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Upper Bound of Ergodic Capacity for MIMO
Channels with Ricean-Fading using Majorization

Theory
Antonio Alisson Pessoa Guimarães and Charles Casimiro Cavalcante

Abstract—This paper presents a closed-form upper bound for
the ergodic capacity of spatially uncorrelated Ricean flat-fading
channels with multiple-input multiple-output (MIMO) antennas.
By considering an arbitrary number of antennas at both the
transmitter and receiver sides and assuming that the channel
state information (CSI) is completely unknown at the transmitter,
the Majorization theory is used as a powerful mathematical
tool, which allows us to derive an upper bound on the
channel capacity for this class of channels. The upper bound
obtained does not depend on the Ricean-K factor. Moreover,
in the high signal-to-noise-ratio (SNR) regimes, we give another
approximation for Ricean-fading channel capacity. Finally, we
present some numerical results that illustrate the validity of our
approach.

Index Terms—Ergodic capacity, MIMO systems, Majorization
theory, Ricean channel.

I. I NTRODUCTION

T HE use of Multiple input multiple output (MIMO)
antenna systems has attracted great interest, due to

significant improvements in terms of spectral efficiency and
reliability with respect to single input single output (SISO)
antenna systems [1], [2]. In addition, one of the main focuses
on MIMO systems is the study of the ergodic capacity,
or Shannon capacity, which is viewed as an important
performance measure [3].

This work investigates this performance measure
on Ricean-fading channels. This statistical process is
very useful to model the random signal fluctuations in
various propagations environments and encompasses the
Rayleigh-fading channels. Several researches, operatingin
Ricean-fading MIMO systems, have been published about
closed-form upper bounds on the ergodic capacity. For
example, in [4], an asymptotic upper bound was investigated
on uncorrelated channels, while [5], [6] present bounds (upper
and lower) for the correlated channel case. In turn, [7], [8]
derived bounds and approaches for rank-1 MIMO channels.

Although the analysis on the ergodic capacity has been
exhaustively analyzed in several settings [4]–[8], this subject
still wakes up interest, especially when it is necessary to
explore the limits of a given system. However, to obtain
analytical closed-form formulas to ergodic capacity, in general,
is a very difficult task. This complexity is due to derivation
of the joint eigenvalue density distribution of the matrix
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HHH , whereH is defined as the channel matrix [7]–[10].
Most recently, by considering MIMO Nakagami-m fading
channels, Zhonget al. [11] have shown that it is possible
to obtain capacity limits, without application of the joint
eigenvalue distribution, by Majorization theory [12], [13]. This
analysis has allowed them to specify a comparison between the
diagonal elements of the positive semi-definite matrixHHH

and its singular values.
In this paper, we will focus on spatially uncorrelated

Ricean-fading MIMO channels, where the matrix component
of the channel, associated with the line-of-sight (LoS),
is assumed to have an arbitrary rank. Specifically, using
Majorization theory, we propose an ergodic capacity upper
bound for this class of channels, which does not depend on the
Ricean-K factor. Further, from this result, we present a simple
approximation for the ergodic capacity in high signal-to-noise
ratio (SNR) regimes.

It is important to mention that this work differs from the
current literature in MIMO systems, due to the mathematical
treatment to the subject. In addition, we obtained a closed-form
upper bound for the ergodic capacity without the use of the
complex non-central Wishart distribution, and we considerthat
the matrix corresponding to the LoS has an arbitrary rank.

The remainder of this paper is organized as follows. In
Section II, we describe the system model and the assumptions
considered in this work. We list some results of Majorization
theory that will be used in our study in Section III. Section IV
provides an upper bound and an approximation in high SNR
regimes for the ergodic capacity over Ricean-fading MIMO
channels. Simulation results are presented in Section V. We
conclude this paper in Section VI.

Throughout this paper, matrices and vectors will be
represented by bold uppercase and lowercase letters,
respectively. We useI or Ip for the identity matrix of
dimension p × p. The operators(·)H , ⊗ and ≺ denote
the conjugate transpose, Kronecker product and majorization
relation, respectively. In turn,det(·) denotes the determinant
of a matrix andE{·} represents the expected value operator.
Finally, the result of the operators d(·) andλ(·) are vectors and
denote the diagonal elements and the eigenvalues, respectively,
of a given Hermitian matrix.

II. SYSTEM MODEL

Let us consider a single-user MIMO communication system
with nT transmit antennas andnR receive antennas over a
Ricean flat-fading channel. In addition, we have assumed that
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the channel state information (CSI) is completely unknown at
the transmitter.

The received signal vectory ∈ C
nR×1 is given by

y = Hx+ n, (1)

where the data vectorx ∈ C
nT×1 is the transmitted signal

vector satisfying the total power constraintE{||x||2} ≤ PT .
The noise vectorn ∈ C

nR×1 is considered to be Zero-Mean
Circular Symmetric Complex Gaussian (ZMCSCG) with
covariance matrixN0InR

, i.e., n ∼ CN (0, N0InR
). The

elements of the channel matrixH = [hij ] ∈ C
nR×nT are

assumed to have the same mean square value, and equal toΩ,
that is,E{|hij |2} = Ω. In this paper, we have considered that
the envelope|hij | of the complex entrieshij follows a Rice
distribution given by [14]:

p|hij |(h)=
2(K+1)

Ω h exp
(
− (K+1)h2

Ω −K
)
I0

(
2h

√
K(K+1)

Ω

)
,

(2)
where the real numberK is the Ricean-K factor and represents
the ratio of deterministic energy to scattered energy. The term
I(·) is the Bessel function of the first kind. Furthermore, we
have considered that the channel is spatially uncorrelated, thus
the matrixH can be represented by the following model [8],
[15]:

H =

√
ΩK

K + 1
H+

√
Ω

K + 1
Hw, (3)

whereH is a deterministic (specular) matrix, with an arbitrary
rankL, which corresponds to the LoS. The termHw = [h̃ij ] is
a random (scattered) matrix whose elements are independent
and identically distributed (i.i.d.), ZMCSCG and unit variance,
i.e., Hw ∼ CN (0, InR

⊗ InT
). It is important to mention

that, if K = 0 then we have an uncorrelated Rayleigh
flat-fading channel, whileK → ∞ corresponds to non-fading
channels [14], [16].

Under the assumptions described above, the ergodic capacity
is given by [7], [15], [17], [18]

C = E

{
log2 det

(
I+

ρ

nT

Γ

)}
, (4)

whereρ
△

= PT

N0

is the average SNR at the receiver and

Γ =

{
HHH , if nR ≤ nT

HHH, if nR > nT .
(5)

Next, let us define the termsm = min {nR, nT } and
n = max {nR, nT }. Then,Γ is always a square matrix of order
m×m.

Finally, the channel matrixH has a matrix-variate complex
Gaussian distribution, i.e., [7], [19]

H ∼ CN
(√

ΩK

K + 1
H,

Ω

K + 1
InR

⊗ InT

)
. (6)

Throughout the paper, we assume that the number of
receive antennas does not exceed the number of transmit
antennas, i.e.,nR ≤ nT . In addition, using the identity
det (I+AB) = det (I+BA), all results can be extended
to the casenR > nT .

III. M AJORIZATION THEORY

For the development proposed in this work, some basic
results and definitions of Majorization theory will be necessary.
The mathematical fundamentals related to the Majorization
Theory can be found in the classical reference, [12] and some
problems in wireless communications are elegantly studiedin
[20], [21] using this theory. Moreover, this tool also helps
in solving some optimization problems [21]–[23]. Here, we
present the most relevant elements for our purposes.

Definition 1: [12, 1.A.1] Let x = (x1, x2, · · · , xn) and
y = (y1, y2, · · · , yn) be vectors inRn. We denote by
[x] =

(
x[1], x[2], · · · , x[n]

)
the vector obtained by re-ordering

the coordinates ofx in a decreasing order, that is,x[1] ≥ x[2] ≥
· · · ≥ x[n]. The vectorx is said majorized byy (represented
by x ≺ y), if

k∑

i=1

x[i] ≤
k∑

i=1

y[i], 1 ≤ k ≤ n− 1, (7a)

n∑

i=1

x[i] =

n∑

i=1

y[i]. (7b)

Definition 2: [12, 3.A.1] A real-valued functionφ(·) on
R

n is called Schur-convex if

x ≺ y ⇒ φ(x) ≤ φ(y). (8)

Similarly, φ(·) is said to be Schur-concave if

x ≺ y ⇒ φ(x) ≥ φ(y). (9)

Lemma 1: [12, 3.C.1] Consider the real-valued function
φ(·) on R

n. If g : R → R is concave, thenφ(·), defined by

φ(x) =
n∑

i=1

g(xi), (10)

is Schur-concave.
Lemma 2: [12, 9.B.1] If A ∈ C

n×n is a Hermitian matrix,
then

d(A) ≺ λ(A). (11)

IV. CAPACITY UPPERBOUND OF MIMO UNDER

RICEAN-FADING

In this paper, we present a different approach for obtaining
upper bounds on the ergodic capacity of uncorrelated Ricean
MIMO flat-fading channels. This theory avoids the use of the
complex non-central Wishart distribution [5], [7]. Specifically,
we derive the upper bound on Schur-concave function in terms
of the eigenvalues and diagonal elements of a given Hermitian
matrix, as shown in the next theorem.

Theorem 1:The ergodic capacity of MIMO Ricean-fading
channel is upper bounded by

C ≤ Cup = m log2 (1 + ρΩ) . (12)

Proof: Firstly, we will transform the channel matrix in
order to simplify our calculus. Specifically, we define

W =

√
1 +K

Ω
H. (13)
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Thus, the elements ofW = [wij ] ∈ C
nR×nT have constant

power, i.e.,E
[
|wij |2

]
= K + 1, and this matrix has the

following decomposition

W =
√
KH+Hw. (14)

Furthermore,W has a matrix-variate complex Gaussian
distribution [19]

W ∼ CN
(√

K H, Im ⊗ In

)
. (15)

In words, the new channel matrixW has a matrix-mean√
K H and covariance-matrix equal toIm×n.
On the other hand, from Equation (13), the ergodic capacity

in Equation (4) is written as

C = E

{
log2 det

(
Im +

ρΩ

n(K + 1)
WWH

)}
. (16)

In turn, let us consider the vectors

λ(WWH) = (λ1, λ2, · · · , λm) (17)

and
d(WWH) = (d1, d2, · · · , dm), (18)

which correspond to the eigenvalues and diagonal elements
of the Hermitian matrixWWH , respectively. Under these
assumptions, the ergodic capacity in (16) can be written as [15]

C = E

{
m∑

i=1

log2

(
1 +

ρΩ

n(K + 1)
λi

)}
. (19)

Additionally, based on Lemma 2, we have

d(WWH) ≺ λ(WWH). (20)

Now, let the functionφ : Rp → R be defined by

φ(x) =

p∑

i=1

log2

(
1 +

ρΩ

n(K + 1)
xi

)
, (21)

and the real-valued concave functiong(x) = log2(1 + kx),
with k > 0. Thus, based on Lemma 1, we guarantee that the
function φ(·) in Equation (21) is Schur-concave and

φ
(

d(WWH)
)
≥ φ

(
λ(WWH)

)
. (22)

Applying the expectation operatorE{·} in Equation (22), we
obtain

C = E

{
φ
(
λ(WWH)

)}
≤ E

{
φ
(

d(WWH)
)}

. (23)

Therefore,

C ≤ E

{
m∑

i=1

log2

(
1 +

ρΩ

n(K + 1)
di

)}

= E

{
log2

(
m∏

i=1

(
1 +

ρΩ

n(K + 1)
di

))}
.

(24)

According to Jensen’s inequality [12, 16.C.1], we have

C ≤ log2

(
E

{
m∏

i=1

(
1 +

ρΩ

n(K + 1)
di

)})
. (25)

Note that di =
∑n

j=1 |wij |2, for i = 1, 2, · · · , m, and
E {di} = n(K + 1). Hence, the mean of the products of
d1, d2, · · · , dm is given by

E

{
m∏

i=1

di

}
=

n∑

j1=1

n∑

j2=1

· · ·
n∑

jm=1

E

{
m∏

k=1

|wkjk |2
}

= ( n · (K + 1) )
m
.

(26)

In summary, with the result from(26), the mean value term
in Equation(25) is given by

E

{
m∏

i=1

(
1 +

ρΩ

n(K + 1)
di

)}
= (1 + ρΩ)

m
. (27)

Hence, the ergodic capacity of MIMO Ricean-fading
channel is upper bounded by

C ≤ Cup = m log2 (1 + ρΩ) . (28)

This completes the proof of the theorem.

Observe that the upper bound obtained in (28) depends on
the numbers of antennas, the SNR value and the powerΩ, in
each entry of the MIMO channel matrix. Moreover, our result
is independent of the Ricean-K factor and the Ricean and
Rayleigh fading channels have the same upper bound when
we consider the same numbers of antennas.

In Section V, the upper bound given by Equation (28) is
compared with a similar result presented by [8, Theorem 4]

CU1
= log2

(
m∑

i=0

(
m

i

)( ρ
n

)i n!

(n− i)!

1 + iK

(K + 1)i

)
, (29)

when the LoS matrix component has a unit-rank andΩ = 1.
Finally, at high value of SNR (largeρ), the function

m log2 (1 + ρΩ) can be approximated bym log2(ρΩ) [15].

V. NUMERICAL RESULTS

In this section, we compare our upper bound with the one
proposed in [8], for uncorrelated Ricean flat-fading channels,
with K = 1 andK = 3. Here, we considerΩ = 1, a unit-rank
for the LoS matrix component, and the number of receive
antennas does not exceed the number of transmit antennas.

Figures 1 and 2 depict the closed-form upper bounds given
in [8] and the one proposed in this work, together with
simulation results, forK = 1 and K = 3, respectively.
Figure 3 shows the same upper bounds, but using the high
SNR regimes approximation.

The simulation results in Figure 1 and 2 illustrate that, for
the SISO case, the upper bound proposed in this work and the
one suggested (see Equation (29)) by [8] are identical. For the
MIMO case, we observe the upper bound given in [8] is a
little tighter than our upper bound, and the difference is more
evident when the value of RiceanK-factor is increased. We
have the same behavior for high SNR values (see Figure 3).
The reason for this difference is that our result is independent
of the RiceanK-factor. Thus, we fail to capture the impact of
the line-of-sight components.

However, the upper boundCup given in Equation (28),
obtained using Majorization theory, has the advantages of
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being a simple analytical closed-form formula, an easy
computational treatment and, more importantly, the method
employed is less complex than traditional methods, which
use the complex non-central Wishart distribution [5], [7].
Additionally, we highlight that this method can be useful to
obtain upper bounds on other types of fading channels.
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Fig. 1. Comparison between the upper bound proposed by this paper and the
obtained by [8] for1× 1, 2× 2 and4× 4 on Ricean-fading MIMO channels
with K = 1.
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Fig. 2. Comparison between the upper bound proposed by this paper and the
obtained by [8] for1× 1, 2× 2 and4× 4 on Ricean-fading MIMO channels
with K = 3.

VI. CONCLUSION

In this work, we have investigated the ergodic capacity of
a point-to-point MIMO system under a spatially uncorrelated
Ricean flat-fading channel when the channel state information
is completely unknown at the transmitter. We have considered
that the LoS matrix component has an arbitrary rank. Using
Majorization theory, we have obtained a closed-form upper
bound for the capacity ergodic in a simpler way than previous
works. In addition, we have concluded that our result is
independent of the Ricean-K factor. In the high SNR regimes,
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Fig. 3. Approaches to the ergodic capacity in the cases2 × 2, 4 × 4 and
8× 8 for high SNR regimes, withK = 1.

we have obtained an approximation to ergodic capacity
by considering the upper bound obtained. As far as the
contributions of the paper are concerned, we have presented
a simple closed-form upper bound on ergodic capacity when
the LoS matrix component has an arbitrary rank, as well as an
approximation for high SNR regimes on Ricean-fading without
the Ricean-K factor. A perspective for future works is to
evaluate upper and lower bounds and approximations in high
e low SNR regimes for the ergodic capacity on other fading
distributions with the use of the majorization theory on MIMO
and broadcast channels.
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University of Ceaŕa (UFC), Brazil, in 1999 and
2001, respectively, and the D.Sc. degree from the
University of Campinas (UNICAMP), Brazil, in
2004. He has held a grant for Scientific and
Technological Development from 2004 to 2007 and
since March 2009 he has a grant of Scientific
Research Productivity both from the Brazilian
Research Council (CNPq). From March 2007 to
November 2008 he was a visiting professor at

Teleinformatics Engineering Department of UFC and since November he is
an Assistant Professor at the same department and university holding the
Statistical Signal Processing chair. He has been working onsignal processing
strategies for communications where he has several papers published in
journal and conferences, has authored two international patents and he has
worked on several funded research projects on the wireless communication
area. He is also a co-author of the book Unsupervised Signal Processing:
Channel Equalization and Source Separation, published by CRC Press. He
is a researcher of the Wireless Telecommunications Research Group (GTEL)
where he leads research on signal processing and wireless communications.
His main research interests are in signal processing for communications, blind
source separation, wireless communications, and statistical signal processing.


