 4
Number of antennas at user terminal 1

) . . Scenario Urban Micro
Fig. 2: Frame structure used for simulation. Number of paths 19

|
| One subframe |
I oNE SUTREmE

1 slot
PEELLLY

7 OFDM symbols

MATLAB ® scripts used to provide samples of a multipath
channel according to the 3GPP Spatial Channel Model. The
parameter settings are shown in Table | and were used in all

—H‘H—l—— the simulations, unless indicated otherwise.
R'::smm:c Block
1 C. Smulation Results and Discussion
é & - The channel estimation was performed using the Minimum
2 § I Mean Square Error (MMSE) Estimator described in [32].
2'g The SNR was set in 20 dB and the upper boyntbr the
8= E | Reference Symbols construction of the constraint sets related to the SM-PUAP
was chosen to bg=2,/c2. This value coincides with those
! suggested in the literature [24]. The simulations consisted
! of 1000 independent runs, and the average performance is
' l I computed. In each run, 1000 OFDM symbols were transmitted.

Before proceeding with the presentation of the simulation
results, a few considerations must be made. First, as presented
in [13], the normalized least mean squares (NLMS) filtering
exhibited the worst performance among the adaptive algo-
rithms, despite its simplicity. For this reason we have excluded
to consider the NLMS in the simulations.

For simulation purposes, a 10 MHz bandwidth was con- . i .
sidered. The frame structure is similar to the one found ?Secondly, although algorithms such as QR-RLS [23] exhibit
C

; . tter numerical stability and present a low computational
3GPP LTE standard. A frame IS 10ms long and contains §st when compared to the conventional RLS, they present
subframes of 1ms, as shown in Fig. 2. Each subframe

- . . . the same performance of the conventional RLS in terms of
divided into 2 slots, each of which carrying 7 OFDM symbols - S y L
The subcarrier spacing is fixed at 15 kHz. The cyclic Ioref.Convergence rate and misadjustment in infinity precision arith

X .. .
(CP) length was chosen to be 446 [28]. Ketic. Moreover, algorithms such as FT-RLS (Fast Transversal

As one can be observe in Fig. 3, a physical resource bIoRIL'S) have lower computational complexity than RLS, but
is defined as 7 OFDM symbols in the time domain and 1 eir performance is upper bounded by RLS. For this reason,

we have considered only the performance of the classical RLS

subcarriers in the frequency domain. LTE technology uses fidtead of its reduced complexity counterparts, following the

optimized reference symbol allocation for channel estimation .
. ethodology presented in [14].
28], [29]. In the LTE the base station can have up to E{]The RLS algorithm was set withl = 10 coefficients and a

antennas and when two or more transmitter antennas ?OrF etting factork — 0.99. The SM-PUAP was set wiid — 30

applied, the reference symbols are transmitted such that tk&e fficients,Q — 3 reusable sets ar— 10 coefficients to be

are orthogonal in space. This _ortho_gonallty is obtained Iy dated in every iteration. The number of sets used for update
letting all other antennas be silent in the resource eleme - S -
a tradeoff between final misadjustment and computational

in which one antenna transmits a reference symbol [Zﬁmplexity, as stated in Section IlI-E. Several simulations were

Thesg aspects were taken into account in order to perfo{)@rformed using different values @fand it was observed that
the simulations.

the prediction mean square error (MSE) increased about 1 dB
from Q=1 to Q =05, so the choic&) = 3 seemed to be a
B. Mobile Wireless Channel Model reasonable value.

In order to perform realistic simulations a channel with For the sake of comparison, two different scenarios were
time-varying behavior has been investigated. The chosen cheonsidered: one in which the user speed is 5 m/s (low
nel model is the Spatial Channel Model Extended (SCMEyobility), and other where the user speed is 30 m/s (high
which generates channel coefficients based on 3GPP chammebility). Two prediction horizons will be considered: 1
model specifications [30]. This model considers a number @FDM symbol and 14 OFDM symbols. The choice of 14
clusters of scatterers, where each cluster corresponds teymbols is justifiable since the transmission time interval (TTI)
path (same relative delay) and each path consists of a gi@i.TE is 1 ms, or 14 OFDM symbols, as presented in Section
number of subpaths. The WINNER’s SCME [31] was a set d¥-A.

Fig. 3: Subframe structure and pilot pattern.

A. Frame Structure
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Fig. 4: Convergence behavior of the RLS adaptive predictor for a predictiéig. 6: Convergence behavior of the SM-PUAP adaptive predictor for a
horizon of 1 and 14 OFDM symbols. prediction horizon of 1 and 14 OFDM symbols and user speed of 30 m/s.
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Fig. 5: Convergence behavior of the SM-PUAP adaptive predictor for Rig. 7: Convergence behavior of the SM-PUAP and RLS adaptive predictors
prediction horizon of 1 and 14 OFDM symbols and user speed of 5 m/s. for a prediction horizon of 28 OFDM symbols and user speed of 30 m/s.

Fig. 4 shows the convergence of the RLS predictor fahe RLS counterpart. The reduced complexity is extremely
the prediction horizons of 1 OFDM symbol and also for ldiesired and important in many applications, especially when
OFDM symbols. Fig. 5 illustrates the behavior of the SMpower savings are mandatory, such as the power management
PUAP for the low mobility scenario, while Fig. 6 shows itson mobile stations. Since the SM-PUAP does not perform any
convergence for the high mobility scenario. As expected, mnecessary filter update, power can be saved. If properly
larger prediction horizon in a high mobility scenario slowgxploited, the partial update behavior can also be used to
down the convergence. The convergence of SM-PUAP wasduce the signaling required to transmit the channel state
faster than the one of the RLS, although the MSE of the latt@fformation to the transmitter, since the radio resources of the
is slightly lower in the low mobility scenario. Neverthelessieedback channel (if presented) are very scarce.
in the high mobility scenario, the SM-PUAP exhibits better |t s interesting to point out that the final MSE obtained
performance than the RLS predictor with less computationging the strategy of partial update of the set-membership
effort. One is able to infer that this occurs due to thgffine projection algorithm led to a larger prediction horizon
superiority of SM-PUAP in respect to the tracking in thishan the one reported in [13]. One possible explanation for
scenario, and such result is further reinforced the results showifs behavior is that the least-perturbation property of affine
in [13]. In low mobility scenarios, the RLS exhibits a slightly
better performance.

To address the matter of computational effort, Table I
compares the number of updates required by the channel
predictors. It shows that at every iteration, the RLS algorithm
demands coefficient updates. On the other hand, the SM-PUAP

TABLE II: Comparison between the adaptive algorithms

Algorithm Number of updates

RLS 1000
SM-PUAP (=1, 5 m/s) 20

algorithm had its coefficients updated only in 38% of the SM-PUAP p=1,30 m/s) 52
1000 iterations. Once the SM-PUAP updates do not occur SM-PUAP (p=14, S mis) 87
SM-PUAP (p=14, 30 m/s) 380

frequently, its overall complexity is much less than that of
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proje.ctlion algorithms is further reinforced by the data-selectiygy 11: performance of the RLS and SM-PUAP channel predictors using
coefficient updating (partial update) strategy. This is a vepgro-forcing precoding and 16QAM modulation.

interesting result not only due to the larger prediction horizon
that can be obtained, but also the reduced computational effort
when compared to the RLS algorithm (or even the SM-Agtandard.
[13]). As a remark, if one tries to increase the value of the Fig. 9 and Fig. 10 illustrate the behavior of the pre-
forgetting factorA of the RLS algorithm as a way to increasecoding schemes under perfect CSI and also their behavior
its convergence speed this will lead to a higher MSE, as wathen outdated CSI is used for the purposes of precoding.
as a possible instability of the algorithm. On the other hantfjore specifically, they show the performance of zero-forcing
decreasing the value @f might be helpful for larger prediction precoding and vector perturbation precoding if no predicted
horizons at the cost of convergence speed. This sensitivityaaannel information was available at the transmitter, therefore
the choice of the parameters of the algorithm is not observexisting a mismatch of 1 ms between the information that
for the SM-PUAP filtering. These results are summarized ia used for precoding and the actual channel response. As
Fig. 7, where it is shown the learning curves of both algorithn@ne can notice, even for a terminal of low mobility, the
for a prediction horizon of 28 OFDM symbols, or 2 TTI's. CSI mismatch can severely degraded the performance of the
Finally, we assess the bit error rate (BER) performance pfecoding schemes. The degradation is even worse for high
the overall MIMO OFDM system under multiuser precodingmobility terminals due to the coherence time of the channel.
Fig. 8 illustrates the block diagram of the process at eattsing the theory exposed in [33], the coherence time of the
user. The CSI at the transmitter is implemented by an explicihannel is estimated as 2.2 ms (28 OFDM symbols) for a user
closed-loop feedback. It is assumed an ideal unquantizéigeed of 5 m/s, and 0.32 ms (4 OFDM symbols) for a speed
feedback channel, and the results focus solely on the effeefs30 m/s. Clearly, the higher the mobility, the faster the CSI
of channel prediction, since any other form of feedbadxecomes outdated.
(such as a quantized or an AWGN feedback channel) will Fig. 11 shows the performance of ZF precoding when
decrease the accuracy of the prediction. The user termighbnnel prediction is considered, whereas Fig. 12 shows the
predicts the channel response and feeds the prediction via plegformance of VP precoding. As a general observation, the
feedback channel. In these simulations, the prediction horiz¥® precoding is more robust to prediction errors than the ZF
corresponds to 14 OFDM symbols, the TTI of the 3GPP LTgrecoding technique, and for values %g below 10 dB, the
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spite of this fact, the SM-PUAP predictor presented lower
computational costs when compared to the RLS predictor.
Finally, the impact of both predictors was considered in
the bit error rate performance of two well-known precoding
schemes for the downlink of multiuser MIMO systems: zero-
forcing precoding and vector perturbation precoding. For this
matter, a frame structure similar to the one found in the 3GPP
LTE standard was considered, as well as an ideal feedback
channel to provide CSI to the transmitter (base station).
First, it was shown that even for low mobility scenarios, the
performance of both precoders was severely degraded when
outdated CSI was used to carry out the precoding, presenting
the scope for the use of channel prediction. The simulation
results also showed that the predictor based on SM-PUAP
outperformed the one based on the RLS adaptive algorithm,

Fig. 12: Performance of the RLS and SM-PUAP channel predictors usiggpecially in scenarios of larger prediction horizons and higher
vector perturbation precoding and 16QAM modulation.

mobility. Moreover, it presented less computational effort than
the predictor based on RLS adaptive algorithm and it was able
to compensate the outdated CSI that would be available at the

performance of the predictors does not differ much, sincengmitter if no channel prediction was considered.
is limited by the quality of the channel estimation. Whereas

all algorithms performed similarly in scenarios where the

user speed is 5m/s, the differences between them are most
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