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Abstract—This paper proposes a new function for the Ad Hoc
On-Demand Distance Vector (AODV) algorithm using the connec-
tivity concept to decide between source and local repair when a
link break occurs. Besides, we used a Computational Intelligence
algorithm, called Particle Swarm Optimization (PSO), which
enables to find candidate solutions in all considered search space
in order to reduce average data packet delivery delay sent over
the network. The performance of the original AODV protocol,
according to its Request for Comments (RFC), is compared
with this new implemented approach, called here as AODV-
PSO. Three metrics were used to evaluate the performance of the
algorithm: throughput (as data packet delivery fraction), routing
overhead and average data packet delivery delay. We observed
that the AODV-PSO outperformed the original AODV protocol
in the scenarios studied in this paper.

Index Terms—Ad hoc networks, AODV, PSO.

I. INTRODUCTION

GREAT advances in communication devices and wireless
applications have been observed in the last years. It

has increased mainly due to the benefits supported by these
technologies when compared to wired networks, such as
installation facilities and portability. These devices are often
used by people who need connectivity and flexibility.

Among the wireless communication systems, ad hoc net-
works have been pointed as a great alternative for the future,
since they can provide the same services of a conventional
wireless network, without the requirement of a base station for
establishing communication [1]. In ad hoc networks, the goal
is to send information from a source to a destination node in
a peer-to-peer connection through intermediate mobile nodes,
i.e., across multiple hops. Accordingly, the network nodes
also act as routers where the management and control are
distributed among the mobile nodes. Therefore, the traditional
wired network routing algorithms cannot be effectively applied
to ad hoc networks, since they present some issues that are
very peculiar and different from wired networks.

Many protocols have been proposed to solve the multihop
routing problem, each one based on different assumptions and
features. Some of them use a broadcast mechanism to discover
routes through the network [2], [3].
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One of the leading protocols for routing in ad hoc wireless
networks is the AODV algorithm [3], [4], [5]. This protocol
is reactive, meaning that it does not require the nodes to
maintain routes to their destinations that are not in active
communication. AODV routing also provides two different
mechanisms to recover routes when a link break in active
routes occurs due to changes in network topology. In the
first case, the route repair can be initiated locally at the node
located immediately upstream of the broken link. In the second
case, the route repair can be made by the source node after
receiving a notification of the route failure [5].

In the AODV route recovery mechanisms, for networks with
limited diameters, error messages can be propagated back to
the source node relatively quickly, and a repairing action is
performed. However, for networks with larger diameter and
longer paths, the error message may have to propagate for
more hops to reach the source which may increase the time to
repair. Hence, this mechanism can become ineffective for more
stressful scenarios. One can observe that, in the current AODV
algorithm implementation, the protocol chooses to do either a
source repair or a local repair based only on the number of
hops involved across the path [6].

In this way, we propose a new AODV based approach for
route failure recovery by adding the connectivity concept at
the candidate nodes in the decision process to perform the
route repair. Connectivity is defined here as the number of
neighboring nodes present in the transmission range of the
candidate node chosen to make the route repair (either the
source node or the predecessor node to the failure).

In addition, we consider to use a Computational Intelligence
technique called Particle Swarm Optimization (PSO) [7], to
generate the appropriate composition of weights for all consid-
ered parameters in AODV route recovery, in order to improve
the choice in local repair decision aiming to reduce data packet
delivery delay.

After that, to validate our proposal, we developed similar
simulation scenarios used by related work that describe the
characteristics of the AODV protocol [4], [8], [9], [10], [11],
[12], [13], employing the Network Simulation-2 (NS-2) [14].
Finally, the new approach is evaluated based on simulation
results for three network metrics: data packet delivery fraction,
routing overhead and data packet delivery delay.

This paper is organized as follows. Section II briefly reviews
the AODV routing protocol focusing on its routing mainte-
nance and describes the related work. Section III presents the
proposed modifications to the AODV protocol based on the
connectivity and the PSO technique. Section IV describes the
simulation scenario and results. Finally, Section V brings the
conclusion and suggestion for future work.
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II. AD HOC ON-DEMAND DISTANCE VECTOR ROUTING

The AODV routing protocol enables dynamic, self-starting,
multi-hop routing between participating mobile nodes wishing
to establish and maintain an ad hoc network. The AODV
algorithm allows mobile nodes to quickly obtain routes for new
destinations, and it does not require nodes to maintain routes to
destinations that are not in active communication. Also, AODV
routing permits mobile nodes to respond to link breakages
and changes in network topology in a timely manner [5]. The
main objective of this protocol is to quickly and dynamically
adapt itself to changes of conditions on the network links, for
example, due to mobility of nodes.

The AODV protocol works as a pure on-demand route
acquisition system. When a source node desires to send a
message to some destination node and does not already have
a valid route to that destination, it initiates a path discovery
process to locate the other node. It broadcasts a route request
(RREQ) control packet to its neighbors, which then forward
this request to their neighbors, and so on. It occurs until either
the destination or an intermediate node with a “fresh enough”
route to the destination is located.

The AODV protocol utilizes destination sequence numbers
to ensure that all routes contain the most recent route in-
formation. Each node maintains its own sequence number.
During the process of forwarding the RREQ, intermediate
nodes record in their routing tables the address of the neighbor
from which the first copy of the broadcast packet is received,
thereby establishing a reverse path. Once the RREQ reaches
the destination or an intermediate node with a fresh enough
route, the destination or the intermediate node responds by
unicasting a route reply (RREP) control packet back to the
neighbor from which it first received the RREQ.

A. Route Recovery

An active route is defined as a route which has recently been
used to transmit data packets. If a link break occurs while the
route is active, the node upstream of the break propagates a
route error (RERR) message to the source node to inform it
that the destination is now unreachable [5]. After receiving
the RERR, if the source node still desires the route, it can
reinitiate the route discovery process.

Alternatively, the algorithm may initiate a local repair
mechanism when a link failure happens on an active route
and the first node upstream of this break (the predecessor)
chooses to repair the link locally if the destination is not
too far away. In such case, the node increments the sequence
number for the destination and then broadcasts a RREQ for
the destination [5]. Thus, local repair attempts will often be
invisible to the source node. The node that initiates the repair
waits the discovery period to receive RREP in response to the
RREQ. During local repair, data packets should be buffered.
If, at the end of the discovery period, the repairing node has
not received a RREP (or other control message creating or
updating the route) for that destination, the node propagates a
RERR [5]. When it happens, long delays and huge losses of
packets due to exhaustion of the queues will occur. However, if
the repairing node receives a RREP, it ensures lower overhead
and delay.

In the current implementation of the AODV protocol, it
chooses to do either source repair or local repair depending on
the number of hops involved on the path. Notice that the choice
holds following the condition depicted in Algorithm 1, where
packetForward is the amount of hops from the source node
until the upstream node (i.e., the predecessor) before the failure
and predecessorHopCount is the quantity of hops from the
predecessor node to destination which information is stored in
the routing table of the predecessor node. If packetForward has
more hops than predecessorHopCount, the algorithm chooses
to make local repair, otherwise the upstream node sends a
RERR to the source. Based on this characteristic of the AODV
routing protocol, several studies proposed to locally recover
from the disconnected route [11], [12], [13], [15], [16], [17],
[18], [19], such that the repairing action can still be on time,
as described in the next subsection.

Algorithm 1: Route recovery decision.

1 if (packetForward ≥ predecessorHopCount) then
2 localRepair();
3 end
4 else
5 sourceRepair();
6 end

B. Related Work

In [15], Pan et al. suggested, as an enhancement to AODV,
an approach that leads to two routing protocols, called AODV
- Local Repair TTL (AODV-LRT) and AODV - Local Repair
Quota (AODV-LRQ), which aimed to efficiently repair the
link errors. These approaches include a decrease breadth or
depth of the extent to which the repair mechanism applies.
Decreasing the breadth of the repair mechanisms means that
one can limit the maximum number of hops, i.e., time-to-live
(TTL), that RREQ packets have to pass, assuming that the size
of the network topology and transmission range of every node
are known. For example, if the size of the network topology
is 1500m × 600m and the transmission range for each node
is 250 m, the longest path will be 6 hops. In such scenario,
TTL will not exceed longest known path

2 hops. Decreasing the
depth of the repair mechanisms means to limit the number of
times a node is allowed to forward the route repair request,
i.e., each node carries out the route repair k times in some
period T of time.

In [11], Youn et al. proposed a new local repair scheme
using a promiscuous mode, which is mainly composed of
two parts: adaptive promiscuous mode and quick local repair
scheme. Adaptive promiscuous mode repeats the switching
processes between promiscuous mode and non-promiscuous
mode. The proposed scheme adopts promiscuous mode such
that each node keeps monitoring the overheard packets from
which the routing information about the route path in adjacent
nodes can be obtained. This action can cause excessive energy
consumption and reduce network efficiency.

Other proposed studies aim to change the AODV protocol
to make it more efficient in relation to performance metrics
such as throughput or overhead utilizing the information from
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the neighbors to prevent breaks or provide spare routes [12],
[13], [16], [17], [18], always monitoring restored routes after
occurrences of link breaks due to the dynamic of the network.
Another approach is to gradually migrate to a clustering route
protocol to deal with dense networks [19].

Although the previous studies have proposed new schemes
for route recovery of AODV algorithm in case of broken links,
to the best of our knowledge, none of them attempted to
use the concept of node connectivity, beyond hop counters,
employing weight in each argument considered to obtain the
repair decision. Furthermore, any of these previous approaches
did not consider the use of Computational Intelligence tech-
niques to address route failure recovery.

III. NEW APPROACH TO IMPROVE THE AODV ROUTE
RECOVERY MECHANISMS WITH CONNECTIVITY AND PSO

In the approach currently implemented on the AODV pro-
tocol, as aforementioned, the source repair and the local repair
are used, but the protocol chooses either one depending on the
number of hops involved on the path to destination according
to the original draft of the protocol specified in its RFC [5].
However, the amount of neighbors around the candidate nodes
(source and predecessor) to repair the failure may indicate the
possibility of finding another good route to destination.

A. Connectivity

Following this rationale, we introduce the connectivity con-
cept defined as the number of neighbors in the transmission
range of a node, which can be obtained from the AODV
exchange of HELLO messages. Accordingly, our proposal to
improve the performance of the AODV also considers the
connectivity information for the source and predecessor nodes
on the decision of the recovery. This is accomplished by
associating weights to the number of hops on the path to
destination and to the connectivity, according to Algorithm
2. In this algorithm, source and local are functions of the
amount of hops on the path to destination and their respective
connectivities. The weights A, B, C and D have direct influence
on the choice between one and other repair action and are real
numbers defined over the interval [−1, 1]. The PSO technique
was employed to optimize the weight values in Algorithm 2.

Algorithm 2: Route recovery using the connectivity concept.
A, B, C and D are obtained from the PSO technique.

1 source = (A×packetForward)+(B×sourceConnectivity);
2 local = (C × predecessorHopCount) + (D ×
predecessorConnectivity);

3 if (source ≥ local) then
4 localRepair();
5 end
6 else
7 sourceRepair();
8 end

B. Particle Swarm Optimization for AODV Routing

Particle Swarm Optimization (PSO) is a Computational
Intelligence technique proposed by Kennedy and Eberhart [7]
in 1995, which implements a metaphor of social behavior
for the interaction between individuals (particles) of a group
(swarm). From this initial objective, the concept evolved to a
simple and efficient optimization algorithm. More specifically,
the ability of groups of some species (like simple agents)
work as a whole for locating desirable positions in a given
area. This seeking behavior was associated with that of an
optimization search for solutions to non-linear equations in a
real-valued search space1 (or hyperspace) [20]. In PSO, each
single particle acts as an agent in the search space. The set of
particles (the group of agents) is named swarm.

1) PSO Technique: In the most common implementations
of PSO, particles move through the search space using a
combination of an attraction to the best solution that they
individually have found, and an attraction to the best solution
that any particle in their neighborhood has found during the
search process so far. In PSO, a neighborhood is defined for
each individual particle as the subset of particles which it is
able to communicate with [20].

Particle swarm optimization is initialized with a population
of random solutions for which is also assigned a randomized
velocity. The potential solutions, called particles, are then
“flown” through the hyperspace.

Each particle keeps the coordinates of the position in the
hyperspace which is associated with the best solution it has
achieved so far −→p i. The best solution is determined according
to the fitness evaluation at the points considered along the
trajectories of the particles. The value of the fitness is also
stored. This value is often called Pbest. Another “best” value
is also tracked: the “global” version of the particle swarm
optimizer Gbest which keeps track of the overall best value,
and its location, obtained thus far by any particle in the
population −→p g .

The particle swarm optimization concept consists of, at
each time step, changing the velocity (accelerating) each
particle toward its −→p i and −→p g (global version). Acceleration
is weighted by a random term with separate random numbers
being generated for acceleration toward −→p i and −→p g . The
previous velocity of the particle is also considered for changing
the velocity of the particle.

The particles move throughout the search space by a fairly
simple set of update equations. The algorithm updates the
entire swarm at each time step by updating the velocity and
position of each particle in every dimension according to [21]
−→v i(t+1)=ω−→v i(t)+c1ϵ1[

−→p i(t)−−→x i(t)]+c2ϵ2[
−→p g(t)−−→x i(t)],

(1)
where for each particle there are three vectors: a position
vector −→x i, a velocity vector −→v i and the vector which stores
its best found position −→p i, in which the subscript i represents
the index of the particle. These values represent the individual
knowledge of the particle. Besides these three vectors, the
PSO algorithm should keep another array that stores the

1In our study, since four parameters (A, B, C and D) need be optimized,
our search space has four dimensions.
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best position found by any particle in the neighborhood,
representing the group’s experience −→p g.

The velocity vector −→v i directly influences the direction that
the particle will take on each iteration, allowing the particles
to reach different regions of the search space.

The knowledge acquired by the particle in accordance
with their own experience is represented in Equation (1).
c1ϵ1[

−→p i(t) − −→x i(t)] is called the cognitive component. This
term represents how much, from its current position −→x i, the
particle is far away from its best position ever found −→p i(t).

The experience of an entire neighborhood is represented
by the social component, which appears in Equation (1) as
c2ϵ2[

−→p g(t) − −→x i(t)]. This component corrects the velocity
of particle i based on the best position found within its
neighborhood −→p g(t). For a neighborhood with the size of the
entire swarm, this term represents the correction of particle
velocity for the whole group. In this case, the particle will be
aware of the best overall position within the group, and thus,
adjust its position relative to the whole swarm.

The terms c1 and c2 are acceleration constants and assume
real values [20]. These values are used to balance the influence
of the cognitive component and social component, defining
the search behavior of the swarm. The terms ϵ1 and ϵ2 are
generated separately from an uniform distribution between 0
and 1 [21].

The inertia weight parameter ω was used to strike a better
balance between global exploration and local exploitation by
adjusting the influence of the previous particle velocities on
the optimization process, described in Equation (1).

The change of velocity modifies the position of particles
making them to move through the hyperspace over successive
iterations. Upon updating their information, the swarm parti-
cles reorganize their experiences. Depending on the problem
that the PSO will handle, either minimizing or maximizing
a function, each particle will adjust its objective function
(fitness) to converge towards a possible solution.

2) PSO Algorithm: PSO initially provides a set of random
values for the weights and velocities and a network scenario
is executed using them. Equation (1) is utilized to update the
velocities of each particle in the swarm. At the end of the
execution, data packet delivery delay measured is taken as the
PSO fitness and this process is repeated until the best values
for the weights is reached according to the stopping criteria.
Thus, the evaluated objective function (fitness) of each particle
is the average data packet delivery delay for each network
scenario simulated, so that this measure could be minimized
over the course of iterations. This process is described in
Algorithm 3.

The stopping criteria employed was the number of itera-
tions. Therefore, regarding the computational complexity of
the PSO technique, considering that the algorithm is running
with P particles and it evaluates each particle at each iteration,
the execution time is roughly P N T , where N is the number
of iterations and T is the time to evaluate a scenario with the
predefined set of parameters (i.e., A, B, C and D).

3) PSO Configuration: For the simulations performed in
this work, we used the PSO with global topology, that can
make search for appropriate parameters to the AODV decision
function. The global topology converges fast and can be used

for this problem since the search space is not highly multi-
modal2. In this kind of topology the particles have knowledge
about the position of all the other particles in the swarm, being
able to know which one has the best position [20]. 3

Algorithm 3: PSO algorithm for AODV routing.

1 startSwarm();
// Set particle dimensions randomly from

considered search space
// Initialize particle positions and

velocity as in Equation (1)
2 repeat
3 for eachParticle do
4 for eachDimension do
5 updateVelocityPosition();

// Update particle velocity and
position as in Equation (1)

6 end
7 calculateFitness;

// For each particle, calculate its
fitness value from the data packet
delivery delay measured

8 end
9 Uptade leader;

// If the fitness value is better than
the previous Pbest, set the current
fitness value as the new Pbest

10 if currentFitness < bestIndividualFitness then
11 bestIndividualFitness = currentfitness;
12 end
13 if currentFitness < bestNeighborhoodFitness then
14 bestNeighborhoodFitness = currentfitness;
15 end

// Best particle is selected as Gbest

16 until stoppingCriteria;

A population of 20 particles was utilized. The algorithm
terminated when the number of 200 iterations of the PSO was
reached. For ω we used values decreasing linearly from 0.9 to
0.4 during the execution of the algorithm. According to [21],
20 particles, 200 iterations and the linearly decreasing values
in the above interval is appropriate to low dimension search
space like the one utilized here.

IV. NETWORK SIMULATION RESULTS AND ANALYSIS

Aiming to produce results relevant to this study, three per-
formance measures were chosen for our analysis: throughput,
overhead and average packet delivery delay. The measures of
performance are explained below:

• Data packet delivery fraction (or throughput): The ratio
of the data packets delivered to destinations to those
generated by the constant bit rate (CBR) sources.

• Routing overhead: The total number of control routing
packets transmitted during the simulation.

• Average data packet delivery delay: This includes all pos-
sible delays caused by buffering during route discovery
latency, queuing at interfaces, retransmission delays at the
MAC layer, propagation and transfer times.

2A multimodal problem is characterized by many local maxima which
prevents the algorithm to quickly reach a solution [20].

3Note that PSO topology and network topology are distinct definitions, as
well as particles and nodes are different things.
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A. Network Simulation Environment

For the network simulations performed in this work, we
used the NS-2, version 2.33 [14]. The simulation environment,
analogous to related works, has area of 1500m × 300m,
containing 50 mobile nodes and simulation duration of 900
seconds. The physical (PHY) and medium access (MAC)
layers have the following characteristics: IEEE 802.11 at bit
rate of 2 Mbits/s and transmission range of 250 m. The radio
propagation model was the Two-Ray Ground [14]. All data
and routing packets sent by the network layer are queued at
the interface queue until the MAC layer can transmit them.
Each node has a queue for packets awaiting transmission by
the network interface that holds up to 50 packets.

The mobility model utilized was the Random Waypoint
model [22] using seven different pause times: 0, 30, 60, 120,
300, 600, and 900 seconds in order to simulate different
degrees of movement. The maximum speed (Vmax) is 20 m/s.
The traffic pattern was peer-to-peer CBR with the following
parameters: 30 traffic sources, packet rate of 4 packets/s with
packet size of 512 bytes. We opted for User Datagram Protocol
(UDP) traffic because it is not connection oriented, i.e., it does
not have mechanisms to adapt to network load. Our intention
is to measure the network layer effect over the metrics. Similar
simulation scenarios were used by other authors that describe
the characteristics of the AODV protocol [4], [8], [9], [11],
[12], [13].

For minimizing the PSO objective function, here considered
as the average data packet delivery delay, only a network
simulation scenario was called as a sample for each utilized
pause time. Accordingly, the PSO was run in 7 different times,
obtaining a sample for each different pause time parameter
setting.

For each iteration of PSO with different weights for the
parameters for each considered particle, the same network
simulation scenario was run 20 times for a pause time de-
fined, because a total of 20 particles were employed. Upon
executing 200 iterations in PSO, 4000 calls were made to the
network simulation scenario for the delay analysis. However,
as we considered seven different pause times, the PSO worked
separately for each, resulting in a total of 28000 calls to the
network simulation scenario. Accordingly, the optimal values
of the weights A, B, C and D found by the PSO technique
for each pause time utilized are shown in Table I.

B. Performance Results

Each produced curve point in the results shown below repre-
sents an average of ten runs in the NS-2 simulator with identi-
cal traffic load, but with different randomly generated mobility
scenarios. The confidence level on the plotted intervals is 95%.
The weights found by the PSO technique, according to Table
I, were employed for the parameters considered in the decision
function implemented in the modified AODV protocol.

Figures 1, 2 and 3 show the average data packet delivery
delay, the packet delivery fraction and the routing overhead,
respectively, as a function of the pause time. In the figures,
AODV refers to the original AODV protocol, while AODV-
PSO refers to the modified AODV protocol using the weights
found by the PSO technique.

TABLE I
OPTIMUM PARAMETERS VALUES FOUND BY THE PSO TECHNIQUE FOR

EACH PAUSE TIME EMPLOYED IN THE STUDIED SCENARIO.

Pause Time (s) A B C D

0 0.368487 -0.3521118 -1 -0.704438
30 0.794896 -0.129794 -0.0223986 -0.593785
60 -0.0259248 0.459122 -0.372466 -0.5
120 0.222188 -0.0126874 0.114947 -0.90658
300 0.389383 -0.214353 -0.589134 -0.5
600 0.0502506 -0.246525 -0.426209 -0.367086
900 0.219695 -0.546503 -1 -0.5

Figure 1 illustrates that, for average data packet delivery
delay, the AODV-PSO achieved a better performance when
compared to the original AODV. One can note that for lower
pause times, i.e., higher mobility (the pause times between 0
and 300 seconds), the AODV-PSO presents an improvement
of almost 30%. At 600 seconds it shows an improvement of
almost 10%. At 900 seconds no improvement was verified
since in such case the network remained static during the entire
simulation period. These results outperform those obtained in
[11], [12] and [13], for similar scenarios. 4
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Fig. 1. Average data packet delivery delay versus Pause time.

Although the PSO has been used only to minimize the
average delay, the other performance measures were positively
influenced by the weights matches as shown by the following
results.

Figure 2 shows that the AODV-PSO throughput outperforms
the original AODV implementation.This can be explained by
the fact that, considering the PSO function implemented, better
decisions in relation to nodes capable of doing repairs are
happening. That is, good routes are being established for the
data to quickly flow to their destination, thus increasing the
throughput.

In Figure 3, it is observed that the number of control packets
sent by AODV-PSO is less than the amount of packets sent by
the original AODV protocol. This is a result of the new repair
mechanism chosen, since it is successful in the first attempts
to fix routes; hence, lowering traffic control packets across the
network.

All results show performance improvement due to the use of
connectivity and PSO algorithm for the route recovery decision

4In [15], [16], [17], [18] and [19] the data delivery delay was not evaluated.
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Fig. 2. Data packet delivery fraction versus Pause time.

in the AODV protocol for all investigated metrics. The better
results were obtained for the scenarios with higher mobility,
i.e. lower pause times, indicating that the AODV-PSO is an
interesting option for mobile ad hoc networks.
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Fig. 3. Routing overhead versus Pause time.

V. CONCLUSION AND FUTURE WORK

This paper proposed a new decision function to improve
the performance behavior of the route recovery mechanism of
the AODV protocol in ad hoc networks. We also proposed
to use Particle Swarm Optimization in order to find the best
set of parameters in the decision. More specifically, the AODV
protocol was modified to make a decision to recover from route
failure either at the source node or at the link failure prede-
cessor node implementing the connectivity concept and using
weights for each argument considered in the decision function.
The values for each weight was found through PSO basic
form. We observed that the PSO showed satisfactory behavior
improving the performance of AODV for all metrics on the
investigated scenarios. These results indicate that depending
on the network topology, parameters and user application, it
can be advantageous for AODV routing to use computational
intelligence algorithm.

For future work, a possible extension of the present study is
to analyze the application of a multi-objective PSO approach to
improve several aspects simultaneously in order to maximize
throughput and minimize overhead and delay.
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