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Fast Hardware Design of 1/f Fractional Brownian
Noise Generator

G. Loss and R. Coelho

Abstract—This paper proposes the design of a fast and accurate
1/f fractional Brownian motion (fBm) noise generator. The
solution is based on the successive random addition algorithm
using the midpoint displacement (SRMD) technique. The imple-
mentation was performed on a high-speed field-programmable
gate array (FPGA) Development Kit. It enabled the generation
of 150 million of 16-bit noise samples per second. The 1/f noise
generator achieved 7.4% of the logic elements, 52% of the RAM
memory and 1.6% of the ROM memory. The accuracy of the
1/f noise samples was evaluated for different sequence size and
confidence intervals. The noise samples pattern was examined
by the probability density (PDF) and the heavy-tail distribution
(HTD) functions. The results also include the auto-correlation
function (ACF) to show the low-frequency statistics of the 1/f
noise samples. For the investigation it was used the real 1/f
speech-babble acoustic noise parameters. The results showed that
the proposed 1/f noise generator design can be promising to the
performance evaluation of communications channels with low
bit error rate (BER) values. It can also be interesting for signal
processing applications and other areas concerned with noisy
conditions.

Index Terms—1/f noise, fractional Brownian noise, low-
frequency statistics, field-programmable gate array.

I. I NTRODUCTION

T HE provision of fast and accurate noise generators has
become an important issue for digital communications

systems which attained reliable and high-speed channels.
Moreover, 1/f noise [1] has been observed in several physical
systems such as, communication channels [2], electronic com-
ponents and semiconductors devices [1] [3], natural phenom-
ena (e.g., rivers, ocean flows, average seasonal temperature,
rainfall) [4], financial markets [5], image [6], acoustics and
music [7]. The 1/f noise is a random process characterized
by its low-frequency or scaling invariance over a wide range
of timescales [8]. White noise represented by the Gaussian
distribution, is widely employed since it enables tractable
analysis. But, since the presence of 1/f noise is a reality,
its investigation became a key issue. The fractional Brownian
motion (fBm) [8] [9] [10] leads to an efficient representation
of the 1/f or fractional noise samples with low-frequency
statistics or scaling invariance degree represented by theHurst
(0 < H < 1) parameter [4].

Therefore, the main contribution of this paper is the proposal
of a fast design of 1/f noise generator based on the fractional
Brownian motion. This enables more realistic and accurate
estimation of low bit error rate (BER) (10−9 to 10−12)
in communications channels. It should be also applied to
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signal processing and other scientific areas concerned with
noise issues. Hardware architectures for white Gaussian noise
generators [11] [12] [13] have been reported in the literature.
However, from the authors knowledge, the proposition of a
fast hardware design of 1/f fBm noise generator is addressed
for the first time in this work. This 1/f noise solution de-
scribes a hardware design for the successive random addition
method using the midpoint displacement (SRMD) technique
introduced by Mandelbrot [9]. In a preliminary study [14] the
SRMD design was proposed and evaluated for the generation
of optical signal samples. The results showed to be very
promising.

The fractional noise generator was implemented on Altera
Stratix EP1S25 FPGA Development Kit using the Quartus
II v5.0 suite for Linux. The design proposed in this work
also considered the trade-off between the device resources
usage (e.g., memory, logic elements and embedded multipli-
ers) to produce fast and accurate 1/f 16-bit noise samples.
The design also includes a Gaussian random variables (RVs)
block generator. The Box-Muller [15] method is the most
important approach used for the generation of Gaussian RVs.
The generation is based on transformation functions performed
on Uniform variables. In [11] the authors proposed a hard-
ware architecture based on the Box-Muller algorithm and the
Central Limit Theorem (CLT) [16]. This solution was also
performed by Xilinx [17] and evaluated under different FPGA
devices by the authors in [12] [13]. The results demonstrated
that the implementation based on both Box-Muller algorithm
and the CLT achieves accurate and fast Gaussian RVs. Hence,
this method was used for the Gaussian samples generation.
Nevertheless, the solution presented in this work introduces a
memory optimization for the Box-Muller functions evaluation.
The Tckacik algorithm [18] was applied for the Uniform
RVs generation. This technique achieved fast generation, good
randomness and few device resources requirements.

The proposed design performance was examined in terms
of its device resources requirements and the representation of
the pattern and low-frequency statistics (i.e., evaluations of the
probability density (PDF), heavy-tail distribution (HTD)and
auto-correlation coefficient (ACF) functions) of the 1/f noise
samples. For the validation experiments, it was considered
the mean (m), standard-deviation (σ) and scaling parameter
(H) estimated from the real 1/f factory2 acoustic noise of the
NOISEX-92 [19] database. The implementation also included
a pure-Brownian noise, i.e., withm = 0, σ = 1 andH = 1/2.
The results accuracy is examined and presented considering
different samples sequence sizes and confidence intervals (CI)
[20]. For the low-frequency statistics (H parameter) estima-
tion it was used the wavelet-based method [21] considering
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Daubechies filters with 12 coefficients.

II. 1/F FRACTIONAL BROWNIAN MOTION NOISE

Generally, noises can be represented by the power spectral
density fluctuations per a frequency interval. Or, similarly, by
its variations over a time scale of order 1/fβ (0 ≤ β ≤ 2). In
the literature, white, red/brow and pink noises are also referred
as 1/f0, 1/f2 and 1/f noises, respectively.

The 1/f noise is a random process with power spectral
density (S(f)) defined asS(f) = 1

fβ where 0 ≤ β ≤ 2.
Mandelbrot showed that 1/f fractional noises haveS(f)
defined byS(f) = f1−2H with H parameter values frequently
close to 1. Thus,H parameter is the exponent of the power
spectral density of the 1/f fractional noises. TheH parameter
expresses the low-frequency statistics, i.e., the scalingor time-
invariance degree, of a random process. It can also be defined
by the decaying rate of the auto-correlation coefficient function
ρ(k) (−1 < ρ(k) < 1) ask → ∞. A random process can be
classified by itsH (0 < H < 1) parameter as

• Anti-persistent process (0 < H < 1
2 ): The ACF varies

rapidly and
∑∞

k=−∞ ρ(k) = 0.
• Short-range dependence process (SRD) (H = 1

2 ): The
ACF ρ(k) exhibits an exponential decay to zero, such
that

∑∞

k=−∞ ρ(k) = c, wherec > 0 is a finite constant.
• Long-range dependence process (LRD) (1

2 < H < 1):
The ACFρ(k) is a slowly-vanishing function. It has slow
variations meaning a strong dependence degree between
samples that are far apart or

∑∞

k=−∞ ρ(k) = ∞. Thus,
the S(f) is concentrated in the low-frequency spectrum.

Harold Edwin Hurst [4] found the presence of low-frequency
or LRD statistics (H = 0.72 ± 0.006) in several observations
of different natural phenomena. Brownian motion is a well
known example of a SRD process while 1/f fractional noises,
by definition, are LRD random processes [9].

The fractional Brownian motion [8] [9] is a random process
(XH(t)) with Gaussian independent increments, indexed by
the single scalarH parameter defined inℜ with zero mean and
continuous sample path (null at origin). The variance of the
increments is proportional to its time interval asV ar[X(t2)−
X(t1)] α |t2−t1|2H for 0 ≤ t1 ≤ t2. For all t1 andt2 instants
it follows that: XH(t) has stationary increments;XH(0) = 0
and E[XH(t)] = 0 for any instantt ; and XH(t) presents
continuous sample paths. This means that fBm is a self-similar
random process, i.e., its statistical characteristics hold for any
time scale. For anyτ and r > 0, it follows that [XH(t +

τ)−XH(t)τ≤0]
d∼= r−H [XH(t+ rτ)−XH(t)τ≤0], wherer is

the scaling factor and
d∼= means similar in distribution. Thus,

XH(t) is a random process completely characterized by its
mean (null), variance (σ2) andH parameter.

III. SRMD A LGORITHM AND THE 1/f FBM-BLOCK

DESIGN

Fig. 1 shows the SRMD pseudo-code and the block diagram
of the proposed 1/f fBm noise generator. Consider a time
index t defined at the interval[0, 1]. SettingX(0) = 0 and
X(1) as a Gaussian RV with zero-mean and varianceσ2

(a)

(b)

Fig. 1. 1/f Noise Generator: (a) SRMD Algorithm [9], (b) 1/f fBm-block
Design.

then,V ar[X(1) − X(0)] = σ2 and V ar[X(t2) − X(t1)] =
|t2 − t1|σ2 for 0 ≤ t1 ≤ t2 ≤ 1. To achieve this property a
random offset displacement (Di) with mean zero and variance
δ2
i must be added to the samples whereδ2

i = 1/2−(i+1)σ2. For
example, theX(1/2) value is obtained by the interpolation
of X(0) and X(1) with varianceδ2/22H+1. Then, several
iterations are proceeded to compose the fBm random sequence.
In order to provide stationary increments, after the midpoints
interpolation, aDi of a certain variance (∝ (rn)2H ; wherer
is the scaling factor.) is applied to all points (time increments)
and not just the midpoints. TheX [i] noise sequence has
i = N + 1 time increments, whereN = 2maxlevel and
maxlevel is the maximal number of iterations of the SMRD
algorithm (Fig. 1(a)). The fBm statistics are generally achieved
for values in the interval [0,16]. However, themaxlevel value
of the SMRD is not limited to 16. The other SRMD inputs
are the standard-deviation (sigma) and theH parameter. The
Gaussian function (refer toGauss(.) in Fig. 1.(a)) provides the
mean value.d, D and level are counters variables.

The 1/f fBm architecture (Fig. 1(b)) is composed by the
following main blocks: Uniform random number (URNG);
Gaussian random number (GRNG); dataROM[i, H ]; Control
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andX [i] RAM memory. All functions performed by the fBm
block were coded as very-high-speed integrated circuit hard-
ware description language (VHDL) entries. In this work, the
Uniform random numbers generator (URNG) implementation
is based on a combination of multiple-bit linear feedback
shift registers (LFSR) and cellular automata shift registers
(CASR) method proposed in [18]. This method generates a
random sample by using XORs with the LFSRs and CASRs
registers. This combination leads to a good randomness and
its implementation requires few device resources. The linear
function was implemented by a XOR of 43-bit position values.
The cellular automata consists of a circular register withK
cells, each having a valueai equal to 0 or 1. These values
are synchronously updated in discrete time steps according
to ài = ai−1 XOR (ai OR ai+1) or, equivalently,
ài = (ai−1 + ai + ai+1 + aiai+1) mod 2. The a(t)

values attained by a particular cell through time serve as the
random sequence. The URNG block was coded to produce 32-
bit uniformly distributed samples with periodicity1010. The
LSFRs are started with a randomseed.

The Gaussian random number generator (GRNG) block
(Fig. 1(b)) performs theGauss(·) function (Fig. 1(a)) of the
SRMD algorithm. The Box-Muller method shows that, given
u1 and u2 obtained from Uniform RVs distributed over the
interval [0,1], a set of intermediate functionsf , g1, g2 such
that

f(u1) =
√

− ln(u1) (1)

g1(u2) =
√

2sin(2π u2) (2)

g2(u2) =
√

2cos(2π u2), (3)

and the followingx1 andx2 RVs

x1 = f(u1) g1(u2) (4)

x2 = f(u1) g2(u2). (5)

Then, x1 and x2 are independent Gaussian distributed RVs
with zero mean and unit variance. Linear segmentation approx-
imation is then applied to determine thef , g1 andg2 functions
of the Box-Muller algorithm. The CLT is used to reduce
the nonlinearities of these functions for values close to the
interval limits, i.e.,0 and1. Thus, improving the representation
accuracy of the Gaussian RVs. The output of the URNG block
provides bothu1 andu2 to obtain thex1 andx2 (Eqs 2 and
3) in only one clock cycle. Look-up tables (LUT) are largely
used to store the linear segmentation outputs of the Box-Muller
functions (f , g1 andg2) in a few clock cycles. But, in these so-
lutions, large LUTs sizes are required to store all the resulting
linear approximation segments of the Box-Muller functions. In
the proposed design the linear approximation of Box-Muller
functions were performed by usingmultipliers, adders and a
LUT to store each line segment. Since 32-bits were considered
for u1 coding, it is possible to have a representation range of
6.7σ values for each GRNG sample. Similar representation
range was found by the Xilinx implementation of [17] of the
Boutillon et al. design. Boutillonet al. [11] reported a 4σ
range for each Gaussian representation with0.02% accuracy.
The following step of the Box-Muller algorithm is the sum of

TABLE I
BOX-MULLER GRNG BLOCK

Compilation Without Memory With Memory
usage usage

Logic elements 193 158
ROM Memory (bits) 0 382
Embedded Multipliers 2 2
Max Clock Freq. 56 MHz 168 MHz

the two registered values of thex1 andx2 functions. It takes
3 clock cycles: one cycle to store eachx1 andx2 value and a
second cycle for the sum of these values. It can be seen from
Eq. 2 and Eq. 3 that bothg1 andg2 functions are indexed by
u2. Thus, their implementation werepipelined to improve the
block performance.

In this work, two different approaches were evaluated for
the implementation of the GRNG block. Firstly, the GRNG
block was coded in VHDL using only the available standard
logic elements. In a second approach, a set of Altera Stratix
Device Family’s memory blocks was defined to deal with the
LUT size issue. Table I shows the devices resources needed for
both GRNG implementations. The second strategy achieved
an improvement of18% in the logic elements usage. It can
also be noted that its overall performance was increased, e.g.,
a maximum clock frequency of 168 MHz (improvement of
300%) when compared to the first implementation approach.
This solution also uses around 0.03 % of the ROM memory.
Hence, this approach was chosen as the default implementation
of the GRNG block.

The dataROM block performs the computation of the
delta[i] vector of the SRMD algorithm. The dataROM is
indexed byi andH and it is defined by

data ROM [i, H ] :=
delta[i]

sigma
= (

1

2
)iH

√

1

2

√

1 − 22H−2.

(6)
It can be seen from Eq. 6, thatdata ROM [i, H ] uses
some complex calculations to compute thedelta[i] vector.
The power and square-root functions evaluated by LUTs,
usually take several clock cycles to be solved. In the proposed
approach alldelta[i] values are stored and addressed by the
i and H indexes. This would be prohibitive due to the large
amount of memory resources needs for storing a wide range of
delta[i] values. However,H values can be represented with
only 2-digits after the decimal point. Thus, 1,000H values
are necessary for each iteration of the SRMD algorithm. Since
0 ≤ maxlevel ≤ 16, delta[i] vector can have a maximum of
16,000 elements. Hence,1.6% of the ROM memory ressource
was needed to store thedelta[i] vector. In fact, 1/f noises
have 1/2 < H < 1 and the memory needs can be even
reduced. This second memory block is used to store the output
sample vector (X [i]). The binary representation of eachX [i]
noise output was truncated to 16-bit wide. For example, for
maxlevel= 16 it will be necessary16 ∗ 216 ≈ 1.0 Mbits of a
RAM resource.

The main functions of the control block are:
1) Read the GRNG block output (Gaussian samples);
2) Read the dataROM values according to the selected

values indexed byi andH ;
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TABLE II
DEVICE RESOURCESUSAGE OF THE1/f FBM BLOCK DESIGN

maxlevel 14 15 16
Logic elements 1595 (6.1%) 1723 (6.9%) 1848 (7.4%)
RAM memory (bits) 261,144 (13%) 542,288 (27%) 1,048,576 (52%)
Embedded multipliers 10 10 12
Initializing time (cycles) 344064 688128 1376256
Max. Clock Freq. (MHz) 176 173 152

TABLE III
STATISTICS ESTIMATION : factory2 NOISEPARAMETERS.

parameters (frame=16ms) m (bits/frame) σ (bits/frame) H

factory2 639.50 369.65 0.990
fBm block (CI 95%) 642.03±3.432 370.75±5.683 0.989±0.00357
fBm block (CI 99%) 638.18±4.747 368.83±6.911 0.987±0.00732

3) Evaluatedelta by multiplying previous dataROM data
by sigma;

4) Fill the initial values of theX [i] vector with the com-
putedsigma ∗ Gauss values;

5) Perform theloops iterations (onewhile and twofor’s);
6) Update thed, D and level counters;
7) Read fBm output samples fromX [i] vector.

The EP1S25 FPGA kit used for the 1/f noise block imple-
mentation has approximately 25,000 logic elements, 4 RAM
blocks of 500 Kbits each, ROM of 1 Mbits, 10 digital signal
processor (dsp) blocks and 6 phase locked loop (PLL) used for
clock generation. Themultstyle attribute was set for using the
dsp blocks. Altera’s Stratix devices have a fixed number ofdsp
blocks which include a fixed number of embedded multipliers.
The multstyle attribute specifies the implementation style for
multiplication operations (*) in the VHDL source code. It
also defines if the compiler shall implement a multiplication
operation in general logic or in dedicated hardware. TheD/2
and d/2 division operations of the SRMD algorithm were
implemented using shift registers.

IV. RESULTS

This section presents the main results obtained from the
evaluation of the proposed 1/f fBm noise generator. For
the tests it was used them, σ2 and H statistics estimated
from the real 1/f factory2 acoustic noise. This acoustic noise
was sampled at 16kHz and 16 ms frame length considering
Hamming window. Additionally, a pure-Brownian generation
was performed with statisticsm = 0, σ2 = 1 andH = 1/2.
Five independent fBm noise sequences were generated of106,
109, 1010, 1011, 1012 bit samples sizes. For theH parameter
estimation it was used the wavelet-based method [10] with 12
Daubechies filters with the 3-12 scale ranges.

The main results presented in this section include:
• Device resources usage;
• Estimation of the statistical parameters:m, σ, H ;
• 1/f fBm noise samples representation: PDF, (log-log)

HTD and ACF plots.
The device resources usage was evaluated for different

maxlevel values, i.e., the number of increments of the 1/f
fBm noise sequence. This report is presented in Tab. II. It can
be noted that for the maximum number of SRMD iterations,

TABLE IV
STATISTICS ESTIMATION : PURE 1/f NOISEPARAMETERS.

parameters m σ H

pure 1/f noise 0.000010 1.00 0.50
fBm block (CI 95%) 0.000011 1.00±0.00001 0.51±0.00099
fBm block (CI 99%) 0.000011 1.00±0.00001 0.51±0.00112

i.e., largest 1/f generated noise sequence, the implementation
used 7.4% of logic elements, 52% of RAM memory and 1.6%
of ROM memory of the FPGA main resources.

The delta[i] of fBm block solves twopower and two
square-root functions (using the LUT method), hence it is
necessary a total of152 ∗ 2maxlevel clock cycles. Since the
SRMD algorithm performs onewhile and twofor loops, the
X [i] vector spends an initial output delaytinit. This initial
delay depends on themaxlevel variable and is equal to

tinit = (2maxlevel − 1) + (2maxlevel+2 +

+ maxlevel − 2) ∗ tgauss

≈ (1 + 4 ∗ tgauss) ∗ 2maxlevel [cycles], (7)

wheretgauss is the total clock cycles to generate a Gaussian
sample. However, after this initial time, only one clock cycle
is needed to read a sample value from theX [i] vector.

Tables III and IV show the statistics results obtained with
the 1/f fBm noise samples using thefactory2 and the pure-
Brownian noises parameters. Them, σ andH results accuracy
was obtained considering thet-student method [20] for the
95% and 99% confidence intervals. Consideringn independent

experiments it follows thatX̂n = X̄n ± tn−1,1−α

√

σ2
x

n
, where

tn is at-student RV with n−1 degrees of freedom and an exact
100(1 − α) percent confidence interval. These results show
that the samples generated by the 1/f fBm blocks achieved
close statistics to realfactory2 and the pure-Brownian noises.
The scaling degrees accuracy was achieved for both noise
generation experiments. Particularly, theH results obtained
from the 1/f fBm samples, were very interesting since they in-
dicate the good representation of the low-frequency (H > 1/2)
characteristics of the 1/f noise.

Fig. 2 presents the PDF, HTD and ACF curves obtained
from the fBm noise samples. These plots were evaluated
considering the realfactory2 parameters since it is a 1/f noise
(H = 0.75). The results obtained from the noise samples
generated from the hardware fBm block were compared to the
referredideal curve in which the fBm samples were obtained
from a C++ language implementation of the SRMD algorithm
considering106 (maxlevel= 16) samples. The PDF plots (Fig.
2(a) were evaluated by the approximation of the noise samples
histograms. Note that the noise samples pattern distribution
obtained from the hardware implementation is quite similarto
the one obtained from software-based generation.

The log-log HTD (P [X > x]) curves were very important
to show thetail distribution of the noise samples. For example,
pure-white-Gaussian distributed samples have Exponential de-
caying tails. Differently, 1/f samples with scaling invariance
degrees (H > 1/2) have slow or heavy decaying tail behavior.
As expected, the generated fBm samples (H±0.75) presented
heavy tails (Fig. 2(b)).
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Fig. 2. 1/f fBm Noise Design Validation Results: (a) PDF, (b) log-log HTD, (c) ACF.

From the ACF graphics (Fig.2(c)) it can be inferred that
they follow a slowly-vanishing function with slow variations
to infinity (i.e., lagk → ∞). This also demonstrates that the
noise samples haveS(f) concentrated in low-frequency range.

V. CONCLUSION

This paper proposed a fast and accurate hardware design
of 1/f noise generator based on the fractional Brownian
motion. The noise generator is described for the successive
random addition midpoint displacement method. The solution
enabled the generation of 150 million of 16-bit noise samples
per second. The 1/f noise generator achieved for the largest
sample size generation 7.4% of logic elements, 52% of RAM

memory and 1.6% of ROM memory. The estimation results
showed that 1/f fBm noise generator accurately achieved
the mean, variance and the low-frequency statistics and the
noise samples pattern. Moreover, the auto-correlation function
of the generated noise samples confirmed the expected
slow variations of the real 1/f factory2 acoustic noise. The
proposed design showed to be very promising to evaluate
the performance of communications channels with very low
BER values. It can also be interesting for signal processing
applications (e.g., noise extraction) that deals with noisy
conditions such as automatic speaker recognition [22]. Other
algorithms for the generation of 1/f fBm samples [9] [6]
and true random number [23] can be considered as future
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work. The proposed design will also be applied to generate
impulsive or alpha-stable noises [24].
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Rosângela Fernandes Coelhoreceived the Ph.D.
degree from the Ecole Nationale Supérieure des
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