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Fast Hardware Design of f/Fractional Brownian
Noise Generator

G. Loss and R. Coelho

Abstract—This paper proposes the design of a fast and accurate signal processing and other scientific areas concerned with
1/f fractional Brownian motion (fBm) noise generator. The noise issues. Hardware architectures for white Gaussiae no
solution is based on the successive random addition algohitn generators [11] [12] [13] have been reported in the liteatu

using the midpoint displacement (SRMD) technique. The imp#- .
mentation was performed on a high-speed field-programmable However, from the authors knowledge, the proposition of a

gate array (FPGA) Development Kit. It enabled the generatin  fast hardware design of £fBm noise generator is addressed
of 150 million of 16-bit noise samples per second. The f/noise for the first time in this work. This I/ noise solution de-
generator achieved 7.4% of the logic elements, 52% of the RAM scribes a hardware design for the successive random aulditio
memory and 1.6% of the ROM memory. The accuracy of the Jnethod using the midpoint displacement (SRMD) technique

1/f noise samples was evaluated for different sequence size an -
confidence intervals. The noise samples pattern was examie ntroduced by Mandelbrot [9]. In a preliminary study [14pth

by the probability density (PDF) and the heavy-tail distribution ~SRMD design was proposed and evaluated for the generation
(HTD) functions. The results also include the auto-correltion of optical signal samples. The results showed to be very
function (ACF) to show the low-frequency statistics of the 4  promising.

noise samples. For the investigation it was used the real A/ * Thg fractional noise generator was implemented on Altera

speech-babble acoustic noise parameters. The results showed that . . .
the proposed 1f noise generator design can be promising to the Stratix EP1S25 FPGA Development Kit using the Quartus

performance evaluation of communications channels with i Il V5.0 suite for Linux. The design proposed in this work
bit error rate (BER) values. It can also be interesting for sgnal also considered the trade-off between the device resources

processing applications and other areas concerned with n&y ysage (e.g., memory, logic elements and embedded multipli-
conditions. ers) to produce fast and accuratef I6-bit noise samples.
The design also includes a Gaussian random variables (RVS)
block generator. The Box-Muller [15] method is the most
important approach used for the generation of Gaussian RVSs.
The generation is based on transformation functions pedr
on Uniform variables. In [11] the authors proposed a hard-
HE provision of fast and accurate noise generators haare architecture based on the Box-Muller algorithm and the
become an important issue for digital communicatiorGentral Limit Theorem (CLT) [16]. This solution was also
systems which attained reliable and high-speed channglarformed by Xilinx [17] and evaluated under different FPGA
Moreover, 1f noise [1] has been observed in several physicakvices by the authors in [12] [13]. The results demonsirate
systems such as, communication channels [2], electromic cathat the implementation based on both Box-Muller algorithm
ponents and semiconductors devices [1] [3], natural phenognd the CLT achieves accurate and fast Gaussian RVs. Hence,
ena (e.g., rivers, ocean flows, average seasonal tempgratiis method was used for the Gaussian samples generation.
rainfall) [4], financial markets [5], image [6], acousticada Nevertheless, the solution presented in this work intreduz
music [7]. The 1f noise is a random process characterizademory optimization for the Box-Muller functions evalugti
by its low-frequency or scaling invariance over a wide rangene Tckacik algorithm [18] was applied for the Uniform
of timescales [8]. White noise represented by the GaussiRWs generation. This technique achieved fast generatiood g
distribution, is widely employed since it enables tractabkandomness and few device resources requirements.
analysis. But, since the presence off IMoise is a reality, The proposed design performance was examined in terms
its investigation became a key issue. The fractional Brawni of its device resources requirements and the represemiaitio
motion (fBm) [8] [9] [10] leads to an efficient representatio the pattern and low-frequency statistics (i.e., evalumtiof the
of the 1/f or fractional noise samples with low-frequencyrobability density (PDF), heavy-tail distribution (HT2)nd
statistics or scaling invariance degree represented bitinst auto-correlation coefficient (ACF) functions) of thef hoise
(0 < H < 1) parameter [4]. samples. For the validation experiments, it was considered
Therefore, the main contribution of this paper is the praposthe mean ), standard-deviations) and scaling parameter
of a fast design of }f noise generator based on the fractionglH) estimated from the real f/factory2 acoustic noise of the
Brownian motion. This enables more realistic and accurat@ISEX-92 [19] database. The implementation also included
estimation of low bit error rate (BER)1(0~? to 107'?) a pure-Brownian noise, i.e., with, = 0,0 = 1 andH = 1/2.
in communications channels. It should be also applied The results accuracy is examined and presented considering
_ , o different samples sequence sizes and confidence inteBls (
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Daubechies filters with 12 coefficients. begin
for i:=1 to maxlevel do
delta[i]:= sigma * power(0.5,i*H) * sqrt(0.5) *
Il. 1/F FRACTIONAL BROWNIAN MOTION NOISE end for * sqrt( 1-power(2,2*H-2) )
Generally, noises can be represented by the power spectral gy o g maleveh
density fluctuations per a frequency interval. Or, simylably XINJ:= sigma * Gauss(+)
its variations over a time scale of orderf/(0 < 5 < 2). In d=Dr2
the literature, white, red/brow and pink noises are alserrefl li‘ﬁg}évelcmmvel) do
0 2 i P i= -
as 1/, 1/f a_md ]/ f noises, respectively. _ f°“X[§::‘°0§S(s;g[li’_gi"xmd])
The 1/f noise is a random process with power spectral end for
. . 1 for i:=0 to N step d do
density 5(f)) defined asS(f) = 5 where0 < g < 2. X[il:= X[i] + deltaflevel] * Gauss(s )
Mandelbrot showed that f/fractional noises haveS(f) end for.
defined byS(f) = f1=2H with H parameter values frequently A a2
close to 1. ThusH parameter is the exponent of the power S while
. . . en
spectral density of the f/fractional noises. Thél parameter
expresses the low-frequency statistics, i.e., the scalirigne- ) (a)
invariance degree, of a random process. It can also be defined General Architecture of fBm block
by the decaying rate of the auto-correlation coefficientfiom mean
p(k) (-1 < p(k) < 1) ask — oo. A random process can be RAM e
classified by itsH (0 < H < 1) parameter as Xlil 1Bm

sequence

« Anti-persistent proces9 (< H < %): The ACF varies
rapidly and} ;2 p(k) = 0.

+ Short-range dependence process (SRB)+ 1): The (X)) e
ACF p(k) exhibits an exponential decay to zero, such ™™ \( start
that> "~ p(k) = ¢, wherec > 0 is a finite constant.

« Long-range dependence process (LRB)< H < 1): data_ROMﬁ,H]Tk GRNG
The ACFp(k) is a slowly-vanishing function. It has slow
variations meaning a strong dependence degree between
samples that are far apart df;~ __ p(k) = co. Thus, L’k-
the S(f) is concentrated in the low-frequency spectrum. f

Harold Edwin Hurst [4] found the presence of low-frequency seed
or LRD statistics f = 0.72 & 0.006) in several observations (b)

of different natural phenomena. Brownian motion is a well. _ _ .
known example of a SRD process whilgflfractional noises, Eggi;h. 1if Noise Generator: (a) SRMD Algorithm [3]. (b) AfBm-block
by definition, are LRD random processes [9].
The fractional Brownian motion [8] [9] is a random process
(Xx(t)) with Gaussian independent increments, indexed lﬂ’s{en,Var[X(l) — X(0)] = 0% and Var[X (t2) — X (t1)] =
the single scalaff parameter defined it with zero mean and |ty — t1]02 for 0 < t; < t, < 1. To achieve this property a
continuous sample path (null at origin). The variance of th@ndom offset displacemenb() with mean zero and variance
increments is proportional to its time interval B&r[X (t2) — 52 must be added to the samples whéte= 1/2-(+1)42, For
X (t1)] v [ta—t1[*" for 0 < #; < t,. For allt; andt, instants example, theX (1/2) value is obtained by the interpolation
it follows that: X' (¢) has stationary incrementsy (0) =0  of X(0) and X (1) with variance?/227+1, Then, several
and E[Xy(t)] = 0 for any instantt ; and Xy (t) presents iterations are proceeded to compose the fBm random sequence
continuous sample paths. This means that fBm is a self&imiln order to provide stationary increments, after the midfmi
random process, i.e., its statistical characteristics faf any interpolation, aD; of a certain variancex (™)27; wherer
time scale. Fordany- andr > 0, it follows that [Xx(t + s the scaling factor.) is applied to all points (time incesits)
)= Xu(t)r<o] = rH[Xpg(t+r7) — X (t)-<o), wherer is @nd not just the midpoints. Thé&[;] noise sequence has
o d ST i = N + 1 time increments, wheregv = 2mazlevel gng
the scaling factor ané means similar in distribution. Thus, ., avel is the maximal number of iterations of the SMRD
Xn(t) is a random process completely characterized by g qrithm (Fig. 1(a)). The fBm statistics are generallyiagad
mean (null), varianceof’) and H parameter. for values in the interval [0,16]. However, tieaxlevel value
of the SMRD is not limited to 16. The other SRMD inputs
[1l. SRMD ALGORITHM AND THE 1/f FBM-BLOCK are the standard-deviatiosigma) and theH parameter. The
DESIGN Gaussian function (refer tGauss(.) in Fig. 1.(a)) provides the
Fig. 1 shows the SRMD pseudo-code and the block diagranean valued, D andlevel are counters variables.
of the proposed I/ fBm noise generator. Consider a time The 1/f fBm architecture (Fig. 1(b)) is composed by the
index ¢ defined at the interva)o, 1]. Setting X (0) = 0 and following main blocks: Uniform random number (URNG);
X (1) as a Gaussian RV with zero-mean and varian€e Gaussian random number (GRNG); d&®®M][i, H]; Control



JOURNAL OF COMMUNICATIONS AND INFORMATION SYSTEMS, VOL. 1NO. 26, APRIL 2011 15

. TABLE |

and X [:] RAM memory. All functions performed by the fBm Box-MULLER GRNG BLOCK

block were coded as very-high-speed integrated circuitl-har - _ _

ware description language (VHDL) entries. In this work, the Compilation Without Memory | With Memory
pniform random numl:_)ers_ generator (URNQ) _implementation Logic elements ulsgge ulsgge

is based on a combination of multiple-bit linear feedback ROM Memory (bits) 0 382
shift registers (LFSR) and cellular automata shift regsste Embedded Multipliers 2 2
(CASR) method proposed in [18]. This method generates a [ Max Clock Freg. 56 MHz 168 MHz

random sample by using XORs with the LFSRs and CASRs

registers. This combination leads to a good randomness ?ﬂg two registered values of the and z functions. It takes

its implementation requires few device resources. Theafine i
. . . o 3 clock cycles: one cycle to store eaechandz, value and a
function was implemented by a XOR of 43-bit position values,
. . . Ssecond cycle for the sum of these values. It can be seen from

The cellular automata consists of a circular register with

cells, each having a valug; equal to 0 or 1. These vaIuesEq' 2 and Eq. 3 that botln andy functions are indexed by

are synchronously updated in discrete time steps accordlﬁrgclh::}fgﬁﬁ:;ﬂgementatlon weggpelined to improve the

ta? 4 :(a. ai: a).(i}i‘(ai +Ofaqi+)1)m(;r(} gqu_ll_\;]aele:(gl)y *In this work, two different approaches were evaluated for
N S e ' ghe implementation of the GRNG block. Firstly, the GRNG

values attained by a particular cell through time serve as t &ock was coded in VHDL using only the available standard
random sequence. The URNG block was coded to produce 32-. .
ogic elements. In a second approach, a set of Altera Stratix

i i istri i iodicith010
bit uniformly distributed samples with periodicig0™". The Device Family’s memory blocks was defined to deal with the

LSFRs are started with a rand ’ LUT size issue. Table | shows the devices resources needed fo
The Gaussian random number generator (GRNG) blogK )

(i 10) peroms s ) ncton (Pg. 1) of re s FC mplementalons Tne second sttegy achieves
SRMD algorithm. The Box-Muller method shows that, given P 0 g ge-

: . . also be noted that its overall performance was increasgd, e.
u; and uy obtained from Uniform RVs distributed over the P gd

. . . . a maximum clock frequency of 168 MHz (improvement of
interval [0,1], a set of intermediate functioyfs g1, g» such 300%) when compared to the first implementation approach.

that B 7 1 This solution also uses around 0.03 % of the ROM memory.
flur) = V= In(u) () Hence, this approach was chosen as the default implemantati
91(uz) = ﬁsin(?wuz) ) of the GRNG block. .
The dataROM block performs the computation of the
g2(uz) = V2cos(2m us), (3) deltali] vector of the SRMD algorithm. The dat@OM is

indexed by: and H and it is defined b
and the followingz; andxzy RVs indexed byr an and itis defined by

z1 = f(u1) g1(u2) (4)  data_ROM]Ji, H] := deltali] _ (%)iH\/gm_

sigma ®)

72 = f(u1) g2(u2). ®) 1t can be seen from Eq. 6, thatata_ROM]Ji, H] uses
Then, z; and z, are independent Gaussian distributed Rv8ome complex calculations to compute theltai] vector.
with zero mean and unit variance. Linear segmentation apprd he power and square-root functions evaluated by LUTSs,
imation is then applied to determine tlieg; andg, functions usually take several clock cycles to be solved. In the pregos
of the Box-Muller algorithm. The CLT is used to reduceépproach allelta[i] values are stored and addressed by the
the nonlinearities of these functions for values close ® th andH indexes. This would be prohibitive due to the large
interval limits, i.e.,0 and1. Thus, improving the representatioramount of memory resources needs for storing a wide range of
accuracy of the Gaussian RVs. The output of the URNG blodk!ta[i] values. HoweverH values can be represented with
provides bothu; andu; to obtain thex; andz, (Eqs 2 and only 2-digits after the decimal point. Thus, 1,00D values
3) in only one clock cycle. Look-up tables (LUT) are largelyare necessary for each iteration of the SRMD algorithm.&inc
used to store the linear segmentation outputs of the Boxeviul0 < maxlevel < 16, delta[i] vector can have a maximum of
functions (f, g andg,) in a few clock cycles. But, in these so-16,000 elements. Hence,6% of the ROM memory ressource
lutions, large LUTSs sizes are required to store all the tesnl Was needed to store thexlta[i] vector. In fact, 1 f noises
linear approximation segments of the Box-Muller functioms have 1/2 < H < 1 and the memory needs can be even
the proposed design the linear approximation of Box-Mullgeduced. This second memory block is used to store the output
functions were performed by usinmultipliers, adders and a sample vector X[i]). The binary representation of eadh]
LUT to store each line segment. Since 32-bits were congideoise output was truncated to 16-bit wide. For example, for
for u; coding, it is possible to have a representation range @xlevel= 16 it will be necessaryi6 « 2'° ~ 1.0 Mbits of a
6.70 values for each GRNG sample. Similar representatid®AM resource.
range was found by the Xilinx implementation of [17] of the The main functions of the control block are:
Boutillon et al. design. Boutillonet al. [11] reported a 4 1) Read the GRNG block output (Gaussian samples);
range for each Gaussian representation WitlR% accuracy. 2) Read the dat®ROM values according to the selected
The following step of the Box-Muller algorithm is the sum of values indexed by and H;
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TABLE I
DEVICE RESOURCESUSAGE OF THE1l/f FBM BLOCK DESIGN

TABLE IV
STATISTICSESTIMATION: PURE 1/f NOISEPARAMETERS.

maxlevel 14 15 16 parameters m o H

Logic elements 1595 (6.1%) 1723 (6.9%) 1848 (7.4%) pure U/ f noise 0.000010 1.00 0.50
RAM memory (bits) 261,144 (13%) | 542,288 (27%)| 1,048,576 (52%) fBm block (C195%) | 0.000011 | 1.00+0.00001 | 0.51+0.00099
Embedded multipliers 10 10 12 fBm block (C199%) | 0.000011| 1.00+0.00001 | 0.51+0.00112

344064
176

688128
173

1376256
152

Initializing time (cycles)
Max. Clock Freq. (MHz)

i.e., largest 1f generated noise sequence, the implementation
used 7.4% of logic elements, 52% of RAM memory and 1.6%
of ROM memory of the FPGA main resources.

TABLE Il
STATISTICSESTIMATION: factory2 NOISE PARAMETERS.

parameters (frame=16ms) m (bits/frame) | o (bits/frame) H The delta[z'] of fBm block solves twopower and two

factory2 639.50 360.65 0.990 . . o
fBm block (CI 95%) 642,033,437 | 370.75:5.683 | 008ar000357| Sduare-root functions (usmgaﬂie!_UT method), hgnce It is
fBm block (CI 99%) 638.18L4.747 | 368.83L6.911 | 0.987:0.00732 necessary a total of52 x 2 clock cycles. Since the

SRMD algorithm performs onehile and two for loops, the
X|[i] vector spends an initial output delay,;;. This initial
delay depends on theaxlevel variable and is equal to

tinit _ (2mamlevel _ 1) + (2mamlevel+2 +

+ maxlevel — 2) x tgquss

~ (144 % tgauss) * 277 [cycles],

3) Evaluatedelta by multiplying previous dataROM data
by sigma;

4) Fill the initial values of theX[i] vector with the com-
putedsigma * Gauss values;

5) Perform thdoops iterations (onewhile and twofor’s);

6) Update thal, D andlevel counters;

()

wheret g, iS the total clock cycles to generate a Gaussian

7) Read fBm output samples frof[:] vector. R
. . _ sample. However, after this initial time, only one clock leyc
The EP1S25 FPGA kit used for theflhoise block imple- i haaded to read a sample value from fhg] vector.

mentation has approximately 25,000 lOQ_iC eIemgn_ts, 4_ RAM Tables 111 and IV show the statistics results obtained with
blocks of 500 Kbits each, ROM of 1 Mbits, 10 digital agnalhe 1/f Bm noise samples using tHactory? and the pure-
processordsp) blocks and 6 phase locked loop (PLL) used fogoynian noises parameters. The o and H results accuracy
clock generation. Thewltstyle attribute was set for using theWas obtained considering thestudent method [20] for the

dsp blocks. Altera’s Stratix devices have a fixed numbed9f 950 and 99% confidence intervals. Consideririgdependent
blocks which include a fixed number of embedded multipliers. .

. 2 > o2
The multstyle attribute specifies the implementation style fofXPeriments it follows thak',, = Xy, £t,-11-a1/ 5, where
multiplication operations (*) in the VHDL source code. It» IS at-student RV with n—1 degrees of freedom and an exact

also defines if the compiler shall implement a multiplicatio :00(1 — ) percent confidence interval. These results show
operation in general logic or in dedicated hardware. The that the samples generated by th¢ 1Bm blocks achieved
and d/2 division operations of the SRMD algorithm wereClose stapsucs to redhctory2 and the pure.-Brownlan noises.
implemented using shift registers. The scaling degrees accuracy was achieved for both noise
generation experiments. Particularly, tf& results obtained
from the 1/f fBm samples, were very interesting since they in-

) i ) i dicate the good representation of the low-frequerd€yX 1/2)

This section presents the main results obtained from tRg5racteristics of the f/noise.

evaluation of the proposed/% fBm noise generator. For rig 5 presents the PDF, HTD and ACF curves obtained
the tests it was used the, o= and H statistics estimated o the fBm noise samples. These plots were evaluated
from the real 1f factory2 acoustic noise. This acoustic NOiS&nsidering the redhctory2 parameters since it is a fLhoise

was sampled at 16kHz and 16 ms frame length considering _  75). The results obtained from the noise samples
Hamming window. Additionally, a pur2e-Brown|an generatiolyenerated from the hardware fBm block were compared to the
was performed with statisticss = 0, 0° = 1 andH = 1/2. referredideal curve in which the fBm samples were obtained
Fl\ge mcli(()epenldlent me.nmse sequences were generatefof from a4 C++ language implementation of the SRMD algorithm
10%, 1077, 107, 10°* bit samples sizes. For thé parameter cqnsideringl0 (maxlevel= 16) samples. The PDF plots (Fig.
estimation it was used the wavelet-based method [10] with %%a) were evaluated by the approximation of the noise sanple

IV. RESULTS

Daubechies filters with the 3-12 scale ranges.
The main results presented in this section include:
« Device resources usage;
« Estimation of the statistical parametens;: o, H;
« 1/f fBm noise samples representation: PDF, (log-logh show thetail distribution of the noise samples. For example,
HTD and ACF plots.
The device resources usage was evaluated for differealyingtails. Differently, 1/f samples with scaling invariance
maxlevel values, i.e., the number of increments of thg 1/degreesH > 1/2) have slow or heavy decaying tail behavior.
fBm noise sequence. This report is presented in Tab. 1l.At cAs expected, the generated fBm samplEst{0.75) presented
be noted that for the maximum number of SRMD iterationfieavy tails (Fig. 2(b)).

histograms. Note that the noise samples pattern distoibuti
obtained from the hardware implementation is quite siniar
the one obtained from software-based generation.

The log-log HTD P[X > «]) curves were very important

pure-white-Gaussian distributed samples have Exponeigtia
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Fig. 2. 1/f fBm Noise Design Validation Results: (a) PDF, (b) log-log BiT{c) ACF.

From the ACF graphics (Fig.2(c)) it can be inferred thanemory and 1.6% of ROM memory. The estimation results
they follow a slowly-vanishing function with slow variatis showed that 1f fBm noise generator accurately achieved
to infinity (i.e., lagk — o). This also demonstrates that thehe mean, variance and the low-frequency statistics and the
noise samples hav&( ) concentrated in low-frequency rangenoise samples pattern. Moreover, the auto-correlatioatfom

of the generated noise samples confirmed the expected
V. CONCLUSION slow variations of the real }/factory2 acoustic noise. The

This paper proposed a fast and accurate hardware degioposed design showed to be very promising to evaluate
of 1/f noise generator based on the fractional Brownidhe performance of communications channels with very low
motion. The noise generator is described for the successieR values. It can also be interesting for signal processing
random addition midpoint displacement method. The satuti@pplications (e.g., noise extraction) that deals with yois
enabled the generation of 150 million of 16-bit noise samplgonditions such as automatic speaker recognition [22]eOth
per second. The F/noise generator achieved for the largegtlgorithms for the generation of A/fBm samples [9] [6]
sample size generation 7.4% of logic elements, 52% of RARNd true random number [23] can be considered as future
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work. The proposed design will also be applied to genera*~

impulsive or alpha-stable noises [24].
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