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Linear Dispersion Codes for Limited Feedback
Channels with Feedback Impairments

Fernando M. L. Tavares, Renato Machado, Bartolomeu F. Uchôa-Filho, and André N. Barreto

Abstract—Linear dispersion codes (LDCs) are an attractive
tool for attaining spatial diversity in OFDM systems with multiple
transmit antennas. To reach the potential gains, in each situation,
the selection of a proper set of codes depends, in general, onthe
existence of a reliable feedback channel. We propose LDCs for
multiple-input multiple-output (MIMO) channels with a fixe d
amount of feedback. The proposed scheme selects the LDC from
a set of LDCs that minimizes the error probability based on the
instantaneous channel conditions. The determination of the best
set of LDCs is described as a constrained optimization problem.
We present several good sets of LDCs, obtained from an opti-
mization algorithm. Through simulation results we show that the
proposed schemes outperform previously reported comparable
results, yet at the price of increased complexity. We also show
the performance gains that can be reached in practice with LDC,
by critically evaluating the feedback channel impairments, such
as errors and signalling delays, and also considering the effect
of signalling overhead on the achievable throughput.

Index Terms—Limited feedback channel, linear dispersion
codes, MIMO, OFDM, transmit diversity.

I. I NTRODUCTION

M ULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO)
wireless communication systems can exploit the

spatial dimension to achieve higher transmission rates and/or
to improve the error performance over fading channels.
For single-input multiple-output (SIMO) wireless channels,
techniques such as selection diversity combining (SDC),
equal gain combining (EGC), and maximum ratio combining
(MRC) have been used to obtain diversity gain. One way of
obtaining the benefits of the spatial dimension for wireless
channels with multiple transmit antennas is through space-
time coding [1], which requires no knowledge of the channel
state information (CSI), i.e., the fading coefficients associated
with the channels from the transmit to the receive antennas,
at the transmitter. For MISO or MIMO wireless channels,
the performance can be considerably improved if a feedback
channel exists so that the CSI is known at the transmitter. If
the CSI is perfectly known at the transmitter, then maximum
ratio transmission (MRT) [2] is the optimum beamforming.
If the antenna amplifiers are required not to modify the
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transmit powers of the transmitted signals, then equal gain
transmission (EGT) [3] with any combining scheme (SDC,
EGC or MRC) achieves full diversity order over the MIMO
flat fading channel.

A more realistic assumption, however, is that of limited
feedback (consisting of a few bits) with partial CSI at the
transmitter. This situation requires some form of quantization
of either the CSI or the beamforming vectors. The most usual
approach is to define a finite codebook of possible beam-
forming vectors known to both the transmitter and receiver,
and based on the instantaneous CSI the receiver only needs
to send through the feedback channel the label of the best
(according to a given criterion) beamforming vector. The
analysis of quantization methods for MIMO channels with
limited feedback is a well-studied research problem [4]–[8].

In [6], the codebook design problem was shown to be equiv-
alent to the problem of packing one-dimensional subspaces
known as Grassmannian line packing. Although Grassmannian
beamforming achieves full diversity for the case of i.i.d.
Rayleigh fading channels, no practical algorithm to construct
the codebook was developed. One important contribution of
[6] was the derivation of a bound on the number of feedback
bits required to achieve full diversity. In particular, forMT

transmit antennas, at leastlog2(MT ) bits are required.
The problem of quantizing the EGT (Q-EGT) beamforming

vector was first proposed in [5], and recently addressed by
Murthy and Rao [7]. In [7], a vector quantization approach
to Q-EGT is considered, and an algorithm based on the
generalized Lloyd algorithm is presented that converges toa
possibly local optimum codebook in the sense of maximizing
capacity. The theoretical results developed in [7] are valid
when the SNR is either very high or very low, and progres-
sively becomes more accurate as the number of feedback bits
gets larger.

In [8], assuming that the transmitter uses the quantized
information for beamforming, the authors derive a universal
lower bound on the outage probability for any finite set of
beamformers. By this result, it is possible to characterize
the gain with each additional bit of feedback information
regarding the channel state, and to show how the performance
approaches that of perfect CSI.

Besides the theoretical contributions to this important sub-
ject, as referenced earlier, a number of practical schemes de-
signed for the MIMO wireless channels with limited feedback
have been proposed, many of them adopting the minimization
of the instantaneous probability of error, or, equivalently,
maximization of the signal-to-noise ratio (SNR) [9]–[16].

An interesting feedback-assisted scheme, proposed by Gore
and Paulraj [9], uses an orthogonal space-time block code
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(OSTBC) [17] with the best subset of antennas, selected from
MT ≥ 3 transmit antennas available. They have shown that a
transmit diversity order ofMT is achieved, as if all the transmit
antennas were used. Herein we refer to this scheme as transmit
antenna selection/Alamouti (TAS/A) when the Alamouti code
is used.

Chenet al. [10] have presented an error probability analysis
for the so called transmit antenna selection/maximal-ratio
combining (TAS/MRC). In this scheme, which we refer to
as TAS/T (“T” stands for trivial), a single transmit antennais
selected fromMT ≥ 2 transmit antennas. Again, a transmit
diversity order ofMT is achieved.

Similar ideas have been proposed by Machado and Uchôa-
Filho [11], refined later in [12], [13]. They have proposed
a hybrid transmit antenna/code selection scheme that chooses
from a list of (orthogonal and non-orthogonal) STBCs the best
code to be used with a subset of transmit antennas. In the
same direction, the so called group-coherent codes (GCCs)
have been proposed by Akhtar and Gesbert [14], [15] for
MT = pM transmit antennas andp−1 feedback bits. A GCC
for MT = pM transmit antennas consists of a STBC for the
first M transmit antennas and the same STBC for each one
of the otherp− 1 groups ofM transmit antennas, where the
signals transmitted through each group (except the first one)
of M antennas is multiplied by either+1 or−1, the polarities
being determined byp−1 feedback bits. The transmit diversity
order achieved ispM and, again, the aim is to minimize the
instantaneous error probability. Each multiplying factor±1
can be seen as a 2-level quantization ofexp(jθ). Each of
the p − 1 feedback bits determines a phaseθ ∈ {0, π}. In
other words, the multiplying factors are taken from BPSK.
In [16], the GCCs have been extended to yield a better error
performance with(p − 1) log2(r) feedback bits, wherer is
some positive power of 2.

In these practical schemes, the set of codes have not been
optimized formally, and their choice was based on intuition.
In this paper, for wireless channels withMT ≥ 2 transmit
antennas,MR receive antennas, and limited feedback, we
propose a code selection (CS) transmission scheme that uses
the best code from a set of2bf codes, wherebf is the number
of feedback bits. By best, we mean the code that minimizes
the instantaneous error probability.

The codes in the set of possible selections belong to the
broad class of linear dispersion codes (LDCs), introduced in
[18]. LDCs are good candidates for high-rate MIMO signaling
over wireless channels. Transmitted codewords of an LDC
are formed by linear combinations over space and time of
certain dispersion matrices, the transmitted data symbolsbeing
the combining coefficients. Our preference for the LDCs is
due to the fact that encoding and decoding are an easy task
when these codes are used, and constitute a broad class
of codes, of which many space-time codes, antenna/code
selection schemes, etc. are particular cases.

Herein, for a fixed amount of feedback, the determination of
the best set of LDCs, i.e., the one that minimizes theaverage
error probability, is described as a constrained optimization
problem. A closed-form solution to this problem is difficult
to obtain. Nevertheless, for certain values ofMT , bf , and

codeword length, we obtained good sets of LDCs, by using an
optimization algorithm. Although our results are concentrated
on sets of rate-one LDCs, sets with codes of other rates can
be sought as well. Also, results are shown forMR = 1 receive
antenna, but the results are valid and can easily be adapted to
the MIMO case with any combining scheme (SDC, EGC or
MRC). This is the first contribution of this paper. Part of this
contribution was presented in [19].

We call attention to the fact that the LDCs in the good
sets given in this paper correspond to a form of uniform Q-
EGT, although some sets may have a more general form as
compared to the ones in [7], because herein the number of
per-antenna bits may be different for different antennas. Since
for some parameters the optimization algorithm outputs the
uniform Q-EGT solution, the results in this paper support the
claim made in [7, Section VII] that the uniform quantization
is in fact very likely to be the optimum scalar quantized when
the total number of feedback bits is a multiple of(MT − 1).

However, those LDCs were not studied in more realistic
conditions where limitations of the feedback channel are
present. Firstly, even though the feedback channel conveys
quantized information, it is still not possible to send the index
of the code word for each symbol or, in an OFDM system,
for each carrier. Therefore, the feedback information is usually
just related to a sample of the whole channel. Secondly, errors
and delays are limitations of any communication channel and
the feedback channel is not an exception. In this paper, the
LDC presented in [19] is analyzed taking into account these
inherent feedback channel limitations and it will be shown that
gains of the LDC technique can only be obtained when some
conditions are met. We investigate the performance not only
in terms of the bit error rate, but also consider the goodput,
where we include the signalling overhead from the feedback
channel. This is the second contribution of this paper.

The paper is organized as follows: In Section II, we review
LDCs. The proposed scheme and its associated optimization
problem are described in Section III. In Section IV, we
describe the optimization algorithm used to obtain the good
sets of LDCs for selected parameters given in Section V. In
Section VI, we present simulation results of several LDC codes
considered in Section V. In Section VII, the results of the
analysis of the feedback channel limitations are presentedand
discussed. Finally, Section VIII concludes the paper.

II. L INEAR DISPERSIONCODES

In this section, we present the model for MIMO systems
employing LDCs. Consider a MIMO system withMT transmit
andMR receive antennas. Assume that the channel has a flat
Rayleigh fading and remains constant overτ symbol intervals.
The input-output relationship is given by

Y = γ0XH + W, (1)

whereY is theτ ×MR matrix of the received signals andX
is theτ ×MT matrix of transmitted signals with unit average
energy. LetCN (0,R) represent the joint p.d.f. (probability
density function) of a zero-mean circularly symmetric complex
normal random vector with covariance matrixR. Then,W is
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the τ ×MR matrix CN (0, IτMR
), representing the joint p.d.f.

of the i.i.d. additive Gaussian noise samples with unit variance,
H is theMT ×MR MIMO channel characterized by the p.d.f.
CN (0, IMT MR

), andγ0 =
√

ρ
MT

, with ρ the average SNR at
each receive antenna, regardless of the number of transmit
antennas.

Assume we haveQ r-QAM data symbols{sq}, q =
1, . . . , Q, with unit average energy, to be transmitted overτ
symbol intervals. The linear transmission (LD) matrixX is
then given by [18]

X =

Q
∑

q=1

αqAq + jβqBq, (2)

where we have decomposed the transmitted symbolsq into its
real and imaginary parts, i.e.,sq = αq + jβq. {Aq, Bq},
q = 1, . . . , Q, are complex-valued dispersion matrices of
dimensionτ ×MT that specify the code. The rate of the LDC
is

R =
Q log2 r

τ
(bit/symbol interval) . (3)

Typically, the dispersion matrices{Aq, Bq}, q = 1, . . . , Q,
are required to satisfy the following energy constraints, listed
in increasing order of stringency [18]:

Q
∑

q=1

Tr
(
AH

q Aq + BH
q Bq

)
= 2τMT ; (4)

TrAH
q Aq = TrBH

q Bq =
τMT

Q
, q = 1, . . . , Q; (5)

AH
q Aq = BH

q Bq =
τ

Q
IMT

, q = 1, . . . , Q, (6)

where(·)H represents conjugate transpose andTr(A) denotes
the trace of matrixA. In (4) we normalize the total transmit
power, (5) and (6) guarantee that the transmitted power is
distributed equally among allQ symbols and all transmit
antennas, respectively.

Now, let us defineYR , ℜ{Y} and YI , ℑ{Y}.
Denote then-th column ofYR, YI , HR, HI , WR andWI ,
respectively, byyR,n, yI,n, hR,n, hI,n, wR,n andwI,n, and
define

Aq ,

[
AR,q −AI,q

AI,q AR,q

]

, Bq ,

[
−BI,q −BR,q

BR,q −BI,q

]

, (7)

hn ,

[
hR,n

hI,n

]

,

wheren = 1, . . . , MR, andAR,q, AI,q, BR,q, andBI,q are
the real and the imaginary parts of the matricesAq andBq,
respectively. With these definitions, we rewrite (1) as:










yR,1

yI,1

...
yR,MR

yI,MR










︸ ︷︷ ︸

y

=

√
ρ

MT
H










α1

β1

...
αQ

βQ










︸ ︷︷ ︸

x

+










wR,1

wI,1

...
wR,MR

wI,MR










︸ ︷︷ ︸

w

, (8)

where the equivalent2MRτ × 2Q real-valued channel matrix
H is given by

H =






A1h1 B1h1 . . . AQh1 BQh1

...
...

. . .
...

...
A1hMR

B1hMR
. . . AQhMR

BQhMR




. (9)

The LDCs subsume, as special cases, both V-BLAST [20] and
orthogonal STBC [17]. From (2), we can see that LDCs are
very simple to encode. Furthermore, LDCs can be decoded
very efficiently by several well-known MIMO demodulation
algorithms, such as the sphere decoder [21], the sequential
Monte Carlo (SMC)-based detector [22], the nulling-and-
canceling detector [23], as well as the simple linear detectors
[24].

III. L INEAR DISPERSIONCODES FORMIMO CHANNELS

WITH L IMITED FEEDBACK

In this section, we design LDCs for MIMO channels with
limited feedback. Consider the MIMO system in Section II
with MT ≥ 2 transmit antennas and, for simplicity,MR = 1
receive antenna. Assume the channel fading coefficients are
known at the receiver, and that an error-free and a delay-
free feedback channel is available through whichbf bits
can be sent to the transmitter. In our transmission scheme,
based on the instantaneous channel conditions, the receiver
determines which LDC within a set of2bf LDCs yields the
maximum instantaneous SNR (i.e., minimum instantaneous
error probability). It then sends abf -bit index through the
feedback channel indicating the best LDC to the transmitter.

Let us define the complete real and imaginary dispersion
matricesA = [A1,A2 · · ·AQ] and B = [B1,B2 · · ·BQ],
both of dimensionτ × (MT Q). Also, letJ = {1, . . . , 2bf } be
an index set,S = {{A(i),B(i)} : i ∈ J} be a set containing
2bf LDCs and H({A(i),B(i)},H) be the matrix in (9)
for the i-th LDC in S for a given channel realizationH.
The instantaneous pairwise error probability (PEP), i.e.,the
probability conditioned onH that a maximum-likelihood (ML)
receiver decides erroneously in favor of a real vectore given
that the real data vectorx defined in (8) was transmitted is

P (x→ e|H) = P
(

‖y− γ0He‖2 < ‖y− γ0Hx‖2
)

, (10)

which is well approximated by [1]

P (x→ e|H) 6 exp

(

−‖H(x− e)‖2 γ2
0MT

4

)

, (11)

where‖ · ‖2 denotes the Frobenius norm. The probability in
(10) depends not only on the signal constellation adopted but
also on the specific pair of correct and erroneous vectors,
which makes the solution to our problem more difficult to
obtain. Instead, we shall be interested in a representative
error performance measure that depends essentially on the
instantaneous channel realizationH and on the description
of the LDC offered by the dispersion matricesA and B,
regardless of the constellation adopted. That is, we consider
the PEP conditioned onH derived in [18]

Pe(H) ≤ 1

2
det

[

I +
γ2
0

2
HTH

]−1/2

, (12)
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where (·)T denotes transpose. This formula is based on the
Gaussian input assumption, so it is not dependent on a
particular signal constellation. For a channel realization H,
and for a given setS of LDCs, in our transmission scheme
the receiver selects the indexi∗ corresponding to the best LDC
according to

i∗ = arg min
i

Pe(H({A(i),B(i)},H)). (13)

Let us now describe the optimization problem related to the
determination of the optimal set of LDCs. We want to find the
set of LDCs that minimizes theaveragePEP over all channel
realizations. Let

P e(S) = EH min
{A,B}∈S

Pe(H({A,B},H)) (14)

be the average PEP for the setS of LDCs. We should note
that an LDC{A,B} is a point in theC2τMT Q space. So a set
S is a point inC

2τMT Q × · · · × C
2τMT Q

︸ ︷︷ ︸

2bf times

. Then the optimal

setS∗ of LDCs (subject to one of the constraints in Sec. II)
is given by

S∗ = arg min
S∈C

2τMT Q × · · · × C
2τMT Q

︸ ︷︷ ︸

2
bf times

P e(S). (15)

As observed in [25], the minimization of the expected value of
(12) cannot be solved analytically. The optimization problem
in (15), which is far more complex, must thus be solved by
some computational method. In particular, the continuous mul-
tidimensional complex space in which the dispersion matrices
reside should be restricted to some finite subset, and expecta-
tions with regard toH should be obtained through simulations
over a large number of independent channel realizations.

IV. OPTIMIZATION ALGORITHM

Finding the optimum set of LDCs for each system con-
figuration (parametersMT , MR, τ , Q and bf ) is a complex
task. An exhaustive search can be done over all possible set
combinations, but it becomes unfeasible as the number of
combinations increases, and, as far as we are aware, there
is no analytical solution to this problem.

In this section we present the search algorithm that was
considered to find the sets of LDCs presented in Section V.

An optimization algorithm was proposed in [16], where the
power restrictions in (5) and (6) should always be satisfied.
In this section, we propose an algorithm that may consider
only the restriction in (4), decreasing the algorithm complexity,
and making it possible to use when restrictions (5) and (6)
are not required. We also reduce the algorithm complexity by
eliminating, at an early stage, all the LDCs that provide a high
PEP, and are thus not likely to be part of the optimum LDC
codebook.

The goal of the algorithm is to find the optimum set of2bf

dispersion matrix pairs{A(i),B(i)} that satisfies (15).
In this paper, we represent the dispersion matrix pair by a

single complex dispersion matrixC(i) = A(i) + jB(i), in

which the element at them-th row andn-th column is given
by

cm,n(i) = γm,n(i)eθm,n(i). (16)

Thus, the elements of the dispersion matricesA andB are

am,n(i) = γm,n(i) cos θm,n(i)

bm,n(i) = γm,n(i) sin θm,n(i). (17)

To limit the search space we must choose initially a setSθ

of possible phasesθm,n(i) and a setSγ of all possible ampli-
tudesγm,n(i). In this contribution we have selected the sets

Sθ = {0, π/2, π, 3π/2} andSγ =
{

0,
√

1/2, 1,
√

3/2,
√

2
}

.
However, this choice was arbitrary and not optimized in any
particular way. A study of the ideal set size and element values
still needs to be performed. The algorithm is described in
Algorithm 1 using pseudo-code.

Algorithm 1: Code set optimization algorithm

Data: The parametersMT , MR, τ, Q andbf ; the sets of
possible amplitudes and phasesSθ andSγ ; the
number of channel samplesNH; and the maximum
allowed pairwise error probabilityPe,max

Result: The set of optimized dispersion matricesS∗

begin
repeat

Define the setSC of (|Sθ| |Sγ |)τMT Q−1 possible
dispersion matricesC, according to all possible
combinations of angles and amplitudes, such that
θ0,0 == 0;
for C ∈ SC do

if C does not satisfy any of the desired power
restrictionsthen

RemoveC from SC;

if |SC| == 0 then
redefineSθ andSγ with more elements;

until |SC| > 0;
Create a setSH of NH random complex channel
matricesH of dimensionMT ×MR;
for C ∈ SC do

for H ∈ SH do
Calculate the upper bound of the PEP
Pe(C,H), as in (12);

Calculate the average PEP̄Pe(C) over all
channel samples;
if P̄e(C) > Pe,max then

RemoveC from SC;

SetP ∗
e := 1 andS∗ ←− ∅ ;

for each setS of 2bf different codes fromSC do
Calculate the average minimum PEP̄Pe(S) for
the set, as in (14);
if P̄e(S) < P ∗

e then
SetP ∗

e := P̄e(S) andS∗ := S ;
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The number of channel samplesNH and the maximum al-
lowed PEPPe,max for any dispersion matrix are two parameters
that can be selected to reduce the algorithm processing time.
NH must be large enough to guarantee statistical confidence
and in this work we have consideredNH = 20.000 channel
realizations. However, it is important to mention that we have
not performed any investigation on whether a smaller number
of channel samples would also provide meaningful results.

Alternatively, instead of setting a maximumPe,max, we can
equivalently select theNC codes with the lowest average PEP.
This was the approach taken in this contribution, in which for
MT = 2, MR = 1, τ = Q = 1 and bf = 2, we selected the
best 36 dispersion matrices before determining the optimum
set.

Even though we cannot guarantee that the codes found with
this algorithm are mathematically optimal, we shall see in
Section VI that they perform as good as or even better than
codes previously found in the literature.

V. SEVERAL GOOD SETS OFLDCS WITH FEEDBACK

Herein, the results obtained through the algorithm described
in the Section IV are presented, where the power restrictionin
(5) was considered. At the end of this section, some extensions
are also mentioned.

The resulting dispersion matrices forMT = 2, MR = 1,
τ = Q = 1, andbf = 1 are1

A1(1) = B1(1) =

[
1
1

]T

, A1(2) = B1(2) =

[
1
−1

]T

.

The corresponding codes are

X1 =
[

s1 s1

]
, X2 =

[
s1 −s1

]
. (18)

For MT = 2, MR = 1, τ = Q = 1, bf = 2 we have used
the same algorithm mentioned earlier (adapted for this new
configuration) to find the “best” set of codes. The dispersion
matrices of the best set of LDCs (under the energy constraint
in (5)) were found to be

A1(1) = B1(1) =

[
1
1

]T

, A1(2) = B1(2) =

[
1
j

]T

,

A1(3) = B1(3) =

[
1
−1

]T

,A1(4) = B1(4) =

[
1
−j

]T

,

and the corresponding codes are

X1 =
[

s1 s1

]
, X2 =

[
s1 js1

]
,

X3 =
[

s1 −s1

]
, X4 =

[
s1 −js1

]
. (19)

We note that the best solution for these simple examples are
particular cases of the so-called generalized group-coherent
codes [16]. For other parameters, the best solutions are still
unknown. However, it should be noted that, with the set of

1It is important to note that equivalent solutions are possible. Any pair of
LD matrices that have the form

A1(1) = B1(1) =

[
a
a

]T

, A1(2) = B1(2) =

[
b
−b

]T

,

is equivalently a good pair of LDCs, wherea andb can be arbitrary complex
numbers under the energy constraints presented in Section II.

LDCs described in (18), the transmitter sends signals1 through
antenna 1 and eithers1 or a version ofs1 rotated by π
radians through antenna 2, depending on the phase difference
betweenh1,1 andh2,1. In other words, the feedback bit carries
phase-only information. This idea can be extended for other
parameters, when the number of LDCs inS (given by 2bf )
is matched (in a sense that will become clear) to the number
of transmit antennas. Although not obtained by solving the
optimization problem in (15), the following sets of rate-one
(i.e., τ = Q) LDCs are likely to be optimal.

For MT = 2, τ = Q = 1, and bf = b, the associated
dispersion matrices are given by

Ak,1 = Bk,1 =

[
1

exp
(
j 2π

2b (k − 1)
)

]T

,

and the corresponding codes are

Xk =
[

s1 exp
(
j 2π

2b (k − 1)
)
s1

]
, (20)

wherek = 1, . . . , 2b.
Extending forMT = 2, bf = b, andτ = Q ≥ 1, we have

that the linear dispersion matrices, forq = 1, . . . , Q, are given
by

Ak,q = Bk,q =

[
0 . . . 1 . . . 0
0 . . . exp(j 2π

2b (k − 1)) . . . 0

]T

,

where the only nonzero row is theq-th row, and the corre-
sponding codes are

Xk =






s1 exp
(
j 2π

2b (k − 1)
)
s1

...
...

sQ exp
(
j 2π

2b (k − 1)
)
sQ




 , (21)

wherek = 1, . . . , 2b.
For MT = 3, τ = Q ≥ 1, andbf = 2, the linear dispersion

matrices, forq = 1, . . . , Q, are given by

A1,q = B1,q =





0 . . . 1 . . . 0
0 . . . 1 . . . 0
0 . . . 1 . . . 0





T

,

A2,q = B2,q =





0 . . . 1 . . . 0
0 . . . 1 . . . 0
0 . . . −1 . . . 0





T

,

A3,q = B3,q =





0 . . . 1 . . . 0
0 . . . −1 . . . 0
0 . . . 1 . . . 0





T

,

A4,q = B4,q =





0 . . . 1 . . . 0
0 . . . −1 . . . 0
0 . . . −1 . . . 0





T

,

where the only nonzero row is theq-th row, and the corre-
sponding codes will be of the form

X1 =






s1 s1 s1

...
...

...
sQ sQ sQ




 , X2 =






s1 s1 −s1

...
...

...
sQ sQ −sQ




 ,

X3 =






s1 −s1 s1

...
...

...
sQ −sQ sQ




 , X4 =






s1 −s1 −s1

...
...

...
sQ −sQ −sQ




 .
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For MT = 3, bf = 2b, andτ = Q ≥ 1, we have that the
linear dispersion matrices, forq = 1, . . . , Q, are of the form
Ak,q andBk,q, for q = 1, . . . , Q, will be of the form

Ak,q = Bk,q =





0 . . . 1 . . . 0
0 . . . α1 . . . 0
0 . . . α2 . . . 0





T

,

where the only nonzero row is theq-th row, and the corre-
sponding codes will be of the form

Xk =






s1 α1s1 α2s1

...
...

...
sQ α1sQ α2sQ




 , (22)

where for eachXk, k = 1, . . . , 22b, a different pair (α1, α2)
is taken from:

{

exp

(

j
2π

2b
n1

)

, exp

(

j
2π

2b
n2

)}

,

wheren1, n2 = 0, 1, . . . , 2b − 1.
As a final and more general extension, we consider any

MT ≥ 2, bf = (MT − 1)b, andQ ≥ 1. We have that the LD
matrices, forq = 1, . . . , Q, are of the form

Ak,q = Bk,q =








0 . . . 1 . . . 0
0 . . . α1 . . . 0
...

...
...

0 . . . αMT −1 . . . 0








T

,

where the only nonzero row is theq-th row, and the corre-
sponding codes will be of the form

Xk =






s1 α1s1 . . . αMT −1s1

...
...

...
sQ α1sQ . . . αMT −1sQ




 , (23)

where for eachXk, k = 1, . . . , 2(MT−1)b, a different
(α1, . . . , αMT −1) is taken from:

{

exp

(

j
2π

2b
n1

)

, . . . , exp

(

j
2π

2b
nMT −1

)}

,

wheren1, . . . , nMT−1 = 0, 1, . . . , 2b − 1.
The codes obtained in this section are referred throughout

the rest of the paper as CS/LDC-T codes. A very important
observation we can make about them is that, although we
have considered in our optimization problem the large classof
LDCs, the best codes turned out to be a very special cases of
LDCs and are surprisingly simple. The performance of some
LDCs is presented in the next section.

VI. RESULTS: IDEAL FEEDBACK CHANNEL

In this section, we compare the LDCs discussed in Section
V in terms of their bit error rate (BER) versus SNR (γ0) for
BPSK modulation over a flat quasi-static Rayleigh fading and
ideal feedback channel. Regarding the sets of LDCs proposed
in this paper, there are certain characteristics that should be
mentioned. For instance, only one RF chain is required since
the same symbol, up to an antenna-dependent phase rotation,
is transmitted through all antennas. Moreover, a very simple

linear decoding method with a small decoding delay (τ = 1
for the new LDCs simulated herein) is adopted. The results
are presented in Figure 1 forMT = 2 transmit antennas and in
Figure 2 forMT = 3 transmit antennas, both withτ = Q = 1
symbol andMR = 1 receive antenna. In both figures, the
corresponding optimal beamforming scheme is also included.

TABLE I
SET OF CODES OF THEGBLP-2SCHEME. MT = 2 AND bf = 2.

Antenna1 Antenna2
Code 1 s1(−0.1612 − j0.7348) s1(−0.5135 − j0.4128)
Code 2 s1(−0.0787 − j0.3192) s1(−0.2506 + j0.9106)
Code 3 s1(−0.2399 + j0.5985) s1(−0.7641 − j0.0212)
Code 4 s1(−0.9541) s1(0.2996)

TABLE II
SET OF CODES OF THEGBLP-3SCHEME. MT = 2 AND bf = 3.

Antenna1 Antenna2
Code 1 s1(0.8393 − j0.2939) s1(−0.1677 + j0.4256)
Code 2 s1(−0.3427 + j0.9161) s1(0.0498 + j0.2019)
Code 3 s1(−0.2065 + j0.3371) s1(0.9166 + j0.0600)
Code 4 s1(0.3478 − j0.3351) s1(0.2584 + j0.8366)
Code 5 s1(0.1049 + j0.6820) s1(0.6537 + j0.3106)
Code 6 s1(0.0347 − j0.2716) s1(0.0935 − j0.9572)
Code 7 s1(−0.7457 + j0.1181) s1(−0.4553 − j0.4719)
Code 8 s1(−0.7983 + j0.3232) s1(0.500 + j0.0906)

TABLE III
SET OF CODES OF THEGBLP-3SCHEME. MT = 2 AND bf = 3.

Antenna1 Antenna2
Code 1 s1(0.8393 − j0.2939) s1(−0.1677 + j0.4256)
Code 2 s1(−0.3427 + j0.9161) s1(0.0498 + j0.2019)
Code 3 s1(−0.2065 + j0.3371) s1(0.9166 + j0.0600)
Code 4 s1(0.3478 − j0.3351) s1(0.2584 + j0.8366)
Code 5 s1(0.1049 + j0.6820) s1(0.6537 + j0.3106)
Code 6 s1(0.0347 − j0.2716) s1(0.0935 − j0.9572)
Code 7 s1(−0.7457 + j0.1181) s1(−0.4553 − j0.4719)
Code 8 s1(−0.7983 + j0.3232) s1(0.500 + j0.0906)

TABLE IV
SET OF CODES OF THEGBLP-4SCHEME. MT = 3 AND bf = 2.

Antenna1 Antenna2 Antenna3

Code 1 s1/
√

3 s1/
√

3 s1/
√

3
Code 2 js1/

√

3 −s1/
√

3 −js1/
√

3
Code 3 −s1/

√

3 s1/
√

3 −s1/
√

3

Code 4 −js1/
√

3 −s1/
√

3 js1/
√

3

An important class of codes for MIMO channel with
limited feedback, named Grassmannian beamforming (Love
and Heath [6]), is considered in this section for performance
comparisons. Tables I–V present the schemes GBLP-2, GBLP-
3, GBLP-4, and GBLP-5 [6], respectively, where GBLP means
Grassmannian beamforming line packing. In Table V, θ1 =
2π/3 andθ2 = 4π/3.

Figure 1 considers the TAS/T [10], forbf = 1 feedback
bit, the CS/LDC-T-B and CS/LDC-T-Q, forbf = 1, 2 feed-
back bits, respectively, and the GBLP-2 and GBLP-3 [6],
for bf = 2, 3 feedback bits, respectively. The CS/LDC-T-B
and CS/LDC-T-Q schemes are described in (18) and (19),
respectively, and can be represented generally by[s α1s],
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TABLE V
SET OF CODES OF THEGBLP-5SCHEME. MT = 3, bf = 3.

Antenna1 Antenna2 Antenna3

Code 1 s1/
√

2 s1/
√

2 0

Code 2 s1/
√

2 0 s1/
√

2

Code 3 0 s1/
√

2 s1/
√

2

Code 4 s1 exp{jθ1}√
2

s1 exp{jθ2}√
2

0

Code 5 s1 exp{jθ1}√
2

0
s1 exp{jθ2}√

2

Code 6 s1 exp{jθ2}√
2

0
s1 exp{jθ1}√

2

Code 7 s1 exp{jθ2}√
2

s1 exp{jθ1}√
2

0

Code 8 0
s1 exp{jθ2}√

2

s1 exp{jθ1}√
2
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10
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10
−1

B
E

R

 

 

TAS/T
CS/LDC−T−B
CS/LDC−T−Q 
GBLP−2
CS/LDC−T−8 
GBLP−3
Optimal beamforming

γ0 (dB)

Fig. 1. BER of TAS/T forbf = 1, CS/LDC-T, for bf = 1, 2, 3, GBLP-
2, GBLP-3, for bf = 2, 3, and the optimal beamforming curve,MT = 2,
MR = 1

whereα1 belongs to2bf -PSK. The maximum diversity order
(equal to 2) is achieved for any number of feedback bits.

In Figure 2, TAS/A [9], TAS/T [10], the GBLP-4 [6], and
the new CS/LDC-T-BB, forbf = 2 feedback bits; the GBLP-
5 [6] and the new CS/LDC-T-BQ, forbf = 3 feedback bits;
the HS 3Tx 4Fb [12] and the new CS/LDC-T-QQ, forbf = 4
feedback bits, are considered.

3 5 7 9 11 13 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

 

 

TAS/A  
TAS/T  
GBLP−4 
CS/LDC−T−BB 
GBLP−5
CS/LDC−BQ
HS 3Tx 4Fb  
CS/LDC−T−QQ 
Optimal beamforming

γ0 (dB)

Fig. 2. BER of TAS/A, TAS/T, GBLP-4, and CS/LDC-T-BB forbf = 2,
GBLP-5 and CS/LDC-T-BQ forbf = 3, HS 3Tx 4Fb and CS/LDC-T-QQ for
bf = 4, and the optimal beamforming curve,MT = 3, MR = 1.

The CS/LDC-T-BB scheme is described by (22) forbf = 2.
In other words, for this scheme the set of LDCs is defined as
the four matrices of the form[s α1s α2s], where α1 and
α2 belong to{±1} (BPSK). The CS/LDC-T-BQ scheme, not
described before, corresponds to the selection of the best code
from the set of LDCs[s α1s α2s], whereα1 belongs to{±1}
(BPSK) andα2 belongs to{±1,±j} (QPSK). The CS/LDC-
T-QQ scheme is described by (22) and corresponds to the
selection of the best code from the set of LDCs[s α1s α2s],
whereα1 andα2 belong to{±1,±j} (QPSK). The maximum
diversity order (equal to 3) is achieved by all the schemes.

From the simulation results presented in this section, it may
be observed that the proposed LDCs present the best error
performance. It is important to mention that, in some cases,
the BER performance of the proposed LDCs are equivalent to
the other schemes already presented in the literature, e.g., in
[6].

VII. R ESULTS: NON-IDEAL FEEDBACK CHANNEL

The results in Section VI address the limitation to the
amount of information that may be sent through the feedback
channel, but they consider that an instant error-free feedback
channel is available, which clearly does not correspond to real-
ity. LDCs are usually employed in multicarrier systems, and,
ideally, the optimum transmission index would be available
for each resource element i.e. for each subcarrier and OFDM
symbol. In real systems, however, the feedback channel is not
perfect and has a limited bandwidth, and the available index
may be impaired by several reasons, such as the feedback
delay, the transmission of the indexes in regular time periods
and the transmission of one single index for a group of
subcarriers. Moreover, there is always the possibility that
errors may occur in the transmission of the feedback symbols.

In order to study each of these limitations, the LDC set pre-
sented in (18) was chosen, with dimensionsMT = 2× τ = 1,
Q = 1 symbol per block, andbf = 1 feedback bit. An OFDM
system withNc = 1024 subcarriers, with subcarrier spacing
∆f = 10.937 kHz, operating at 2.5 GHz was considered.
The transmission performance was simulated over a multipath
channel following ITU-Pedestrian-B model [26] with 3 km/h
velocity. The channel responses at theMT = 2 transmit
antennas are uncorrelated and the system uses onlyMR = 1
receive antenna. Transmission is done in blocks ofNs = 50
OFDM symbols, which are transmitted in regular intervals
of T = 5ms, which is, for instance, the frame length of a
WiMAX system.

In duplex systems one must take into account that part of
the available bandwidth in a given transmission direction must
be reserved for a feedback channel, which transmits channel
state information or the LDC index to be used in the opposite
link. This signalling overhead affects negatively the effective
achievable data goodput. In order to assess the impact of
this overhead, we consider a duplex system with identical
transmission schemes, where part of the data in each direction
contains feedback information for the opposite direction.Then,
it is possible to define the achievable goodputG as

G =
(NsNc log2 M − bf/Np)C(pb)

T
bits/s, (24)
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whereM denotes the modulation order, as in M-PSK or M-
QAM. The termNsNc log2 M indicates the number of bits in
one transmission block ofNs symbols andNc subcarriers. Of
these bits,bf bits are used everyNp frames to indicate the best
code for the opposite link. Data bits are transmitted with an
uncoded bit error probabilitypb, and error-free transmission
can ideally be obtained by means of coding with a rateC(pb),
which is the capacity of a binary symmetric channel:

C(pb) = (1 − pb) log2(2(1− pb)) + pb log2(2pb). (25)

Computer simulations were used to evaluate the BER and
the goodputG in high SNR conditions, where LDC presents
higher gains. A signal-to-noise ratio of 20 dB was used in
every simulation, and the results are presented in the following
subsections for different feedback channel impairments. Com-
parisons are made with systems without transmit diversity and
with the Alamouti scheme, which do not require any feedback
channel. This comparison is relevant for us to investigate if the
better performance of LDCs in terms of BER compensates
the goodput loss caused by the increased signalling load with
LDC. We do not compare the other LDC proposals presented
in Section VI, as they present similar or worse performance
in terms of BER.

A. Periodic Transmission of the Indices

We first consider a system in which the feedback informa-
tion is transmitted at intervals ofNp frames, what is usually
done in real systems to reduce the signalling load. The receiver
selects the best LDC indexi∗ for each OFDM subcarrier
according to the criterion in (13), taking into account the in-
stantaneous channel condition at the end of the latest received
frame. This means that while the transmitter only updates
the index i∗ at every Np × T seconds, the channel, and,
consequently, the optimal index, may change faster during this
interval.

As expected, and may be observed in Figure 3, the BER
increases with increasing values ofNp. It may also be ob-
served that the BER value stabilizes asNp tends to infinity.
This happens because the information sent by the feedback
channel becomes inaccurate if the LDC index is not updated
frequently enough, to follow the channel temporal variations.
Considering that for a Doppler frequency of approximately 7
Hz, the coherence time is about 140 ms, one notice thatNp

approaches 20 frames, the correlation between the channel
state immediately before the next data transmission and the
channel state at the moment that the receiver chose the index
is very low, yielding results that approach those obtained with
a random choice of indices.

We can also verify that, when BPSK is used, ifNp > 5 the
error rate is worse than the error rate with Alamouti technique
[27]. When 8PSK is used, the same happens whenNp > 15.
Again, it is interesting to remember that the Alamouti scheme
is one particular case of LDC with no need for feedback, and
it performs better than a random LDC. Nevertheless, we can
observe that the BER with LDC is always lower than for a
system without diversity, even for very long feedback periods,
i.e., LDCs still provide some diversity, even with a non-optimal
index.

Fig. 3. BER with varying signalling period, at SNR = 20dB.

Figure 4 shows that the goodputG presents a peak value at
Np = 2 for BPSK. This happens because, while, the error rate
increases with larger periods, the feedback overhead, on the
other hand is reduced, resulting in higher usable transmission
rate. So, it can be observed that, although the LDC has a lower
BER than Alamouti whenNp < 5, the goodput performance
of LDC is only slightly better than the one of Alamouti scheme
when BPSK in used forNp < 4. Also, when evaluating
the goodput with 8PSK, it is verified that the LDC scheme
performs up to 20% better than Alamouti ifNp < 15, and
short periods should be employed. Thus, higher gains may
be achieved when the modulation order is increased, as the
overhead becomes proportionally lower.

B. Feedback Channel Delay

Besides the periodical feedback, one must also account for
the delay in this information. The receiver must estimate the
channel, process it, choose the best index, and wait for the
next transmission opportunity. To investigate the impact of this
delay, we now consider a feedback periodNp = 1, but with a
delay ofNd frames. The receiver selects and sends the LDC
indexi∗ for each frame and subcarrier, but the transmitter only
receives the dataTNd seconds later.

In Figure 5 it is possible to see that the BER increases with
larger Nd in both BPSK and 8PSK. Using BPSK, the error
rate with LDC is better than Alamouti’s ifNd < 2. If 8PSK
is used, the error rate is better forNd < 5.

Again, it is possible to observe that the BER curve tends to
a constant value whenNd increases, for the same reason as
in the previous subsection.

In terms of the goodputG, in Figure 6, we notice that,
for BPSK modulation, the LDC technique is worse than
Alamouti’s for any positive feedback channel delay. For 8PSK
modulation, it is interesting to use the LDC technique if
Nd < 5.
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Fig. 4. Goodput with varying signalling period.

Fig. 5. BER with varying feedback delay.

C. Subcarrier Grouping

In OFDM systems it is safe to assume that neighboring
subcarriers have highly correlated channel responses, and,
thus, the feedback information can be sent for groups ofNc

adjacent subcarriers in order to reduce the signalling load. This
is investigated in this subsection. We consider hereNd = 0
andNp = 1. The same indexi∗ is used by the transmitter for
all subcarriers within a group, and this index is chosen based
on the channel of the central subcarrier. Different groups may
be assigned different indices.

It is possible to observe in Figure 7 that, as expected, BER
grows with the increase of the number of subcarriers per group.

Fig. 6. Goodput with varying feedback delay.

However, this increase is only considerable whenNc > 8.
When goodputG is verified, in Figure 8, it is possible to note
that the goodput remains stable untilNc = 16 . Therefore,
an ideal number of subcarriers per group may be chosen
depending on channel characteristics. However, the figures
show that the subcarrier grouping is not the most impacting
limitation, and relatively large groups can be used.

Fig. 7. BER with varying subcarrier group sizes.

D. Feedback channel errors

We consider now a system withNd = 0, Np = 1 and
Nc = 1, but with a probabilityPf that an error occur in
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Fig. 8. Goodput with varying subcarrier group sizes.

the transmission over the feedback channel. Thus, there is a
possibility that the transmitter uses wrong data to select the
LDC that will be used to send the next block. In Figure 9
it is possible to notice that the gain of the LDC technique is
reduced whenPf increases. Also, when BPSK is in use, in
casePf > 0.2, it is better to use Alamouti than LDC technique
with feedback. In case 8PSK is used, this will happen only
whenPf > 0.5. Clearly, whenbf = 1, as in this case study,
the error probability is likely to be limited toPf = 0.5.

Fig. 9. BER with varying feedback error probability.

When the goodputG is verified in Figure 10, it is observed
that, when BPSK is used, the use of the LDC technique is
only recommended for error rates below 0.1, but even then

with very small gains. When 8PSK modulation is used, this
technique is considerably better than Alamouti whenPf is
less than about 0.5.

Fig. 10. Goodput with varying feedback error probability.

It is important to highlight, however, that, in all studied
cases, no channel coding was considered in the feedback
channel. In practical systems, the feedback information is
channel coded to avoid signalling errors. This is achieved at
the expense of an increased overhead. In any case, since in our
application only a few bits are sent over the feedback channel,
the cost of such overhead can be considered as negligible.

One should bear in mind that the results presented in this
section should not be viewed quantitatively, but rather as
performance trends when feedback impairments are consid-
ered. In a real-life system, the optimum feedback delay, the
length of the feedback period, and the size of each subcarrier
group depend on the channel coherence band and interval,
as well as on the employed modulation and coding scheme
and target error rate. However, in any situation it is necessary
to weigh the pros and cons of using LDCs, considering not
only their performances under ideal conditions, but also the
signalling overhead and robustness in the presence of non-
ideal feedback, and, in some situations, schemes that do not
require feedback, such as Alamouti’s, may be more efficient.
The increased complexity of LDCs must also be taken into
account, as the choice of the optimum index, as stated in (13),
may be computationally demanding.

VIII. C ONCLUSIONS

In this paper, we proposed a general framework for transmit
code selection with linear dispersion codes. Based on the
instantaneous channel conditions, the transmitter chooses an
LDC from a set of LDCs aiming to minimize the error
probability. The determination of the best set of LDCs, i.e.,
the one that minimizes theaverageerror probability, was
described as a constrained optimization problem. For certain



JOURNAL OF COMMUNICATIONS AND INFORMATION SYSTEMS, VOL. 1,NO. 26, APRIL 2011 11

parameters we presented good sets of LDCs, obtained from
an optimization algorithm. We note that all sets of LDCs
presented in Section V are surprisingly simple, rendering the
feedback bits to carry phase information only. This is always
going to be the case when the parameters match, e.g.,τ = Q
and bf = (MT − 1)b. Other extensions are possible. For
example, whenτ = Q and bf =

∑MT −1
i=1 bi, wherebi is a

positive integer, the signals transmitted through antennai + 1
are rotated by a phase in2bi-PSK, depending on the value
of the feedback bits. This represents a more general solution
as compared to previously published Q-EGT. In all of these
cases, the best sets of LDCs following the idea in Section V
are likely to be the optimal sets. However, forbf < MT − 1,
the optimal solution does not seem to be so straightforward,
and may involve the transmission of mixed symbols through
some of the antennas. After the study of a set of LDCs in
such conditions that the feedback channel is submitted to the
limitations that usually challenge real systems, it was observed
that the feasibility of these systems depends on signalling
characteristics, such as the period, the delay and the number
of subcarriers per group, as well as the used modulation, and
these limitations depend on the channel characteristics, such
as coherence time and band. Furthermore, we also showed that
not only the error rate, but also the goodput must be considered
since, in practice, it will be reduced by the frequent signalling.
Feedback schemes with LDCs are a promising technique to
improve performance in multiple antenna systems, but their
use must be analyzed carefully for each deployment scenario.

Future work in this topic includes the search for a less
complex algorithm, which is urgently needed for systems
with more antennas and more feedback bits, or for space-
time-frequency codes, in which case the proposed algorithm
becomes quickly unfeasible. It is also not clear if these codes
are still optimal for other channels, such as those with antenna
correlation or a line-of-sight component, particularly when
some of the design restrictions are removed. Finally, a study to
determine the ideal set size and element values regarding the
search space discussed in Section IV should also be considered
as future work.
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[19] R. Machado, B. F. Uchôa-Filho, and T. M. Duman, “LinearDisper-
sion Codes for MIMO Channels with Limited Feedback,”Proc. IEEE
Wireless Commun. and Networking Conf. (WCNC), pp. 199–204, April
2008.

[20] G. J. Foschini, “Layered space-time architecture for wireless commu-
nication in a fading environment when using multiple antennas,” Bell
Labs. Tech, Journal, vol. 1, no. 2, pp. 41–59, Autumn 1996.

[21] M. O. Damen, A. Chkeif, and J. C. Belfiore, “Lattice code decoder for
space-time codes,”IEEE Commun. Lett., vol. 4, no. 5, pp. 166–169,
May 2000.

[22] B. Dong, X. Wang, and A. Doucet, “A new class of soft MIMO
demodulation algorithms,”IEEE Trans. Signal Process., vol. 51, no. 11,
pp. 2752–2763, November 2003.

[23] G. J. Foschini, G. Golden, R. Valenzuela, and O. Wolniansky, “Sim-
plified processing for high spectral efficiency wireless communication
employing multi-element arrays,”IEEE J. Sel. Areas Commun., vol. 17,
no. 11, pp. 1841–1852, November 1999.

[24] D. Gesbert, “Minimum-error linear receivers for ill-conditioned MIMO
channels,” inProc. IEEE Workshop Signal Process. Advances in Wireless
Commun. (SPAWC), Rome, Italy, June 2003, pp. 462–466.

[25] X. Wang, V. Krishnamurthy, and J. Wang, “Stochastic gradient algo-
rithms for design of minimum error-rate linear dispersion codes in
MIMO wireless systems,”IEEE Trans. Signal Process, vol. 54, no. 4,
pp. 1242–1255, April 2006.

[26] ITU ITU-R M.1225, “Guidelines for evaluations of radiotransmission
technologies for imt-2000,” 1997.

[27] S. M. Alamouti, “A simple transmit diversity techniquefor wireless
communications,”IEEE J. Select. Areas Commun, vol. 16, pp. 1451–
1458, October 1998.



JOURNAL OF COMMUNICATIONS AND INFORMATION SYSTEMS, VOL. 1,NO. 26, APRIL 2011 12

Fernando Menezes Leit̃ao Tavares received his
electrical engineer degree and his M.Sc. degree from
the Universidade de Brası́lia (UnB) in 2005 and
2009, respectively. He also worked at Nokia Institute
of Technology (INdT), Brası́lia, DF, Brazil as a
researcher for nearly four years. He is currently
working toward a Ph.D. degree at Aalborg Uni-
versity, Denmark, in close cooperation with Nokia
Siemens Networks. His current research interests
include radio resource management, software de-
fined radio and concept development for 3GPP LTE-

Advanced.

Renato Machado (S´04-M´08) was born in Jaú,
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