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Channel Prediction scheme for Multiuser MIMO

OFDM Systems in Time Varying Wireless Channel
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Abstract—Multiple-input, multiple-output (MIMO) communi-
cations have attracted considerable attention in the last years. In
particular, multiuser MIMO (MU MIMO) systems are able to
offer higher link capacity of MIMO systems as long as channel
state information (CSI) is available at the transmitter, so that the
spatial properties of the channel can be exploited by precoding.
However, the time varying nature of the channel may cause
CSI to be outdated, thus degrading the overall performance
of the system. Within this context, channel prediction can
provide up-to-date channel CSI and reduce the performance
loss. This paper presents a channel predictor based on the set-
membership partial update affine projection (SM-PUAP) filtering
as way to compensate the outdated CSI caused by the temporal
variations of the communication channel in a multiuser MIMO
OFDM (orthogonal frequency division multiplexing) system. A
realistic standardized channel model is considered to evaluate
the predictor and its influence on the broadcast channel of a
multiuser MIMO scenario. The performance of the predictor is
also compared to the well-known adaptive algorithm recursive
least squares (RLS). Simulation results show that the SM-PUAP
predictor has lower computational cost and superior performance
when compared to the classical algorithm.

Index Terms—Adaptive filters, broadcast channel, channel
prediction, multiuser multiple-input multiple-output communi-
cations, orthogonal frequency division multiplexing, time-varying
channels.

I. I NTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) and systems with multiple antennas, or

multiple-input, multiple-output (MIMO), are considered
essential techniques for the next generation cellular systems,
also referred to as 4G (fourth generation), considering the fact
that high data rates and spectral efficiency are expected even
for high mobility users [1]. Using a cyclic prefix extension of
the transmitted symbol, OFDM mitigates the influence of the
multipath propagation and channel selectivity, eliminating the
inter-symbol interference (ISI). Multiple-input multiple-output
techniques are capable of increasing the capacity of a system
without the need to allocate extra bandwidth, since they
provide new degrees of freedom to be explored in the spatial
dimension.

MIMO techniques applied to multiuser communications
(known as multiuser MIMO, or MU MIMO) have been
attracting considerable attention. They are of particular interest
due to the capability of offering higher link capacity of
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traditional MIMO systems, provided that channel state infor-
mation (CSI) is available at the transmitter [2]–[4]. By means
of precoding, the spatial properties of the channel can be
exploited and the multiuser interference can be mitigated [3].
This is particularly true for the downlink or broadcast channel,
in which it is possible to achieve interference suppression
and therefore users can receive their data symbols free from
multiuser interference without any coordination among them.
Two different approaches have been studied [5]: the first one,
based on linear precoding and processing, is considered one
of the most promising approaches due to its simplicity [6].
The second one, based on nonlinear precoding techniques, was
inspired by the Dirty Paper Coding (DPC) concept and can
achieve the capacity region of the MIMO broadcast channel
[7], [8]. The major example of the first category of precoding
techniques is the zero-forcing precoding [9], whereas the
vector perturbation precoding [10] is an example of the second
category. In either case, channel state information (CSI) must
be available at the transmitter.

The transmitter can obtain CSI from two schemes: in
frequency-division duplexing (FDD), a feedback from the
receiver is used, since uplink and downlink channels are
uncorrelated. In time-division duplexing (TDD), the trans-
mitter can obtain CSI using the reciprocal property of the
channel [11]. In either case, due to system constraints, such
as the time-varying nature of the mobile wireless channel,
scheduling algorithms and feedback delay, the CSI may be
outdated, and this mismatch can severely degrade the data
rate and the performance of the system. In this manner,
the channel response needs to be predicted far ahead for
reliable transmission and to explore full capabilities offered
by multiuser MIMO systems [12].

In this paper, it is presented a multiuser MIMO OFDM
channel prediction scheme based on the concept of set-
membership partial update affine projection filtering (SM-
PUAP) as a way to compensate the outdated CSI caused
by the temporal variations of the communication channel.
Set-membership filtering algorithms can achieve fast rate of
convergence due to the adaptive step size for each update and
they present reduced update rate from its data selective nature,
besides low misadjustment after convergence, since the new
input data will not be used unless innovation is implied. This
feature is particularly attractive if unnecessary computation
must be avoided. Using the partial update strategy, the average
computational complexity can be further reduced, since the
algorithm benefits from the strategy and also the sparse update
of the set-membership filtering.

To the best of our knowledge, although precoding [14],
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[16] and adaptive filtering have already been addressed in
the literature, and in particular the use of the set-membership
algorithm for channel prediction, as exposed in [13], the
issues of realistic models for outdated CSI, including a time-
varying channel model and feedback delay, have not yet
been fully considered. Different from [13], a partial update
version of the algorithm is investigated in this paper. Moreover,
the effect of channel prediction on precoding techniques has
been also not yet considered in the literature. Based on this
exposition, the main contribution of this work is to propose
the application of the SM-PUAP algorithm as an adaptive
MIMO channel predictor. The proposed prediction scheme is
based on a parallel single-input, single-output (SISO) channel
decomposition approach [17].

In summary, the main contributions of our work are as
follows:

• Modification of the prediction algorithm proposed in
[13]. More precisely, we present a version based on
the concept of partial update of the coefficients of the
adaptive prediction filter;

• The proposal of a prediction architecture based on the
decomposition of the MIMO channel into several SISO
channels in order to reduce the complexity of joint MU
MIMO channel prediction;

• Performance evaluation of the SM-PUAP and RLS chan-
nel predictors on a realistic channel model, the 3GPP
(Third Generation Partnership Project) Spatial Channel
Model;

• Performance evaluation of the joint operation of both
channel precoding schemes and channel prediction algo-
rithms.

In order to address all the issues previously mentioned,
a realistic channel model and delayed feedback, in addition
to realistic simulations based on the 3GPP LTE (Long Term
Evolution) standard, are taken into account when analyzing
the performance of two well-know precoding schemes: zero-
forcing precoding (ZF) and vector perturbation precoding
(VP). The performance of the proposed predictor is then
compared to the RLS algorithm by means of simulations. The
proposed predictor has superior performance when compared
to the classical algorithm. Unlike other predictors proposed in
the literature [14]–[16], it does not rely on the knowledge of
channel correlation or the choice of step size.

For that matter, this paper is organized as following de-
scribed: In Section II, the MIMO OFDM system model is
presented. The proposed prediction scheme is presented in
Section III. Section IV contains the simulation results and
Section V presents the concluding remarks.

Notation We adopted the following convention:(·)T , (·)H ,
(·)∗ denote transpose, Hermitian transpose, and conjugate,
respectively.(·)† refers to the Moore-Penrose pseudo-inverse,
I represents the identity matrix,0 represents the null vector
and‖·‖ denotes the 2-norm, given by‖v‖2 = vHv.

II. SYSTEM MODEL

We consider the downlink of a multiuser MIMO OFDM
system withNDFT subcarriers. A block diagram is shown in
Fig. 1. There is a common base station withNT antennas
transmitting different symbols on each subcarrier toK ≤ NT

Fig. 1: MIMO broadcast channel.

users, each one with a single receive antenna. There is also
a feedback channel that allows users to send channel state
information to the base station, providing it with the means
required to precode the information symbols and thus it can
eliminate the multiuser interference.

Let uk(n,P) be the complex modulated symbol to be
transmitted to thek-th user on theP-th subcarrier of the
n-th OFDM symbol. Precoding onuk(n,P) is carried out to
obtain the precoded symbolxk(n,P). The signal received by
thek-th user at theP-th subcarrier of then-th OFDM symbol,
denoted byrk(n,P), can be represented as follows:

rk(n,P) = Hk(n,P)Wk(n,P)uk(n,P)

+
K

∑
i=1
i �=k

Hk(n,P)Wi(n,P)ui(n,P)+ zk(n,P)

= H(n,P)W(n,P)u(n,P)+ zk(n,P)

= H(n,P)x(n,P)+ zk(n,P),

(1)

for k = 1, . . . ,K andP = 1, . . . ,NDFT .
In (1), zk(n,P) is a component of additive white Gaussian

noise of zero mean and variance ofσ2
z . The 1×NT channel

vector between the base station and thek-th user is given by

Hk(n,P) =
[
Hk

1,1(n,P) . . . Hk
1,NT

(n,P)
]
, (2)

the combinedK ×NT channel matrix is

H(n,P) =
[
HT

1 (n,P) . . . HT
K(n,P)

]T
, (3)

and theNT ×NT matrix

W(n,P) =
[
W1(n,P) . . . WK(n,P)

]
(4)

represents global precoding matrix.
The complex information symbol vector is given by

u(n,P) =
[
u1(n,P) . . . uK(n,P)

]T
, (5)

and

x(n,P) = W(n,P)u(n,P)

=
[
W1(n,P) . . . WK(n,P)

]



u1(n,P)
...

uK(n,P)


 (6)
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is the precoded symbol vector. It is important to notice that
according to (1) the precoding is performed on a subcarrier ba-
sis. Moreover, we assume that the channel frequency response
may vary considerably between different OFDM symbols, but
it does not vary within one OFDM symbol. We also assume
that an adequate guard interval is inserted in each and every
OFDM symbol so ISI can be eliminated [18].

Although (6) was obtained using a linear precoding scheme
(since it can be written as a product of matrices), the model
is easily extended to nonlinear precoding schemes. For this
matter, one has to consider that the precoded symbol vector
is given byx(n,P) = f (u(n,P)), wheref is a function (not
necessarily linear) of the symbol vectoru.

Next, a few precoding schemes for the downlink of mul-
tiuser MIMO systems are reviewed. More specifically, one
linear precoding technique and one nonlinear precoding tech-
nique are introduced.

A. Zero-forcing Precoding

The zero-forcing precoding, or channel inverse precoding,
is the simplest form of precoding and it allows the complete
suppression of the interference originated from symbols of
other users [6]. At the base station, for a given instant and a
given subcarrier, the information vectoru(n,P) is multiplied
by the pseudo-inverse of the combined channel matrix given
by (3). If the number of users is less or equal to the number
of transmit antennas, all co-channel interference as presented
in (1) is canceled.

Mathematically, the precoding matrix is chosen as

WZF(n,P) = (H(n,P))†

= HH(n,P)
(
H(n,P)HH(n,P)

)−1 (7)

Usually, x(n,P) is normalized to meet a transmission
power constrained. The transmitted signal is then given by

x(n,P) =
1√

‖WZF(n,P)u(n,P‖2
WZF(n,P)u(n,P) (8)

Despite its simplicity, the use of the inverse of the combined
channel matrix leads to signal-to-noise ratio (SNR) loss and
consequent capacity degradation, especially for ill-conditioned
channel matrices [9].

B. Vector Perturbation Precoding

To avoid the capacity loss generated by the channel in-
version precoding, the vector perturbation precoding was
proposed. In this precoding technique, the symbol vector is
perturbed by an integer vector as follows [10]:

x(n,P) = (u(n,P)+ τ�)WZF(n,P)u(n,P) (9)

where τ is a positive real number and� is a complex
vector whose real and imaginary parts are integer elements.
The optimum value of the perturbationτ� is the one that
minimizes the norm‖x(n,P)‖2. This is an integer-lattice
least-square problem, which can be solved using sphere
encoder algorithms. Nevertheless, the exact solution requires

exponential complexity inNT [19], [20]. Unlike the zero-
forcing precoding, the vector perturbation precoding is capable
of achieving the capacity region of the broadcast channel.

III. T HE PREDICTION SCHEME

From the exposed so far, updated channel state information
is required in order to perform the precoding of the information
symbols. When CSI is not present at the transmitter, it is not
possible to perform precoding, as can be seen from (7) and
(9). Furthermore, if imperfect CSI is present at the transmitter,
the interference suppression cannot be accomplished, leading
to severe degradation on the performance of the system.
This issue will be further addressed on Section IV, where
simulation results will be shown. Due to the time-varying
nature of the wireless channel, CSI might be outdated at the
transmitter. To provide updated channel information, channel
prediction must be considered.

A. Channel Decomposition

Before proceeding with the adaptive algorithm for chan-
nel prediction, some observations must be made. First, the
prediction of the MIMO channel will be made separately
for each channel coefficient. That is, the prediction of the
coefficients of the matrixHk(n,P) is decomposed intoNT

parallel predictors, one for each channel associated with its
respective transmitting antenna [17]. Although suboptimal, this
approach can greatly reduce the complexity required by joint
channel prediction schemes [17], [21].

Secondly, even though the channel prediction is performed
separately for each spatial channel, one must predict the
channel response for each one of the subcarriers. In practical
terms, it is extremely undesirable to use separated predictors
for each subcarrier, since their number can be of the order of
thousands [16]. This obstacle can be overcome using a time
domain approach to carry on the prediction, as described in
[14]. The time-varying channel coefficientsHk

1,I(n,P), for the
values of I = 1, . . . ,NT , are related tohk

1,I(n, l), the channel
impulse response, by aNDFT -point Discrete Fourier Transform
(DFT):

Hk
1,I(n,P) =

L

∑
l=0

hk
1,I(n, l)e

− j2πPl/NDFT , (10)

where the variablel was used to index the multiple paths of the
channel impulse response, with 0≤ l ≤ L. Let yk

1,I(n, l) denote
the estimated channel response for the channel coefficient
hk

1,I(n, l).
Under the assumption that the coefficients of the channel

impulse response can be statistically characterized as wide
sense stationary uncorrelated scattering (WSSUS), the pre-
diction scheme consists on decomposing the channel impulse
response intoL+1 parallel single-input single-output (SISO)
predictors [14]. Considering that the design of an optimal
prediction filter (such as the Wiener filter) requires prior
knowledge of the statistics of the channel and, on the other
hand, the time varying characteristics of the channel may not
always be known, an adaptive channel predictor is necessary
to perform the tracking of the nonstationary channel. Using
the above observations, we can write the prediction scheme
as:
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ĥ(n+ p, l) = wH
l (n)y(n, l) , l = 0, . . . ,L. (11)

It is important to remark that from (11) onwards, we have
dropped the subscripts(·)1,I and the superscript(·)k to avoid an
intricate notation. As exposed at the beginning of the section,
the prediction will be carried out for each one of the spatial
channels and by each one of the users, so that(·)1,I and (·)k

are implied on the formulation.
In (11), we havewl =

[
w0,l . . .wM−1,l

]T
as the vector

of the predictor coefficients and the vector of regressors
y(n, l) = [y(n, l) . . .y(n−M+1, l)]T , which is the input of the
prediction filter. The value ofp is called prediction horizon,
and denotes the number of OFDM symbols the channel is
predicted ahead. The value ofM is the number of coefficients
of the filter used for channel prediction, i.e. denotes the
number of samples that are being used to model the behavior
of the channel as an auto-regressive (AR) process. Its choice
compromises a tradeoff between accuracy and computational
complexity.

The predicted channel coefficientsĤ(n+ p,P) are obtained
from the predicted impulse response via a DFT:

Ĥ(n+ p,P) =
L

∑
l=0

ĥl(n+ p)e− j2πPl/NDFT . (12)

B. Set-Membership Filtering

The set-membership filtering is a framework applicable to
filtering problems that are linear in parameters. Instead of
specifying only one solution to the problem of designing the
filter coefficients, it works by setting an upper boundγ on the
magnitude of the estimation error

∣∣h(n, l)−wH
l y(n− p, l)

∣∣. It
is worthwhile to say that this bound is a design parameter,
usually varying with specific applications [22]. Its value is
related to the desired rate of updating after convergence,
the observation noise and the final misadjustment (after the
convergence of the algorithm). Setting a value too small for
γ might lead to an empty set of feasible solutions, whereas
setting a value too big might lead to inconsistent estimates.
Some rules of the thumb have been suggested in the set-
membership filtering literature in order to choose this upper
bound properly [23], [24].

For a chosen bound, there are several estimates for the
coefficients wl . The constraint set is defined as the set
containing all vectors with estimation errors whose magnitude
is upper-bounded byγ at an instantn:

H (n, l) =
{

wl ∈ C
M×1 :

∣∣h(n, l)−wH
l y(n− p, l)

∣∣≤ γ
}

(13)

The membership set is defined as

ψ(n, l) =
n⋂

i=1

H (i, l). (14)

C. Set-Membership Affine Projection (SM-AP)

The membership set defined in (14) suggests that the update
of the filter coefficients may be carried on using information
from more than one constraint set. Using the concept of affine
projection, we are going to consider the case in which the

coefficient update belongs to the set formed by the lastQ
constraint sets,ψQ(n, l). This intersection is given by

ψ(n, l) =
n−Q⋂
i=1

H (i, l)
n⋂

j=n−Q+1

H ( j, l)

= ψn−Q(n, l)∩ψQ(n, l).

(15)

Wheneverwl(n) /∈ ψQ(n, l), we state the following opti-
mization criterion for updating the vector of coefficients:

min‖wl(n+1)−wl(n)‖
2

subject toyQ(n, l)−YT (n− p, l)w∗
l (n+1) = γγγ l(n),

(16)

where

yQ(n, l) = [y(n, l) y(n−1, l) . . .y(n−Q+1, l)]T , (17)

Y(n− p, l) = [y(n− p, l) . . .y(n− p−Q+1, l)] , (18)

γγγ(n, l) = [γ1(n, l) γ2(n, l) . . .γQ(n, l)]
T . (19)

The term defined in (17) contains the desired outputs from
theQ last time instants, and (19) specifies the points belonging
to the setψQ(n, l).

The minimization problem in (16) can be solved using the
method of Lagrange multipliers, and it is given by [22]:

wl(n+1) = wl(n)+Y(n− p, l)
[
YH(n− p, l)Y(n− p, l)

]−1
×

[e∗(n, l)− γγγ∗(n, l)]
(20)

if |e(n, l)| > γ. If |e(n, l)| ≤ γ, than there is no need for an
update and

wl(n+1) = wl(n). (21)

In (20), the term e(n, l is the prediction error vector,
expressed as

e(n, l) = yQ(n, l)−YT (n− p, l)w∗
l (n+1)

=




e(n, l)
ε(n−1, l)

...
ε(n−Q+1, l)


 ,

(22)

whereε(n− i, l), i = 2, . . . ,Q stands for thea posteriori error
at iterationn− i and e(n, l) = y(n, l)−wH

l (n)y(n− p, l) is an
approximation of the prediction error at the instantn. We shall
reinforce this is an approximation since we do not have access
to the true channel responseh(n, l), but only to its estimation
y(n, l). In most practical cases, however,y(n, l) � h(n, l) for
channel estimation in high SNR regime [25].

The only requirement on the parameterγi(n, l) so far is
that it must belong to the constraint set, that is,|γi(n, l)| ≤ γ.
From the choice of (19), particular solutions for (20) can
be obtained. For instance, the choiceγγγ(n, l) = 0 implies that
the a posteriori error are forced to zero at the lastQ time



JOURNAL OF COMMUNICATIONS AND INFORMATION SYSTEMS, VOL. 1, NO. 26, APRIL 2011 39

instants. Considering this case, the updating equation (20) will
be identical to the conventional affine projection algorithm
[23] wheneverwl(n) /∈ ψQ(n, l).

Another simple version, used through the rest of the paper,
can be obtained by choosing

γi(n, l) = ε(n− i+1, l), i = 2, . . . ,Q

γ1(n, l) = γ
e(n, l)
|e(n, l)|

. (23)

Geometrically, we are minimizing the Euclidean distance
‖wl(n+1)−wl(n)‖

2 while keeping thea posteriori error
constant at the iterationsn− i, i = 2, . . . ,Q. In this case, (20)
reduces to [22],

wl(n+1) = wl(n)+Y(n− p, l)
(
YH(n− p, l)Y(n− p, l)

)−1

×α(n, l)e∗(n, l)1,
(24)

α(n, l) =

{
1− γ

|e(n,l)| , if |e(n, l)|> γ
0, otherwise

, (25)

1= [1 0. . .0]T . (26)

In order to guarantee thatĥ(n+ p, l) = y(n, l) for all values
of n = 0, . . . , p−1, the initial state of the filter is chosen to be

wl(n) = [1 0. . .0]T ,n = 0, . . . , p−1, (27)

D. Set-Membership Partial Update Affine Projection (SM-
PUAP)

The partial update strategy is a very attractive way to
reduce the complexity of adaptive filtering algorithms. While
the recursion loop of a conventional algorithm adapts all
the filter coefficients, the partial update is a framework in
which N out of the M coefficients are updated (naturally,
N < M). This strategy is particularly appropriate due to the
least-perturbation property of the affine projection algorithm
[23]. i.e. , the algorithm tries to reduce thea posteriori error at
each iteration. This behavior is further enforced by assuring
that only a subset of coefficients is allowed to be updated.
The idea can also be applied on the set-membership approach,
reducing even further the computational costs of (21) and (24),
the update equations.

The coefficients to be update are selected using an in-
dex setI (n, l) = {I0(n, l), · · · , IN−1(n, l)}, where the indexes
are chosen from the set of all available coefficients. The
optimal choice of the indexes (and consequently the coef-
ficients to be updated) must minimize the Euclidean norm
‖wl(n+1)−wl(n)‖

2. The objective function to be minimized
in order to update the coefficients of the Set-Membership Par-
tial Update Affine Projection is given as follows. A coefficient
update is performed ifwl(n) /∈ ψQ(n, l), as already stated.
Mathematically [26],

min‖wl(n+1)−wl(n)‖
2

subject to:

yQ(n, l)−YT (n− p, l)w∗(n+1, l) = γγγ(n, l)
C̃N(n, l) [wl(n+1)−wl(n)] = 0

(28)

where C̃N(n, l) is the matrix defined in such a way that
C̃N(n, l)wl(n+1) = C̃N(n, l)wl(n), and onlyN coefficients are
updated. This matrix can be constructed using the relation
C̃N(n, l) = I −CN(n, l), whereCN(n, l) is a diagonal matrix
selecting the coefficients to be updated in the instantn. It has
N nonzero elements equal to one placed at the positions of the
coefficients to be updated. These positions are the elements
from the setI (n, l).

It can be shown that a recursive update equation can be
found using the Lagrange multipliers [26]. The new rule is

wl(n+1) = wl(n)+CN(n, l)Y(n− p, l)R−1
N (n, l)

× [e∗(n, l)− γγγ∗(n, l)]
(29)

where

RN(n, l) = YT (n− p, l)CN(n, l)Y(n− p, l). (30)

If an update is needed, the set of indexes must be chosen
in order to minimize the norm

‖wl(n+1)−wl(n)‖
2 = ||R−1

N,l(n) [e
∗
l (n)− γγγ l(n)] ||

2. (31)

In [27], it is stated that finding the index setI (n, l) that
minimizes (31) is a binary integer programming and it cannot
be solved in a computational efficient way, but some heuristics
are provided. As might be expected, the choice ofI (n, l)
depends on the form of the vectorγγγ(n, l). If the elements of the
vector are chosen according to (23), a very simple procedure
can be formulated, as described in [26]. We first rank the
columns ofYT (n, l) according to their Euclidean norm. The
N coefficients that will be update are those that multiply the
columns ofYT (n, l) with the N larger Euclidean norms.

Intuitively, as exposed in [23], it can be observed in (29)
that for a fixed value of‖e∗(n, l)− γγγ(n, l)‖2, the Euclidean
distance between consecutive coefficient vectors is minimized
if RN(n, l) is maximized. It seems reasonable that a natural
choice for the coefficients to be updated in a given instant
are those that will be multiplied by the elements ofYT (n, l)
with larger norms. Once the coefficients to be updated are
determined, (24) is used.

E. Computational Complexity

The computational complexity of the prediction step de-
scribed in (12) isO (NT NDFT log2 NDFT +NT ML), regardless
of the adaptive algorithm. In terms of complexity, the differ-
ence between the predictors relies on the cost of updating the
predictor coefficients. From the results presented in [14], one
is able to infer that the update of RLS has a computational
complexity of O

(
NT M2L

)
. Considering (24), the SM-PUAP

has computation complexity at most equal toO
(
NT Q2ML

)
,

the complexity of the classical affine projection algorithm
[23]. Generally, the number of reusesQ � M, so the affine
projection algorithm is computationally less complex than
RLS.

IV. SIMULATION RESULTS

In order to evaluate the performance of the proposed channel
predictor, several simulations were performed. We considered
a structure similar to the downlink of 3GPP LTE standard.
Next it is presented the fundamental characteristics of the
system, the simulation scenario and the results.
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Fig. 2: Frame structure used for simulation.

Fig. 3: Subframe structure and pilot pattern.

A. Frame Structure

For simulation purposes, a 10 MHz bandwidth was con-
sidered. The frame structure is similar to the one found in
3GPP LTE standard. A frame is 10ms long and contains 10
subframes of 1ms, as shown in Fig. 2. Each subframe is
divided into 2 slots, each of which carrying 7 OFDM symbols.
The subcarrier spacing is fixed at 15 kHz. The cyclic prefix
(CP) length was chosen to be 4.6µs [28].

As one can be observe in Fig. 3, a physical resource block
is defined as 7 OFDM symbols in the time domain and 12
subcarriers in the frequency domain. LTE technology uses an
optimized reference symbol allocation for channel estimation
[28], [29]. In the LTE the base station can have up to 4
antennas and when two or more transmitter antennas are
applied, the reference symbols are transmitted such that they
are orthogonal in space. This orthogonality is obtained by
letting all other antennas be silent in the resource element
in which one antenna transmits a reference symbol [28].
These aspects were taken into account in order to perform
the simulations.

B. Mobile Wireless Channel Model

In order to perform realistic simulations a channel with
time-varying behavior has been investigated. The chosen chan-
nel model is the Spatial Channel Model Extended (SCME),
which generates channel coefficients based on 3GPP channel
model specifications [30]. This model considers a number of
clusters of scatterers, where each cluster corresponds to a
path (same relative delay) and each path consists of a given
number of subpaths. The WINNER’s SCME [31] was a set of

TABLE I: SCME Channel Parameters

Parameter Value

Carrier frequency 2 GHz
User speed 5 m/s, 30 m/s
Number of antennas at base station 4
Number of antennas at user terminal 1
Scenario Urban Micro
Number of paths 19

MATLAB R© scripts used to provide samples of a multipath
channel according to the 3GPP Spatial Channel Model. The
parameter settings are shown in Table I and were used in all
the simulations, unless indicated otherwise.

C. Simulation Results and Discussion

The channel estimation was performed using the Minimum
Mean Square Error (MMSE) Estimator described in [32].
The SNR was set in 20 dB and the upper boundγ for the
construction of the constraint sets related to the SM-PUAP
was chosen to beγ = 2

√
σ2

z . This value coincides with those
suggested in the literature [24]. The simulations consisted
of 1000 independent runs, and the average performance is
computed. In each run, 1000 OFDM symbols were transmitted.

Before proceeding with the presentation of the simulation
results, a few considerations must be made. First, as presented
in [13], the normalized least mean squares (NLMS) filtering
exhibited the worst performance among the adaptive algo-
rithms, despite its simplicity. For this reason we have excluded
to consider the NLMS in the simulations.

Secondly, although algorithms such as QR-RLS [23] exhibit
better numerical stability and present a low computational
cost when compared to the conventional RLS, they present
the same performance of the conventional RLS in terms of
convergence rate and misadjustment in infinity precision arith-
metic. Moreover, algorithms such as FT-RLS (Fast Transversal
RLS) have lower computational complexity than RLS, but
their performance is upper bounded by RLS. For this reason,
we have considered only the performance of the classical RLS
instead of its reduced complexity counterparts, following the
methodology presented in [14].

The RLS algorithm was set withM = 10 coefficients and a
forgetting factorλ = 0.99. The SM-PUAP was set withM = 30
coefficients,Q = 3 reusable sets andN = 10 coefficients to be
updated in every iteration. The number of sets used for update
is a tradeoff between final misadjustment and computational
complexity, as stated in Section III-E. Several simulations were
performed using different values ofQ and it was observed that
the prediction mean square error (MSE) increased about 1 dB
from Q = 1 to Q = 5, so the choiceQ = 3 seemed to be a
reasonable value.

For the sake of comparison, two different scenarios were
considered: one in which the user speed is 5 m/s (low
mobility), and other where the user speed is 30 m/s (high
mobility). Two prediction horizons will be considered: 1
OFDM symbol and 14 OFDM symbols. The choice of 14
symbols is justifiable since the transmission time interval (TTI)
of LTE is 1 ms, or 14 OFDM symbols, as presented in Section
IV-A.
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Fig. 4: Convergence behavior of the RLS adaptive predictor for a prediction
horizon of 1 and 14 OFDM symbols.
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Fig. 5: Convergence behavior of the SM-PUAP adaptive predictor for a
prediction horizon of 1 and 14 OFDM symbols and user speed of 5 m/s.

Fig. 4 shows the convergence of the RLS predictor for
the prediction horizons of 1 OFDM symbol and also for 14
OFDM symbols. Fig. 5 illustrates the behavior of the SM-
PUAP for the low mobility scenario, while Fig. 6 shows its
convergence for the high mobility scenario. As expected, a
larger prediction horizon in a high mobility scenario slows
down the convergence. The convergence of SM-PUAP was
faster than the one of the RLS, although the MSE of the latter
is slightly lower in the low mobility scenario. Nevertheless,
in the high mobility scenario, the SM-PUAP exhibits better
performance than the RLS predictor with less computational
effort. One is able to infer that this occurs due to the
superiority of SM-PUAP in respect to the tracking in this
scenario, and such result is further reinforced the results shown
in [13]. In low mobility scenarios, the RLS exhibits a slightly
better performance.

To address the matter of computational effort, Table II
compares the number of updates required by the channel
predictors. It shows that at every iteration, the RLS algorithm
demands coefficient updates. On the other hand, the SM-PUAP
algorithm had its coefficients updated only in 38% of the
1000 iterations. Once the SM-PUAP updates do not occur
frequently, its overall complexity is much less than that of
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Fig. 6: Convergence behavior of the SM-PUAP adaptive predictor for a
prediction horizon of 1 and 14 OFDM symbols and user speed of 30 m/s.
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Fig. 7: Convergence behavior of the SM-PUAP and RLS adaptive predictors
for a prediction horizon of 28 OFDM symbols and user speed of 30 m/s.

the RLS counterpart. The reduced complexity is extremely
desired and important in many applications, especially when
power savings are mandatory, such as the power management
on mobile stations. Since the SM-PUAP does not perform any
unnecessary filter update, power can be saved. If properly
exploited, the partial update behavior can also be used to
reduce the signaling required to transmit the channel state
information to the transmitter, since the radio resources of the
feedback channel (if presented) are very scarce.

It is interesting to point out that the final MSE obtained
using the strategy of partial update of the set-membership
affine projection algorithm led to a larger prediction horizon
than the one reported in [13]. One possible explanation for
this behavior is that the least-perturbation property of affine

TABLE II: Comparison between the adaptive algorithms

Algorithm Number of updates

RLS 1000
SM-PUAP (p = 1, 5 m/s) 20
SM-PUAP (p = 1, 30 m/s) 52
SM-PUAP (p = 14, 5 m/s) 87
SM-PUAP (p = 14, 30 m/s) 380
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Fig. 8: Block diagram of the user terminal.
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Fig. 9: BER performance of zero-forcing precoder under 16QAM uncoded
modulation andK = 4 users.

projection algorithms is further reinforced by the data-selective
coefficient updating (partial update) strategy. This is a very
interesting result not only due to the larger prediction horizon
that can be obtained, but also the reduced computational effort
when compared to the RLS algorithm (or even the SM-AP
[13]). As a remark, if one tries to increase the value of the
forgetting factorλ of the RLS algorithm as a way to increase
its convergence speed this will lead to a higher MSE, as well
as a possible instability of the algorithm. On the other hand,
decreasing the value ofλ might be helpful for larger prediction
horizons at the cost of convergence speed. This sensitivity to
the choice of the parameters of the algorithm is not observed
for the SM-PUAP filtering. These results are summarized in
Fig. 7, where it is shown the learning curves of both algorithms
for a prediction horizon of 28 OFDM symbols, or 2 TTI’s.

Finally, we assess the bit error rate (BER) performance of
the overall MIMO OFDM system under multiuser precoding.
Fig. 8 illustrates the block diagram of the process at each
user. The CSI at the transmitter is implemented by an explicit
closed-loop feedback. It is assumed an ideal unquantized
feedback channel, and the results focus solely on the effects
of channel prediction, since any other form of feedback
(such as a quantized or an AWGN feedback channel) will
decrease the accuracy of the prediction. The user terminal
predicts the channel response and feeds the prediction via the
feedback channel. In these simulations, the prediction horizon
corresponds to 14 OFDM symbols, the TTI of the 3GPP LTE
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Fig. 10: BER performance of vector perturbation precoder under 16QAM
uncoded modulation andK = 4 users.
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Fig. 11: Performance of the RLS and SM-PUAP channel predictors using
zero-forcing precoding and 16QAM modulation.

standard.
Fig. 9 and Fig. 10 illustrate the behavior of the pre-

coding schemes under perfect CSI and also their behavior
when outdated CSI is used for the purposes of precoding.
More specifically, they show the performance of zero-forcing
precoding and vector perturbation precoding if no predicted
channel information was available at the transmitter, therefore
existing a mismatch of 1 ms between the information that
is used for precoding and the actual channel response. As
one can notice, even for a terminal of low mobility, the
CSI mismatch can severely degraded the performance of the
precoding schemes. The degradation is even worse for high
mobility terminals due to the coherence time of the channel.
Using the theory exposed in [33], the coherence time of the
channel is estimated as 2.2 ms (28 OFDM symbols) for a user
speed of 5 m/s, and 0.32 ms (4 OFDM symbols) for a speed
of 30 m/s. Clearly, the higher the mobility, the faster the CSI
becomes outdated.

Fig. 11 shows the performance of ZF precoding when
channel prediction is considered, whereas Fig. 12 shows the
performance of VP precoding. As a general observation, the
VP precoding is more robust to prediction errors than the ZF
precoding technique, and for values ofEb

No
below 10 dB, the
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Fig. 12: Performance of the RLS and SM-PUAP channel predictors using
vector perturbation precoding and 16QAM modulation.

performance of the predictors does not differ much, since it
is limited by the quality of the channel estimation. Whereas
all algorithms performed similarly in scenarios where the
user speed is 5m/s, the differences between them are most
pronounced at higher speed. Clearly, the SM-PUAP algorithm
outperforms the RLS algorithm in all cases, especially for the
high mobility scenario.

As a general observation, the VP precoding is more robust
to prediction errors than the ZF precoding technique, and for
values of Eb

No
below 10dB, the performance of the prediction

algorithms does not differ much since it is limited by the
quality of the channel estimation. And most important, it is
clear that channel prediction is capable of recovering part of
the performance loss of the precoding schemes due to the
outdated CSI.

V. CONCLUSION

In this paper, an adaptive channel predictor based on the
set-membership partial update affine projection algorithm was
presented for multiuser MIMO OFDM communications over
time-varying channels. More specifically, the downlink or
broadcast channel under two different precoding schemes was
considered.

Multiuser MIMO systems are capable of offering higher
link capacity of MIMO systems and interference cancellation
through precoding, as long as channel state information is
available at the transmitter. However, the time-varying nature
of the mobile radio channel and the predicted channel state
information are usually not taken into account when analyzing
the performance of precoding schemes. The practical impor-
tance of channel prediction relies on providing up-to-date CSI
by compensating for delay or the time varying nature of the
mobile radio channel.

The performance of the developed predictor was compared
to the predictor based on the RLS algorithm through sim-
ulations using a realistic channel model, the 3GPP SCME.
The SM-PUAP algorithm exhibited a lower steady state MSE
and a faster convergence than the RLS algorithm in high
mobility scenarios. The RLS presented a slight lower MSE
in low mobility scenarios and shorter prediction horizons. In

spite of this fact, the SM-PUAP predictor presented lower
computational costs when compared to the RLS predictor.

Finally, the impact of both predictors was considered in
the bit error rate performance of two well-known precoding
schemes for the downlink of multiuser MIMO systems: zero-
forcing precoding and vector perturbation precoding. For this
matter, a frame structure similar to the one found in the 3GPP
LTE standard was considered, as well as an ideal feedback
channel to provide CSI to the transmitter (base station).
First, it was shown that even for low mobility scenarios, the
performance of both precoders was severely degraded when
outdated CSI was used to carry out the precoding, presenting
the scope for the use of channel prediction. The simulation
results also showed that the predictor based on SM-PUAP
outperformed the one based on the RLS adaptive algorithm,
especially in scenarios of larger prediction horizons and higher
mobility. Moreover, it presented less computational effort than
the predictor based on RLS adaptive algorithm and it was able
to compensate the outdated CSI that would be available at the
transmitter if no channel prediction was considered.
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