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Upper Bound of Ergodic Capacity for MIMO
Channels with Ricean-Fading using Majorization
Theory

Antonio Alisson Pessoa Guintas and Charles Casimiro Cavalcante

Abstract—This paper presents a closed-form upper bound for HHY | where H is defined as the channel matrix [7]-[10].
the ergodic capacity of spatially uncorrelated Ricean flat-fading Most recently, by considering MIMO Nakagami- fading
channels with multiple-input multiple-output (MIMO) antennas. channels, Zhonget al. [11] have shown that it is possible

By considering an arbitrary number of antennas at both the to obtai ity limit ithout licati f the ioint
transmitter and receiver sides and assuming that the channel 0 Obtain capacity imits, without application of the join

state information (CSI) is completely unknown at the transmitter, ~€igenvalue distribution, by Majorization theory [12], [1¥his
the Majorization theory is used as a powerful mathematical analysis has allowed them to specify a comparison between th

tool, which allows us to derive an upper bound on the diagonal elements of the positive semi-definite maHi”
channel capacity for this class of channels. The upper bound and its singular values.

obtained does not depend on the Riceafx factor. Moreover, in thi i f iall lated
in the high signal-to-noise-ratio (SNR) regimes, we give another n this paper, we will focus on spatially uncorrelate

approximation for Ricean-fading channel capacity. Finally, we Ricean-fading MIMO channels, where the matrix component
present some numerical results that illustrate the validity of our of the channel, associated with the line-of-sight (LoS),

approach. is assumed to have an arbitrary rank. Specifically, using
Index Terms—Ergodic capacity, MIMO systems, Majorization ~Majorization theory, we propose an ergodic capacity upper
theory, Ricean channel. bound for this class of channels, which does not depend on the

Ricean factor. Further, from this result, we present a simple
approximation for the ergodic capacity in high signal-tuse
I. INTRODUCTION ratio (SNR) regimes.
HE use of Multiple input multiple output (MIMO) It is important to mention that this work differs from the
antenna systems has attracted great interest, duectrent literature in MIMO systems, due to the mathematical
significant improvements in terms of spectral efficiency arfeatment to the subject. In addition, we obtained a cldset-
reliability with respect to single input single output (€1 upper bound for the ergodic capacity without the use of the
antenna systems [1], [2]. In addition, one of the main fosuseomplex non-central Wishart distribution, and we consttiat
on MIMO systems is the study of the ergodic capacityi€ matrix corresponding to the LoS has an arbitrary rank.
or Shannon capacity, which is viewed as an important The remainder of this paper is organized as follows. In
performance measure [3]. Section I, we describe the system model and the assumptions
This work investigates this performance measu@onsidered in this work. We list some results of Majorizatio
on Ricean-fading channels. This statistical process tReory that will be used in our study in Section Ill. Sectiah |
very useful to model the random signal fluctuations ifrovides an upper bound and an approximation in high SNR
various propagations environments and encompasses f@g@mes for the ergodic capacity over Ricean-fading MIMO
Rayleigh-fading channels. Several researches, operatingchannels. Simulation results are presented in Section V. We
Ricean-fading MIMO systems, have been published abogtfnclude this paper in Section VI.
closed-form upper bounds on the ergodic capacity. ForThroughout this paper, matrices and vectors will be
example, in [4], an asymptotic upper bound was investigategpresented by bold uppercase and lowercase letters,
on uncorrelated channels, while [5], [6] present boundgéup respectively. We usel or I, for the identity matrix of
and lower) for the correlated channel case. In turn, [7], [8imension p x p. The operators(-)”, ® and < denote
derived bounds and approaches for rank-1 MIMO channelsthe conjugate transpose, Kronecker product and majasizati
Although the analysis on the ergodic capacity has beeglation, respectively. In turnjet(-) denotes the determinant
exhaustively analyzed in several settings [4]-[8], thibjeot of a matrix andE{-} represents the expected value operator.
still wakes up interest, especially when it is necessary kanally, the result of the operatorgd and\(-) are vectors and
explore the limits of a given system. However, to obtaiflenote the diagonal elements and the eigenvalues, resggcti
analytical closed-form formulas to ergodic capacity, ingel, of a given Hermitian matrix.
is a very difficult task. This complexity is due to derivation

of the joint eigenvalue density distribution of the matrix Il. SYSTEM MODEL

The authors are with the Wireless Telecommunications Rese@roup Let us consider a single-user MIMO communication system
(GTEL), Department of Teleinformatics Engineering (DETI)edéral ith . nd .
University of Cead (UFC), Fortaleza-CE, Brazil, e-mails{alisson, with ng transmit antennas andp receive antennas over a

charleg @gtel.ufc.br, Phone/Fax: +55-85-33669470. Ricean flat-fading channel. In addition, we have assumed tha
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the channel state information (CSI) is completely unknown a [1l. M AJORIZATION THEORY
the transmitter.

. . L For the development proposed in this work, some basic
The received signal vectgr ¢ C"#*1 is given by P brop

results and definitions of Majorization theory will be nesary.

y =Hx +n, (1) The mathematical fundamentals related to the Majorization

Theory can be found in the classical reference, [12] and some

problems in wireless communications are elegantly stugtied

[20], [21] using this theory. Moreover, this tool also helps

in solving some optimization problems [21]-[23]. Here, we
resent the most relevant elements for our purposes.
Definition 1: [12, 1.A.1] Letx = (x1, z2, - ,x,) and

where the data vectax € C"7*! is the transmitted signal
vector satisfying the total power constraifi{||x||?} < Pr.
The noise vecton € C"#*! is considered to be Zero-Mean
Circular Symmetric Complex Gaussian (ZMCSCG) wit
covariance matrixNoI,,,,, i.e., n ~ CN(0, NyI,,). The
elements of the channel matrild = [h,;;] € C"»*"7 are (y1, Y2,--,yn) be vectors inR™. We denote by
assu.med to hgve the same mean square value, and edual = (xm’ T, a?[n]) the vector obtained by re-ordering
that is,E{|h,;|*} = Q. In this paper, we have considered that

’ e ) e coordinates at in a decreasing order, that is;; > x5 >
the t'anvglopd'h”\ of the c.:omplex entrie;; follows a Rice > x[,. The vectorx is said majorized by (represented
distribution given by [14]:

by x <y), if
K K+1)h? K(K
p\hul(m:%hfmp(—% —K)Io(2hm)7 . i
where the real numbéX is the RiceanX factor and represents l;l 121
the rfatio of deterministig energy to _scatt.ered energy. Enet Z vy = Z i 7b)
I(-) is the Bessel function of the first kind. Furthermore, we P P

have considered that the channel is spatially uncorreléted o _ )
the matrixH can be represented by the following model [g], Pefinition 2: [12, 3.A.1] A real-valued functions(-) on

[15]: R” is called Schur-convex if
H—\/WH—s— 9 . X <y = o(x) < (y). ®)
VK +1 K+1 "7 Similarly, ¢(-) is said to be Schur-concave if

whereH is a deterministic (specular) matrix, with an arbitrary
rank L, which corresponds to the LoS. The teHi, = [h;;] is X<y = ¢x) 2 9y). ©
a random (scattered) matrix whose elements are independentemma 1: [12, 3.C.1] Consider the real-valued function
and identically distributed (i.i.d.), ZMCSCG and unit \@ice, ¢(-) onR". If g: R — R is concave, them(-), defined by
ie.,, H, ~CN(0, I,, ® L,.). It is important to mention .
that, if K = 0 then we have an uncorrelated Rayleigh _ _
flat-fading channel, whild{ — oo corresponds to non-fading 9(x) = ;g(%)’ (10)
channels [14], [16]. .

Under the assumptions described above, the ergodic capal§tSchur-concave.

is given by [7], [15], [17], [18] " Lemma 2: [12, 9.B.1] If A € C**™ is a Hermitian matrix,
en
C=E {mg2 det (1 n n”r) } : (4) d(A) < M(A). (11)
T
wherep £ % is the average SNR at the receiver and IV. CAPACITY UPPERBOUND OFE MIMO UNDER
H o RICEAN-FADING
r— HH", IfnRSnT (5) . . o
T Y"HPH, if ng > np. In this paper, we present a different approach for obtaining

upper bounds on the ergodic capacity of uncorrelated Ricean
Next, let us define the termsn = min{ng,nr} and MIMO flat-fading channels. This theory avoids the use of the
n = max {ng,nr}. ThenI is always a square matrix of ordercomplex non-central Wishart distribution [5], [7]. Speciily,

m X m. we derive the upper bound on Schur-concave function in terms
Finally, the channel matri¥l has a matrix-variate complex of the eigenvalues and diagonal elements of a given Hemmitia
Gaussian distribution, i.e., [7], [19] matrix, as shown in the next theorem.
Theorem 1:The ergodic capacity of MIMO Ricean-fading
channel is upper bounded b
H~CN <,/ QK H, L I,,® InT>- (6) ppi g
K+1 — K+1 C < Cyp=mlog, (1+ pQ). (12)

Throughout the paper, we assume that the number of
receive antennas does not exceed the number of transgp'ge
antennas, i.e.ng < nr. In addition, using the identity
det (I+ AB) = det (I4+ BA), all results can be extended 1+ K
to the caseir > nr. W= a0 H. (13)

Proof: Firstly, we will transform the channel matrix in
r to simplify our calculus. Specifically, we define
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Thus, the elements oW = [w;;] € C***"T have constant Note thatd; = ", |w|*, for i = 1, 2,---, m, and
power, i.e,E [Jw;|?] = K + 1, and this matrix has the E{d;} = n(K + 1). Hence, the mean of the products of
following decomposition di, do,---, dpn iS given by

W - \/?ﬁ‘i’ Hw- (14)

Furthermore,W has a matrix-variate complex Gaussian
distribution [19]

WNCN(\/?E L, ® In). (15) =(n-(K+1))".
In summary, with the result froni26), the mean value term
in Equation(25) is given by

J1=1j2=1 Jm=1

E{ﬁd}=2 Sy E{ﬁwi} o

In_words, the new channel matriXv has a matrix-mean
v K H and covariance-matrix equal 19, .

On the other hand, from Equation (13), the ergodic capacity i P2 m
in Equation (4) is written as E H 1+ n(K +1) d; = (L+p)". (27)

C:E{lodeet <Im,+ P WWH)} (16) Hence, the ergodic capacity of MIMO Ricean-fading

i=1

n(K +1) channel is upper bounded by
In turn, let us consider the vectors C < Cup=mlogy (1 + p). 28)
H
AWWT) = (A1, Aoy - Am) A7 This completes the proof of the theorem. [ ]
and Observe that the upper bound obtained in (28) depends on
d(WWH) = (dy, da, -, dp), (18) the numbers of antennas, the SNR value and the péwén

each entry of the MIMO channel matrix. Moreover, our result
which correspond to the eigenvalues and diagonal elemef{Sndependent of the Riceali- factor and the Ricean and
of the Hermitian matrixWW™, respectively. Under theserayleigh fading channels have the same upper bound when
assumptions, the ergodic capacity in (16) can be writted8ls [ \we consider the same numbers of antennas.

In Section V, the upper bound given by Equation (28) is

C=-F {ilogﬁ (1 + n(Igi 5 )\i> } . (19) compared with amsimilar resuli[ presented by [8, Theorem 4]
Additionally, base;_on Lemma 2, we have Cu, = log, (; (T) (%)Z (nri!i)! (_1K'+_:i()z> , (29)
d(WWH) < x(WwH). (20) when the LoS r_n;trix component has a unit-rank &he 1.
Now, let the funcgond) : R? — R be defined by mi:gjlg¥’+agg?'ggn \:)a;uaepp;)r;x?rgziegat;;?&gzEzg)fFlnSC]FIon
P(x) = ;bgz (1 + n(fgil) xi)? (1) V. NUMERICAL RESULTS

In this section, we compare our upper bound with the one

and the real-valued concave functigix) = logy(1 + kx), : . P
with £ > 0. Thus, based on Lemma 1, we guarantee that tHéoposed in [8], for uncorrelated Ricean flat-fading chasine

function ¢(-) in Equation (21) is Schur-concave and with K= 1 and K’ = 3. Here, we considef) = 1, a unit-rank
for the LoS matrix component, and the number of receive

antennas does not exceed the number of transmit antennas.

Figures 1 and 2 depict the closed-form upper bounds given
in [8] and the one proposed in this work, together with
simulation results, forKk = 1 and K = 3, respectively.
Figure 3 shows the same upper bounds, but using the high

C=E {¢( A(WWH) ) } <E {(;S(d (WWH) ) } . (23) SNR regimes approximation.

The simulation results in Figure 1 and 2 illustrate that, for

Therefore, the SISO case, the upper bound proposed in this work and the
o0 . ) } one suggested (see Equation (29)) by [8] are identical. eor t

¢(d(WWH)) > qS(A(WWH)). 22)

Applying the expectation operat@{-} in Equation (22), we
obtain

C< E{Zlog2 (1 + KT MIMO case, we observe the upper bound given in [8] is a
i=1 n(K +1) (24) little tighter than our upper bound, and the difference igeno
m el evident when the value of Riceali-factor is increased. We
=E q log, H <1 + WK+ 1) di) : have the same behavior for high SNR values (see Figure 3).
i=1 The reason for this difference is that our result is indepand
According to Jensen’s inequality [12, 16.C.1], we have of the RiceanK-factor. Thus, we fail to capture the impact of
the line-of-sight components.

T < log, (E ﬁ (1+ pS2 di> . (25) However, 'the upper bgund]up given in Equation (28),
o1 n(K +1) obtained using Majorization theory, has the advantages of
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being a simple analytical closed-form formula, an eas

300
computational treatment and, more importantly, the meth

employed is less complex than traditional methods, whic seol "'Efg°d‘°§apa°“y'h8f888
use the complex non-central Wishart distribution [5], [7] v Eraocie Capaeity - ¢t
Add|t|0na”y, we h|ghl|ght that th|S method can be Useful t( —¥— Proposed approach - 4x4

channel 8x8

N

o

S
T

= © = Ergodic Capacity - 2x2
—©&— Proposed approach — 2x2

obtain upper bounds on other types of fading channels.

40

Capacity Ergodic (bps/Hz)
=
o
o
T

= H = Ergodic Capacity — 1x1 K=1 ;
351 = © = Ergodic Capacity - 2x2 v 100
= W = Ergodic Capacity - 4x4 v Vw
30H —+&— Proposed approach - 1x1 V»fv i
= —6— Proposed approach - 2x2 channel 4x4 v z' 50
% 250 —¥%— Proposed approach — 4x4 v ;/V, |
& O Approach from Jin - 1x1 v ;V
z O Approach from Jin - 2x2 v ;V’ channel 2x2 100
% 2017 V  Approach from Jin - 4x4 ; vV : 8 SNR (dB)
(8]
g 1sf ¥ 8 8‘8'% & 1
g VV? g3 8 Fig. 3. Approaches to the ergodic capacity in the cases2, 4 x 4 and
10k V’VV g8 388 , 8 x & for high SNR regimes, with = 1.
¥ <56 =eZias
HV‘ 8 ad
£330 EE e 9 — |
channel 1x1 we have obtained an approximation to ergodic capacity
0 | | | | |

0 5 10 N 20 25 3 by cgnsi_dering the upper bound obtained. As far as the

contributions of the paper are concerned, we have presented

Fa 1 G <o between th bound 4 by thisr sad th a simple closed-form upper bound on ergodic capacity when

e e e e o e b e PR . the LoS matrix component has an arbtrary rank, as well as an
with K = 1. approximation for high SNR regimes on Ricean-fading withou
the RiceanK factor. A perspective for future works is to

evaluate upper and lower bounds and approximations in high

o e low SNR regimes for the ergodic capacity on other fading
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