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Abstract— This paper proposes a methodology to predict wire-
less broadband network capacity based on effective bandwidth
estimation. Former wireless network planning strategies were
based on the estimation of the distribution of the number of
users over the mobile network area. However, with the rapid
spreading of wireless broadband networks and the increased
number of services, the characteristics of user traffic have become
an important matter due to the uniqueness of user profile.
Furthermore, new wireless broadband networks are no longer
based on circuit switching, but on packet switching technology.
This paper applies the Large Deviations Theory to leverage
estimation of the aggregated traffic intensity of several users.
The approach was validated by analyzing known traffic traces
of wireless broadband networks.

Index Terms— wireless broadband, effective bandwidth, capac-
ity planning, aggregated traffic, mobility model.

I. INTRODUCTION

W ITH the proliferation of wireless broadband networks
over the last decades, we also saw an evolution in the

technology that supports these networks from circuit switching
into packet switching technology, propitiating a much wider
choice of new multimedia and mobile services, and signif-
icantly diversifying traffic profile from one user to another.
These changes made obsolete traditional methods of network
capacity planning.

Aggregated traffic is the total traffic generated by simultane-
ous users of a given wireless broadband network. Traditional
aggregated traffic estimation methods were based on short-
range dependency models given the relatively homogenous
user profiles traffic characteristics. However these methods are
no longer suitable for use today because modern networks spot
long-range dependency traffic characteristics, due to user’s
profiles that largely differs from one another.

In this context, each user now has at its disposal different
packages of services. Thus, each user generates its own,
unique, traffic footprint, and carries it along his trajectory
within the wireless network coverage area. These changes
have notorious implications in the network capacity planning
process and lead us to devise a new platform for wireless
broadband networks capacity planning.

Scientific literature presents several methods for wireless
broadband network capacity planning [1][2][3][4]. The model
described in [1] however, conveys characteristics of many
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methods, and specifies a framework for capacity planning
of wireless broadband networks, which would be composed
by four modules: Network Area Model, Markovian Mobility
Model, Mobile Traffic Profile and an additional Traffic Esti-
mator Module, whose development pertains to this work.

With the inclusion of the Traffic Estimator Module, the
framework is now complete and also takes into account users’
mobility within network area and the fact that user’s traffic
profiles are heterogeneous among themselves. The framework
presented in [1] will be employed throughout this work, and
is briefly described in Section III.

By applying the Theory of Large Deviations to this frame-
work, the present paper proposes a new method to estimate
the aggregated traffic on wireless broadband networks.

The first objective of this work is to show that Theory of
Large Deviation can be used to estimate the aggregate traffic
intensity in wireless broadband networks.

The second objective is to integrate the mentioned aggre-
gated traffic estimator module into the mobility model adopted
in the framework, so that this framework would be able to
estimate the aggregate traffic intensity in each part of the area
of the wireless broadband network. The capabilities of the
framework is therefore enhanced to better accomplish capacity
planning for modern wireless broadband networks.

In order to achieve these objectives, we first analyze previ-
ous scientific works on effective bandwidth estimation meth-
ods and works on long-range dependent traffic models. Then
we devise a method to estimate the aggregated traffic intensity
and implemente this method in C++ language. To validate our
method we use known, existing wireless broadband network
traffic traces. First, we analyze these traces, using statistical
analysis to obtain the bandwidth necessary, the aggregate
traffic intensity and the mean deviation for each user. Then,
using the C++ implementation of the proposed method, we
again analyze the same trace data, this turn, applying the
same aggregated traffic intensity and the same mean deviation
obtained in the previous analysis.

Comparison between the bandwidth estimated by the
Dembo method [5] and the aggregated traffic intensity yielded
by new method revealed great parity between the results.

This comes to show that the Theory of Large Deviations
is suitable for use in the estimation of aggregated traffic
intensity, and able to create a modern platform for wireless
broadband network capacity planning. For the sake of an
organized presentation, the rest of this article is divided into
the following sections: Section II describes the state-of-the-art
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of packet network traffic treatment and effective bandwidth
estimation; Section III describes the adopted framework [1]
for capacity planning in modern wireless broadband networks,
and presents the methodology for estimation of aggregated
traffic intensity of different users into this framework; Section
IV presents the validation of the new method through the
analysis of real trace files, which has been used in several
other scientific works, applying both, traditional methods and
the new method, and comparing the results obtained; finally,
Section V enlists the conclusions and contributions of this
work.

II. STUDIES RELATED TO WIRELESS BROADBAND
NETWORK CAPACITY PLANNING

This section briefly describes the main studies on wireless
broadband network capacity planning, focused on three areas
[2]:
• Mobility models,
• Traffic models,
• Radio channel models.
This study proposes an approach to broadband wireless

network capacity planning based on users aggregated traffic
intensity. Therefore, this section describes the main studies on
mobility models, traffic models, and aggregated traffic treat-
ment. We divide these former works into three subsections:
Mobility Models, Long-Range Dependent Traffic Treatment,
and Effective Bandwidth Estimation.

A. Mobility Models

These models are mathematical formulations used to de-
scribe the mobility behavior of users in a wireless mobile
network. They are used for estimating users’ trajectory and
their distribution over the wireless network area. Thus, this
subsection concisely describes previous main studies on mo-
bility models. The work presented in [2] proposes a mobility
model for Third Generation (3G) mobile network capacity
planning, intended to support multimedia traffic. This is based
on the analysis of the following factors:
• User mobility behavior,
• User mobility profile,
• Wireless network area.
It is also recommended in [2] that the services in use

(voice, data, database access, video, etc.) must be accurately
described. Several other studies were proposed following [2],
such as those presented in [3], [4] and [6].

Although these works mentioned above propose multimedia
network capacity planning or call admission control mecha-
nisms for networks, they do not propose a way to estimate the
traffic intensity to be generated within the wireless network
area. The next subsection describes the main studies on long-
range dependent traffic.

B. Treating Long-Range Dependent Traffic

With the development of broadband wireless technologies,
it became noticeable that packet networks supporting the
Internet could convey large amounts of different types of data,

such as audio, video, heavy files, video streams, etc. From
that, we could also deduct that the Internet was a promising
field to offer new services like video sharing, alongside with
video conferences, IP telephony, e-commerce, e-business, e-
learning, e-banking, video-surveillance, telemedicine and so
many others.

In [7], Leland shows that traffic in packet networks has self-
similarity characteristics and that the traditional queue models
based on Poisson Processes are not appropriate to treat the
traffic generated, because packet network traffic has long-range
dependence features. After this study, the scientific community
began to look for mathematical models that would take these
self-similarity characteristics into account.

As Norros proposes in [8], self-similar traffic can be mod-
eled by using Fractional Brownian Motion, while in [9], Jeong
et al. uses the Fractional Gaussian Noise model and Wavelets
to treat self-similar traffic. These models have proved to be
more appropriate for packet network traffic treatment than
Markovian queueing models. However, since packet network
traffic is not entirely self-similar, it is necessary to indicate
the self-similarity degree of the traffic. One way to measure
the self-similarity of a phenomenon is by using the Hurst
parameter H .

Huebner [10] shows that the heavy-tailed distribution func-
tions can also be used to treat self-similar traffic. One ad-
vantage of treating self-similar traffic with these functions is
their lower handling complexity compared to fractal-based
models. In this class of function, Lognormal, Weibull and
Pareto distributions stand out.

Gordon presents in [11] an analysis of the Pareto process to
treat packet traffic with self-similar characteristics, and verifies
the behavior of self-similar traffic models with arrival time
defined by a Pareto distribution. In [12], Shortle proposes a
technique to use the Equivalent Random Method in traffic
models with arrival time defined by a hyper-exponential distri-
bution. A round-robin scheduler for arrival traffic defined by a
Pareto distribution is proposed by Reljin et al. in [13]. In [14],
Xie et al. evaluates the performance of a queue with arrival
time defined by a Pareto distribution applied to multimedia
traffic of wireless networks.

An iterative method to achieve a Laplace transform ap-
proach, called Transform Approximation Method - TAM was
described by Harris et al. in [15]. In [16], in order to improve
the TAM, Fischer et al. proposed modifications to the version
asserted by Harris et al. in [15]. Shortle also presents in
[17] some difficulties related to the simulation of queues with
service time defined by the Pareto distribution.

A representation of the Pareto function is presented in
[18], where parameters α and β are estimated based on the
Hurst parameter H . In the analysis carried out in [19] about
the influence of parameter β on P/M/1 queue models, the
representation developed in [18] is recommended because of
the influence of parameter β on the decay of the Pareto
function.

The major challenge in capacity planning of telecommuni-
cation network is to estimate the necessary bandwidth to meet
traffic demand generated by a given number of users. The first
telephony networks used circuit switching technologies, and
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capacity planning was based on the estimation of channels to
meet the needs of a certain number of users, using traditional
Erlang equations.

As mentioned before, the traffic supported by networks
based on packet switching technology has long-range charac-
teristics. The scientific community has devised mathematical
models which are no longer appropriate for traffic with these
characteristics, among which, the fractional models and heavy-
tailed functions stand out. Besides that, the traffic sources
share the same communication channel. Consequently, the
packet network traffic is formed by aggregating the traffic from
a set of distinct sources, and this is a challenge to telecommu-
nication network capacity planning as well. One of the ways
of treating aggregated traffic in packet-based networks is the
Theory of Large Deviations applied to the estimation of the
effective bandwidth requirements, as discussed in [20], where
an estimation of the capacity to support several multiplexed
connections in an ATM network was proposed. The next
subsection describes the main studies on the estimation of
effective bandwidth using the Theory of Large Deviations.

C. Effective Bandwidth Estimation

According to Rabinovitch [5], effective bandwidth refers
to the traffic stream measure used in dimensioning modern
telecommunication network based on packet switching tech-
nologies. In these technologies, two or more traffic flows are
multiplexed into a stream of transmission that is common to
all flows. Therefore, it is important to estimate the amount
of flows that can be served by the bandwidth, and which
availability is given directly by the transmission means without
violating the service level restrictions of each flow.

In [21], Kelly presents an equation to estimate effective
bandwidth of traffic source and discuss some aspects of effec-
tive bandwidth estimation. Effective bandwidth is computed
as

α(s, t) =
1
s t

log E {exp (sX[0, t])} , (1)

for 0 < s, t < ∞, in which X[0, t] is the arrival process that
characterizes traffic volume. The parameter s represents the
spatial scale and indicates the multiplexing degree. High values
of s denote a low multiplexing degree and means that the
traffic effective bandwidth is close to the maximum traffic flow
and, therefore, just a few flows can be served. On the other
hand, low values of s indicate a high multiplexing degree, that
is to say that the traffic effective bandwidth is in the vicinity
of the average, so a large amount of flows can be served [22].

The parameter t in expression (1) is the most likely period
of time that the system will be busy before there is an
overflow and, consequently, the minimum time scale that the
traffic needs to be observed so as to analyze overflow events.
High values of t indicate that the overflow is observed for
large time scales, whereas low values of t indicate that the
overflow is seen in small time scales. Therefore, we can
observe that parameters s and t depend on the characteristics
of the supported traffic. The most relevant point in expression
(1) is the definition of the parameter s. As recommended by

Kaj in [22], s can be computed as

s =
− log p

b
, (2)

where b is the buffer size and p is the probability of overflow.
The relation between p and b is defined as

Pr{L > b} < p, (3)

where L is quantity of data traffic that arrives at the buffer.
The statistical properties of the effective bandwidth equation

are analyzed in depth by Rabinovitch in [5], and the probability
of overflow of N sources of traffic is described as

log Pr{overflow} ≈ e−N I . (4)

where I is the asymptotic rate function for capacity c and
buffer size b, and is given by

I = sup
t

min
s

{st [Nαj α(s, t)]− s(Ct + B)} , (5)

where B = N × b and C = N × c.
The asymptotic rate function I can be alternatively ex-

pressed as [20]
I = inf

t>0
tλ∗(t−1). (6)

which uses the Legendre-Fenchel transform of λ, denoted by
λ∗, as described in the study by Courcorbetis et al. in [23]. The
investigation of the principle of large deviations applied to the
estimation of effective bandwidth has been the aim of several
studies. Kelly proposes [21] to use the effective bandwidth
to meet the demand of aggregated traffic of N homogeneous
sources, denoted by ebN , given by

ebN = N × α(s, t). (7)

According to Kelly in [21], when there are heterogeneous
traffic sources in the networks, the effective bandwidth of M
heterogeneous sources is estimated by the sum of effective
bandwidths of each source. In [21], the effective bandwidth
for heterogeneous sources, denoted by ebM , is computed as

ebM =
M∑

i=1

αi(si, ti). (8)

In order to estimate the effective bandwidth based on traffic
analysis, we considere in this work two methods previously
proposed to analyze trace files: the Dembo estimator and
the resampling methods [5]. The Dembo estimator has been
widely used to estimate the effective bandwidth. In order to
guarantee the appropriate use of this method, we need a set
of traffic trace samples. According to Dembo estimator, the
effective bandwidth is given by

ebD =
1
st

log
(

1
bT/tc

) bT/tc∑

i=1

exp (sX[i− t, i]) , (9)

where T is the trace period, and bxc indicates the largest inte-
ger smaller than or equal to x. Thus, the Dembo estimator is an
iterative method that replaces the traffic distribution function
with the traffic volume described by the trace samples.
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In [20], Duffield et al. use the work done by Kelly in [21] to
estimate the economy of scale in multiplexers, aiming at min-
imizing cell loss probability in ATM switching. Courcoubetis
et al., in [23], describe the implications of applying several
asymptotic sources and the theory of effective bandwidth in
traffic engineering. The studies presented by Gibbens [24] and
Duffiled [25] applied the effective bandwidth theory to real
traffic network analysis. Improving the study presented in [20],
Duffield [25] establishes a relation between cost and quality
of services for aggregated traffic networks.

One of the procedures we use in this work is described
in [26]. The model for estimating the effective bandwidth,
called effective channel model, is based on the analysis of
the characteristics of the channel and the Theory of Large
Deviations. This model estimates the amount of effective
bandwidth available in a channel for a given time interval,
with accuracy ε, as

S
ε

∆(τ) = sup
s<0

{
ταc(s, τ)− log ε

s

}
, (10)

where αc(s, τ) is the effective bandwidth defined by equation
(1) for a channel model C[t], defined as

C[t] = c

∫ 1

0

[1−Θ(x)]dx, (11)

where

Θ(t) =
{

PER[SNR(t)] if SNR(t) ≥ ∆
1 if SNR(t) < ∆ , (12)

and SNR is the signal-to-noise ratio at the receiver at time t,
and PER[SNR(t)] denotes the packet error rate at time instant
t. The term c in (11) is the nominal data rate of the channel.

However, there is a better approach to the effective band-
width evaluation in virtue of the definition of the global
scale parameter for traffic characterized through multi-fractal
processes [27]. We assert that this is a substantial improvement
to the model proposed by Norros in [8].

Tang [28] points out that the aggregated network traffic
converges into long-range dependent α-stable processes. The
authors of [29] reported an empirical algorithm for effective
bandwidth estimation based on the binary search algorithm.

Likewise in other works about effective bandwidth estima-
tion, the algorithm presented in [29] by Davy et al. is driven
by QoS support in Call Admission Control. They draw our
attention to avoid QoS violation, and come to the conclusion
that the effective bandwidth theory is relevant among other
things, for providing QoS on packet networks. In their analysis
of the impact of the user mobility over the aggregated traffic
behavior in wireless networks, they conclude that the traffic
behaves self-similarly [29] the same as in fixed networks.

Basgeet et al. [30] state that the the theory of effective
bandwith can be used to model the relationship between
cognitive traffic rate and cognitive user queue distribution. In
their investigation about call admission control mechanisms,
Laourine et al. [31] propose a model for cross-layer effective
bandwidth to be applied in CDMA networks.

Previous studies on estimation of effective bandwidth have
shown that the Theory of Large Deviations is a very plausible

Network Area
Model

Markov Mobility
Model

Mobile Traffic
Profile

Traffic
Estimator

Fig. 1. Framework Structure proposed in [1].

way to estimate the traffic intensity in a wireless network
area. However, a key problem with much of the literature
regarding to this matter is that they do not associate the
effective bandwidth estimation to a model that represents the
user spatial distribution over the wireless network area. In the
next section we describe a way to apply the Theory of Large
Deviations to estimate the effective bandwidth in wireless
broadband network capacity planning.

III. APPLICATION OF THE THEORY OF LARGE
DEVIATIONS TO ESTIMATE TRAFFIC INTENSITY IN

WIRELESS BROADBAND NETWORKS

A. Framework for planning wireless broadband network ca-
pacity

In [1], a framework for capacity planning of wireless broad-
band network based on the estimation of the traffic generated
by users was proposed. This framework has four components
(see Figure 1):
• Network Area Model: model for describing the network

area according to the Manhattan-Grid, which splits the
area into grids. The Manhattan-Grid model is also used
in other studies, such as [2]. It describes the character-
istics of the network area, such as geographical aspects,
constructions, movement attraction points and ways of
access.

• Mobile Traffic Profile: this module contains information
about users and available services. User profiles are
defined, and each one is associated to a traffic profile.

• Markov Mobility Model: it is the probabilistic formu-
lation used to estimate the variation of user distribution
over a wireless network area, and is described as [1]:

Ni(t + 1, ρ) = Ni(t, ρ) +

−
∑

j,Cj∈Si
adj

Ni(t, ρ) PMout(i)(j, t, ρ) +

+
∑

j,Cj∈Si
adj

Nj(t, ρ) PMin(i)(j, t, ρ), (13)

where
– Ni(t, ρ) is the amount of ρ-profile users, at time t,

in grid i,
– PMin(i)(j, t, ρ) is the probability of arrival of ρ-

profile users coming from the adjacent grid j, at time
t, to grid i,

– PMout(i)(j, t, ρ) is the exit probability of ρ-profile
users from grid i into the adjacent grid j, at time t.
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• Traffic Estimator: this module integrates the other mod-
ules and has two functions: 1) to analyze the information
from the modules Network Area Model and Mobile
Traffic Profile, in order to estimate the probabilities used
in the mobility model, and 2) to estimate the aggregated
traffic generated by several users. This method is de-
scribed in Section IV.

The probabilities used in the mobility model can be esti-
mated using [1]

PMout(i)(j, t, ω) =∑
l∈Kj

κl,t,ω +
∑

l∈Vj
sl,t,ω∑

l∈N

∑
n∈Kl

κn,t,ω +
∑

l∈N

∑
n∈Vj

sn,t,ω
×

× (
1− Pres(i)

)
, (14)

where
• Kl is the set of movement attraction points of a grid,
• κ is the weight of a particular movement attraction point

for time instant t and profile ω,
• Vl is the set of ways from grid i to grid j,
• s is the total weight of the access ways from grid i to

grid j,
• Pres(i) is the probability of users to remain in grid i at

time t.
Expression (14) is applied over each pair of adjacent grids

composing the area to calculate the user distribution probabili-
ties used by the mobility model of the framework. The results
of the probability estimation exposed in [1] were obtained
from the first implementation of the Markov Mobility Model.
To validate the probability estimation method and the Mobility
Model, these results are compared on a framework prototype
with data gathered from trace files showing coherence.

After the results are validated, it is necessary to estimate
the traffic intensity in the wireless network area. Traffic on
broadband networks is the result of aggregating traffic of
several users, whose characteristics are found in the Mobile
Traffic Profile. Based on the studies on Theory of Large
Deviations applied to effective bandwidth estimation, the next
subsection presents a method for estimating traffic intensity
based on several traffic profiles.

B. Effective Bandwidth Estimation For Traffic Profiles

Based on the works presented in the previous sections, the
aggregated traffic estimation model employed in this work
uses the theory of large deviations for telecommunications.
In this section we propose the use of the effective bandwidth
formulation to predict traffic intensity.

The effective bandwidth for a source, described in expres-
sion (1), requires parameters already used in traffic prediction
methods well known to the scientific community, such as mean
rate and standard deviation rate. The s and t parameters can be
obtained by trace file analysis of similar traffic. The method
proposed in this section consists of using the effective band-
width representation presented in expression (8) for aggregated
traffic prediction of several applications related to one traffic
profile. Thus, the expression for estimating the total traffic

eball is described by:

eball =
M∑

i=1

Ai∑

j

αi,j(s, t), (15)

where
• M is the size of the set of traffic profiles,
• Ai is the set of services related to profile i,
• ni is the number of users of profile i,
• αi,j(s, t) is the effective bandwidth of service j related

to user profile i.
Thus, according to the proposed framework, the traffic

estimation in each part of the wireless network will be obtained
by the following procedure:
• Estimation of parameter s for a particular traffic profile,
• Obtainment of the parameters for mean and standard

deviation of the traffic modeling function, using some
type of estimator, such as the Dembo estimator,

• Estimation of the effective bandwidth for each traffic
profile,

• Sum of the effective bandwidth of the of users in each
profile,

• Sum of the total bandwidth of all profiles.
Regarding the probability distribution function that charac-

terizes the traffic of a source, it is recommended a heavy-tailed
distribution function and/or fractal function, since traffic in
packet networks present a long-range dependence characteris-
tic.

C. Integration of the Traffic Estimator Module into the Frame-
work

The integration of the module described in the previous
subsection into the proposed framework [1] consists of two
steps: 1) By evaluating the parameters to be used, and 2)
by applying the traffic estimation technique to the wireless
network area.

The Traffic Estimation module is processed after the mobile
traffic profiles were defined and the mobility model was
processed, evaluating the distribution of users over the wireless
network area. The parameters to be used as profile, mean
rate and standard deviation of the services related to each
profile are generated by the Mobile Traffic Profile module.
This information can be found in structured files to be read
by the Traffic Estimation module. After obtaining the data, the
Traffic Estimator is executed over each part of the specified
network area.

Previous studies on performance evaluation and modeling
of networks have often used the formulation presented in this
section. However, it is necessary to verify how appropriate
this formulation is for the framework proposed in [1]. In
order to verify the applicability of this work, the next sec-
tion describes the implementation of the proposed bandwidth
estimation method by building a Traffic Estimator module for
the framework. Results obtained from the analysis of trace
files are also presented.

The integration of the method for effective bandwidth
estimation for traffic profiles presented in the previous section,



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 1, NO. 27, APRIL 2012 27

with the mobility model framework [1] is accomplished by
expressions (13) and (15). Expression (13) estimates the
number of users with similar profiles at a given moment. By
applying this expressions to all traffic profiles, we obtain the
quantity of users in each profile, forming the set M , which is
used in equation (15) to estimate the aggregate traffic intensity.
The aggregated traffic intensity and the mean deviation are
calculated in the Mobile Traffic Profile module.

The next section presents details of the implementation of
the aggregate traffic intensity estimation method, together with
some results obtained from traffic traces.

IV. IMPLEMENTATIONS AND RESULTS

The implementation of the traffic estimation module aims
to verify how appropriate it is this estimation approach for
wireless networks supporting long-range dependent traffic.

The estimation method was implemented using C++
language, and is based on two classes: Trace and
Effective−Bandwidth.

The Trace class analyzes the trace files and generates
another one with the following data: average and standard
deviation of the packet size, average and standard deviation
of the traffic rate, and peak rate.

The class Effective−Bandwidth estimates the effec-
tive bandwidth as proposed in Section III, where the input
data can be structured according to a trace-class output file,
or according to a traffic profile data file previously defined.

In order to validate the effective integration of the band-
width estimation with the framework proposed in [1] as a
functionality, trace files related to data traffic were analyzed.
These files are in tcpdump format and refer to a network
based on CDMA2000 1x-EV-DO technology, which provides
2.4 Mbps for downlink. Sixteen users were monitored using
laptops in the city of Seoul, South Korea. The tool tshark was
used to read and export the data to files in text format. These
trace files are found in the website of CRAWDAD community
[32], and have already been used in other works, such as
[33]. These trace files correspond to approximately eight hours
of monitoring. According to studies on effective bandwidth
estimation, such as [5], [22] and [20], a particular source
value lies between the mean rate and peak rate. Consequently,
the expected effective bandwidth must be between these two
values.

The traffic used in this analysis corresponds to a downlink
data traffic using TCP/IP architecture. Therefore, it is nec-
essary to consider the TCP and IP headings as part of the
transferred information. Firstly, it was performed an individual
analysis of the effective bandwidth for the traffic correspond-
ing to each user (16 of them). Based on the Dembo esti-
mator technique described in [10], an estimation of effective
bandwidth of the trace files was performed, where a value
for t was defined and a value for s was estimated given a
particular effective bandwidth. As suggested in [34], the value
chosen for the determined effective bandwidth is the mean
rate obtained from the trace files and t is fixed at 0.1 seconds.
The value estimated for s was obtained from expression (2).
In order to create a scenario where the overflow conditions

TABLE I
AGGREGATED TRAFFIC: DEMBO METHOD VS. EFFECTIVE BANDWIDTH

(BITS PER SECOND)

User Peak rate Mean rate Dembo Proposed method

1 24192 9700 9600.9 9701
2 25704 7174 7094.0 7174
3 25416 10493 10480.9 10494
4 26928 10352 10246.5 10354
5 11968 5437 5369.6 5437
6 13480 5119 5233.7 5237
7 13480 6120 5978.4 6120
8 27216 6337 6223.1 6338
9 20912 7238 7181.5 7238
10 22680 6428 6305.9 6428
11 16472 6572 6551.7 6572
12 11968 6292 6258.4 6292
13 17984 6541 6512.6 6541
14 11968 6109 6081.0 6109
15 17952 6732 6620.2 6732
16 22680 6585 6476.7 6586

were minimized, a buffer size of 108 and block probability
equal to 10−9 were considered, resulting in s = 1.42× 10−7.
Considering that the chosen value of s is close to zero, the
estimated effective bandwidth was expected to be close to the
mean rate.

Using the trace analysis, the mean and variance were
estimated and used to calculate the bandwidth expression.
In this work, the effective bandwidth as calculated using the
expression [5]

eb(s, t) = µ +
sσ2

2
t2H−1, (16)

for 0 < s, t < ∞, where µ is the mean value, σ2 is the traffic
variance and H is the Hurst parameter, which was set to 0.8
for this simulation. It should be noted that expression (16)
evaluates the effective bandwidth when the Fractal Brownian
Motion model is assumed.

Table I compares the aggregated traffic estimated using
the Dembo method with that estimated using the effective
bandwidth method. The aggregated traffic, in bits per second,
was estimated using the same values for mean and peak rate
in both techniques. As expected, the results in Table I indicate
that the estimated effective bandwidth is close to the mean with
values between the mean rate and the peak rate for each user.
Particularly for this analysis, the effective bandwidth equation
proved to be more effective than the Dembo estimator.

Figure 2 shows a graph comparing the effective bandwidth
estimation of the traces, obtained by applying the Dembo
estimator and the method proposed by this work. As we can
see, the results from the proposed method are very close
to those from the trace files. This close match is expected,
because of the low value of s. The effective bandwidth allows
traffic intensity estimation from different sources, which is
very important in capacity planning of broadband networks.
The correct adjustment of parameters s and t depends on
knowledge of traffic characteristics.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 1, NO. 27, APRIL 2012 28

0 5 10 15
0

2000

4000

6000

8000

10000

12000

User

E
st

im
at

ed
 B

an
dw

id
th

Dembo
Effective Bandwidth

Fig. 2. Aggregated Traffic: Dembo Method vs. Effective Bandwidth method.

TABLE II
COMPARISON BETWEEN THE PROPOSED METHOD AND EMPIRICAL

METHOD [29].

Estimated Bandwidth Mean Peak Standard
(b/s) H Rate Rate Deviation

Empirical Proposed (b/s) (b/s) (b/s)
[29] Method

66049 66403 0.55 273 131824 144
66053 67920 0.56 281 131824 150
3689 3577 0.54 145 7232 32
32569 30437 0.70 320 64816 153
3460 3364 0.55 135 6784 32
3202 4007 0.60 196 6208 40
12751 15608 0.80 381 593232 147
298635 298271 0.77 4038 593232 590

Next, we compare the results from the proposed method
with the results presented on [29], where the authors propose
an algorithm based on binary search and trace analysis to
estimate the bandwidth for aggregated traffic. In this work,
the authors used trace files from a WiMAX network, also
used in [35], and estimated bandwidth based on the acceptable
maximum delay time, the target proportion of traffic allowed
to exceed acceptable maximum delay time, and the percentage
and margin of accuracy in order to find the effective bandwidth
value for a particular QoS target.

In [29] the maximum delay time and the delay probability
were set to 10−3 seconds and 0.5%, respectively. The values
for t and s were adjusted to 10−3 seconds and 2.99, respec-
tively. Using these values, we estimated the bandwidth for
traces considered. The Hurst parameter H , the mean rate and
the standard deviation of the trace files were estimated to be
uses as input parameters for the proposed bandwidth estima-
tion method. Particularly, the parameter H was estimated by
applying the R/S statistic [24] over trace files. The results are
presented in Table 2, and show that the proposed method and
the empirical method from [29] lead to similar results. Table
II also shows the corresponding values of Hurst parameter,
mean and peak rates and standard deviation of the traffic.

V. CONCLUSIONS

A literature review revealed the lack of a method for
estimating the aggregated traffic intensity from users of mobile
services with different profiles, suitable for capacity planning
of wireless broadband networks with long-range duration traf-
fic characteristics. This presente work proposed the application
of the Theory of Large Deviations to develop a platform for
capacity planning of modern wireless. broadband networks.

The Theory of Large Deviations has been long studied and
successfully applied to the estimation of effective bandwidth
and to call admission control mechanisms. The studies in
this work indicate that the Theory of Large Deviations can
also be used to estimate the aggregated traffic intensity in
wireless broadband networks, as discussed in Section III. The
contributions of this work can be summarized as follows:
• We demonstrated that the Theory of Large Deviations can

be an efficient tool for the estimation of the aggregated
traffic intensity,

• we introduced a methodology to estimate the aggregated
traffic intensity for mobile users with different traffic
profiles,

• We describe a platform for network capacity planning,
based on the Theory of Large Deviations.

A few suggestions for future works are listed below:
• To incorporate the effective bandwidth method into the

channel model adopted in the framework,
• To develop other methods for processing the aggregated

traffic,
• To integrate the features of the wireless networks into the

channel model characteristics [2].
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