
JOURNAL OF COMMUNICATIONS AND INFORMATION SYSTEMS, VOL. 30, NO. 1, MARCH 2015. 90

A Variable Size Block Matching Based Descriptor
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Abstract—In this work we present a research which integrates
the Block Matching technique into the Human Action Recogni-
tion field. We propose a method to create a video descriptor com-
posed of three main steps: Computation of displacement vectors
between frames with a Variable Size Block Matching Algorithm,
histogram representation of these vectors, and orientation tensor
generation from the histogram. It is a promising approach for
human action recognition since it is a simple method with low
computational cost which achieves comparable results with state-
of-the-art techniques.

Index Terms—Human Action Recognition, Block Matching,
Self-descriptor, Tensor Descriptor.

I. INTRODUCTION

DETECTING movement in a sequence of images is an

important research field of computer vision. Several

applications, such as surveillance, video indexing and human

action recognition, rely on the quality and efficiency of meth-

ods carrying out this task. Block Matching is one of these

methods and consists in tracking the movement of rectangular

regions between frames of a video. Although largely used for

video compression, Block Matching has yet to be explored in

the Human Action Recognition context as a low computational

cost alternative to optical flow or gradients.

The assumption is that if there were continuous motion in

an image sequence, several blocks from one image could be

found on the next one, but in different positions. This was

described as a “piecewise translation” by Jain and Jain [1],

who first introduced the technique. Thus, the goal would be

to find where these blocks, possibly representing objects, are

in the following frame.

Block Matching Algorithms (BMA) vary mainly on search

strategies and error functions. Search strategies are more

efficient ways to analyze an image in order to find the best

match for a region. Since it is highly unlikely that two regions

will have exactly the same pixel intensities, an error function

is used as criterion for which block provides the best match,

measuring how similar these regions are.
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There are several BMA variants which can be used to

extract motion information. One such variant is the Variable

Size Block Matching Algorithm (VSBMA), which does not

maintain a fixed size for the blocks analyzed throughout the

computation. VSBMA can employ the same search strategies

and error functions as BMA, but the sizes of the blocks often

change via split or merge, depending on results yielded by the

block matching core routine.

In this work, we propose a video descriptor using VSBMA.

The Block Matching method runs fast and can potentially

generate compact descriptors since it is widely used in video

compression. Moreover, it is a simple method compared to

other approaches to extract motion information like 3-D gra-

dients, because it yields a more coarse representation, with

less vectors per frame. As we use variable block sizes, we

are able to cover more homogeneous regions and to avoid

redundancies. We show that the computational cost does not

increase prohibitively versus the fixed block size approach.

The following subsections are dedicated to related works

and technique overview. Section II presents the technical

background with a brief explanation of VSBMA. In Sec. III,

we detail each step of our method. We show the experiments

conditions in Sec. IV and the results and discussions in Sec. V.

A. Related Work

Human action recognition has been an active field of re-

search over many years now. It consists of classifying motion

in videos and can be divided into two tasks: motion extraction

and motion representation.

Several distinct techniques have been employed to extract

motion, like optical flow [2] and 3D gradients [3]. But so

far, block matching has not been thoroughly explored as an

action recognition tool, even though it has been used in an

array of applications where motion is a relevant feature. Amel

et al. [4] use motion estimation to detect shot boundaries in

video sequences. Hafiane et al. [5] present a method for video

registration based on block matching. Over the years, there has

been several works employing VSBMA, especially for video

encoding and compression [6], [7], [8].

To represent the motion extracted, the most common struc-

ture used is the histogram [3], [9], [10], [11]. Histograms

are interesting for video description as they are simple struc-

tures which carry a compact representation of the motion

information. In Mota et al. [10], the final descriptor is an

orientation tensor generated from a Histogram of Oriented

Gradients (HOG). Tensors are robust mathematical tools and

good aggregators. They can capture the local orientation and
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uncertainties of motion. Thus, they could carry more useful

information than a histogram.

In this work, an orientation tensor-based descriptor for

videos is generated from the output of a Variable Size Block

Matching Algorithm. The vector map generated from the block

matching routine is accumulated on a histogram of directions

and then coded into orientation tensors.

B. Technique Overview

The motion descriptors are obtained through three steps

depicted in Fig. 1. The first one is to calculate the displacement

vectors with the block matching algorithm. The second step

is to convert these vectors into polar coordinates and build

a histogram ~h, where each bin represents an angle interval.

The third step is to calculate an orientation tensor from ~h, to

serve as a condensed representation of the motion between a

pair of frames. The tensors for each pair of frames and for

each video sequence in the dataset are then accumulated and

normalized with L2 Frobenius norm, so that it is possible to

compare different video sequences regardless of their length

or resolution.

(a)

(b) (c)

Fig. 1. Technique overview. (a) From left to right: Example of 3 blocks
and their matches in the following frame yielded by the variable size
block matcher. Displacement vectors obtained from said match. Vector map
generated after matching all blocks in a frame. (b) Vectors accumulated into a
histogram of directions. (c) Orientation tensor built based on such histogram.
The ellipse is merely an illustration since generally tensor dimension is greater
than 2.

II. TECHNICAL BACKGROUND

This section presents the Variable Size Block Matching

Algorithm [6], [7], and a brief explanation of each of its

steps. During the block matching process, one frame is called

“reference frame” and the following is called “target frame”.

In the following algorithm, they are identified as f and g,

respectively.

1: Input: Frames f,g

2: Output: Vector set D

3: Divide frame f into a set of blocks B

4: for all bf ∈ B do

5: b∗ ← bf

6: costb∗ ←∞

7: C ← SearchStrategy(g,W,C, b∗)
8: while C 6= {} do

9: for all b ∈ C do

10: costb ← ǫ(bf , b)
11: if costb < costb∗ then

12: b∗ ← b

13: costb∗ ← costb
14: (dx, dy)← (bx − bfx, by − bfy)
15: end if

16: end for

17: if costb∗ > threshold then

18: B,C ← Split(b)
19: end if

20: C ← SearchStrategy(g,W,C, b∗)
21: end while

22: D ← D ∪ {(dx, dy)}
23: end for

The algorithm consists of a series of minimization processes

of a function ǫ, one for each block bf in the reference frame f .

Each block is a contiguous square set of pixels, or sub-image

and the upper-leftmost pixel of a block is used as its position

reference. The search space for each one of these minimization

problems is bounded by the search window W and is explored

through a search strategy.

In the algorithm presented, SearchStrategy is assumed to

be able to create and/or update a set of candidate blocks C

from the image g, for each iteration of the search. This update

is based on the search window, on the current candidate set,

and on the current best matching block. The cost function ǫ

is evaluated for every candidate b in C, and the displacement

vector d(dx, dy) is the difference between the reference frame

block bf (bfx, b
f
y) and the block b∗(b∗x, b

∗

y) which minimizes

function ǫ.

The function Split divides the block b passed as parameter

into four smaller blocks and updates both the reference blocks

and the candidates lists. These smaller blocks can be further

divided into even smaller blocks, until they fall below a fixed

error threshold or a minimum block size is reached. This way,

a quad-tree structure emerges, with leaf nodes corresponding

to blocks of varying sizes [7]. This tree is used in order to

properly code the segmentation of the image, as shown on

Fig. 2. The goal is to make the edge of the blocks coincide

with the borders of the objects in the scene, forming regions

with uniform intensity, just like in picture segmentation [12].

When the candidates set C is empty, meaning that the search

has finished, the algorithm proceeds to the next block in B,

until all blocks from the reference frame f have been matched

with a block from the target frame g. VSBMA’s output is the

displacement vector set D, which contains a translation vector

d for each block bf ∈ B.

Fig. 3 shows a frame with displacement vectors computed

through VSBMA drawn over it. Hotter colored vectors corre-

spond to bigger blocks and colder colored vectors correspond

to smaller blocks. The size of the vectors are proportional to

their norms. This example suggests that the motion of more

homogeneous regions of the image can be represented by a

single vector, while more detailed regions need more vectors

in order to properly represent its motion.
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Fig. 2. Quad tree image segmentation (adapted from [13]) yielded by
VSBMA. Leaf nodes correspond to blocks of various sizes.

Fig. 3. VSBMA displacement vectors. Hotter colored vectors correspond to
bigger blocks and colder colored vectors correspond to smaller blocks. The
size of the vectors are proportional to their norms.

A. Search Window

The search window is merely a range of pixels in both

directions, centered around the block from the reference frame

which is being matched, which limits the search to a close

neighbourhood of said block. Only blocks positioned within

the search window are to be candidates for matching. This

restriction is imposed in order to reduce computational cost

of analyzing a whole frame.

It is important to note that the search window limits the size

of the motion vectors calculated through the algorithm, since

all the candidates for matching are assumed to be somewhat

close to reference frame block. Due to this limitation, the

algorithm is incapable of capturing abrupt motion in the small

frame time interval.

In our implementation, we established a 15×15 pixel search

window. This means that the largest vector that could result

from a match would be (±7,±7).

B. Search Strategies

The search strategy is the main part of the Block Matching

Algorithm. It is the series of steps, or an algorithm per se,

through which the search window is explored in order to find

the best match for a block.

The main goal of a search strategy is to reduce the compu-

tational effort of the BMA retaining the quality of the results

compared to examining each block in the search window.

Many strategies have been proposed over the years,

such as New Three Step Search [14], Four Step Search

(4SS) [15], Simple Efficient Search (SES) [16], Diamond

Search (DS) [17], and Adaptive Rood Pattern Search

(ARPS) [18]. In this work, we employ 4SS, which is a fast

steepest descent method that yields results comparable to the

exhaustive approach. The Exhaustive Search, which is the

brute force approach, and 4SS are briefly explained in the

next paragraph.

Exhaustive Search: The Exhaustive Search (ES) is the

simplest and most thorough strategy. Once a search window

is established, the full search consists of trying to match every

possible block inside this window. For example, in a 15 ×
15 window, 225 block comparisons are necessary in order to

find the best match. ES is the most expensive strategy, but

it guarantees that the best match found indeed minimizes the

error function in the search window. Even so, this guarantee

can have a bias in certain cases. When two candidate blocks

present the same error values, the search is biased by the order

in which the blocks are evaluated, retaining the upper-leftmost

or the last evaluated, for instance.

Four Step Search: The Four Step Search (4SS) [15] is

a steepest descent based strategy. It consists of four different

search patterns used during its four steps. Starting from the

center of a 15× 15 window, the first step looks at 9 locations

in a 5×5 window. At any step, if the minimum error is found

at the center of search pattern the search jumps to fourth step.

If the minimum error is at one of the eight locations except

the center, then this location becomes the search origin and

the search moves to the second step. The search pattern is still

maintained as 5×5 pixels wide. Depending the minimum error

location, 4SS might end up checking errors at 3 or 5 additional

locations. If the minimum error is found at a corner, the second

step checks its 5 neighbours that have not been checked on the

first step. If the minimum error is at the side, the second step

checks its 3 neighbours. The third step is exactly the same

as the second step, except that it always leads to the fourth

step. In the fourth step the pattern size is shrunk to 3 × 3.

The location with the minimum error is the best matching

block and the motion vector is set to point to that position.

Especially when compared to ES, 4SS represents a big leap

in terms of efficiency. In the best case scenario, only 17 block

comparisons are required and in the worst case scenario, 27
block comparisons are required out of the 225 comparisons

required to fully examine the 15 × 15 window. The patterns

are shown in Fig. 4. Fig. 5 shows an example procedure.

C. Error Functions

The error function is the measure of similarity between two

blocks. This function is defined in terms of the pixel intensities

in the pair of blocks being analyzed.

A variety of error functions can be found in the literature

being applied as error criteria for Block Matching Algo-
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(a) First step. (b) Second and third steps.

(c) Second and third steps. (d) Fourth step.

Fig. 4. 4SS patterns [15]. Figure from [19]. Black dots represent required
block comparisons on each step. Grey dots represent block comparisons
already done during an earlier step.

Fig. 5. Example routine of 4SS steps [15]. Figure from [19]. Each marker
represents block comparisons during each step. Black dots for the first step,
black squares for the second, blue triangles for the third, black diamonds for
the last step. Vectors point to minimum error positions on each step. Final
displacement vector is the sum of all shown vectors.

rithms [1], [7], [20], differing in complexity, outlier handling,

topology, among other features. In this work, the Sum of

Absolute Differences (SAD) and Mean Absolute Differences

(MAD) were the error functions of choice for earlier ex-

periments. Since the difference between these two functions

was little, in terms of efficiency and quality, further tests and

parameter tuning were made considering just SAD as error

function.

In both BMA and VSBMA, the error function ǫ is the sole

criterion used to find the best match for a block. The best

match is the one that minimizes ǫ within the search window.

III. GENERATING THE DESCRIPTOR

A. Block Matching Phase

As shown in Sec. II, each video frame f is subdivided into

non-overlapping blocks with an initial block size. When the

video resolution is not a multiple of the block size, blocks may

encompass regions out of the bounds of a frame. In this case,

the intensity value for an out-of-bounds pixel is the same as

its closest neighbour in the borders of the image, creating a

stretching effect. Fig. 6 illustrates this scenario.

Fig. 6. Treatment for out-of-bounds block coordinates. The white rectangle
highlights the original frame. Intensity values for pixels outside of this
rectangle are the same as those in the border.

The 4SS method then finds the block which minimizes the

error function. If the error is greater than a threshold, the block

is split until the error is below the threshold, or the block

reaches the minimum size of 4 × 4 pixels. The result of this

method is a displacement vector d(i, j) = (dx, dy) for each

block, where (i, j) are the block indexes. These vectors are

converted to equivalent polar coordinates c(i, j) = (θ, r) with

θ = tan−1(
dy

dx
), θ ∈ [0, 2π] and r =‖ d(i, j) ‖.

B. Histogram of Directions

A motion estimation histogram is used as a compact repre-

sentation of the motion vector field obtained from each frame.

It is defined as the column vector ~hf(h1, h2, . . . , hnθ
)T , where

nθ is the number of cells for the θ coordinate. We use a

uniform subdivision of the angle intervals. Each interval is

populated as the following equation:

hl =
∑

i,j

r(i, j) · ω(i, j) , (1)

where l = 1, 2, . . . , nθ and ω(i, j) is a vector weighting

factor, which is a Gaussian function with σ = 0.01 in our

experiments. The Gaussian function is used to attenuate the

effect of having strict bin boundaries. When a vector has

an orientation which is close to one of these boundaries, its

magnitude is spread amongst neighboring bins. This way, we

take into account any uncertainty regarding to which bin said

vector should be assigned. The whole frame vector field is

thus represented by a vector ~hf with nθ elements.

C. Tensor Descriptor

An orientation tensor is a representation of local orientation

which takes the form of a n × n real symmetric matrix for

n-dimensional signals [21]. Given a vector ~v ∈ R
n, it can

be represented by the tensor T = ~v~vT. Then, we use the



JOURNAL OF COMMUNICATIONS AND INFORMATION SYSTEMS, VOL. 30, NO. 1, MARCH 2015. 94

orientation tensor to represent the histogram ~hf ∈ R
nθ . The

frame tensor, Tf ∈ R
nθ×nθ , is given by:

Tf = ~hf · ~h
T
f . (2)

Individually, these frame tensors have the same information

as ~hf , but several tensors can be combined to find component

covariances.

D. Orientation Tensor

The motion average of consecutive frames can be expressed

using a series of tensors. The average motion is given by

T =

nf∑

f=1

Tf

‖ Tf ‖2
,

using all nf video frames.

By normalizing T with a L2 norm, we are able to compare

different video clips or snapshots regardless their length or

image resolution. Since T is a symmetric matrix, it can be

stored with d = nθ(nθ+1)
2 elements.

If the motion captured in the histograms are too different

from each other, we obtain an isotropic tensor which does not

hold useful motion information. But, if accumulation results

in an anisotropic tensor, it carries meaningful average motion

information of the frame sequence [10].

IV. EXPERIMENTS

Boxing Handclapping Handwaving

Jogging Running Walking

Fig. 7. Example videos from KTH dataset action categories [22]. Second
row shows some of the different actors and camera viewpoints found in the
database.

The experiments were made on KTH dataset [22](Fig. 7),

which contains 600 videos of six human actions: walking,

running, jogging, boxing, hand waving and hand clapping.

These actions are performed by 25 people in four different

scenarios: outdoors, outdoors with scale variation, outdoors

with different clothes, and indoors. As in [22], the dataset is

split in about four sequences for each video, producing a total

of 2, 391 files. The sequences have a resolution of 160× 120
pixels and 25fps frame rate.

This dataset provides video samples with only one action

portrayed. No object or person other than the actor perform-

ing the intended action appears in the same sequence. This

property is appropriate for our global descriptor, since all the

movement in the scene is taken into account.

We use a SVM classifier to evaluate our descriptor on KTH.

All tests were run on an IntelrCoreTM2 Quad Q9550 2.83GHz

with 4GB memory running a single thread per video.

Recognition Rates: The quality measure used is the

output of a SVM classifier, which takes the descriptors for

the whole database and divides them into two fixed groups: a

training set and a test set. Aside from this division, we follow

the same classification protocol as [22]. The classifier produces

6 recognition rates for each block matching parameter com-

bination, 3 using a triangular kernel, and 3 using a Gaussian

kernel. From these results, we take the highest ones achieved

and present them in Sec. V.

Efficiency: In order to make an efficiency assessment,

two criteria are considered: frame rate, and number of blocks

per frame, per video. The frame rate serves as running speed

measurement, while the number of blocks measures memory

efficiency. The number of blocks can also be related to running

speed, since the split operations required to create more blocks

also require function calls and block comparisons.

V. RESULTS AND DISCUSSION

A. Recognition Rates

The accuracy shown in Tables I and III refer to the highest

percentage of correct action predictions obtained from the

descriptor generated from BMA and VSBMA, respectively.

TABLE I
EXPERIMENTS WITH DIFFERENT BLOCK SIZES USING METHOD BASED

ON BMA. ACCURACIES REFER TO THE HIGHEST PERCENTAGE OF RIGHT

PREDICTIONS ACHIEVED BY THE SVM CLASSIFIER. BEST RESULTS ARE

SHOWN IN BOLD.

Block Size Strategy Accuracy

8 Exhaustive 73.9
8 4SS 79.3

16 Exhaustive 79.2
16 4SS 78.1
24 Exhaustive 76.8
24 4SS 79.6
32 Exhaustive 75.1
32 4SS 75.1

Table I shows the recognition rates for all BMA test runs.

Best results are shown in bold. For the benefit of comparison,

we also include exhaustive search accuracy results in this first

experiment. No other experiments were run using ES, as its

low speed makes thorough parameter exploration not feasible.

These recognition rates indicate that block size plays a major

role on the descriptor’s accuracy, since there is only one block

size for all blocks in regular BMA. The case with block size 32

achieves poor results due to the big blocks encompassing too

heterogeneous regions, and thus failing to capture the detailed

motion within. The case with block size 8 shows two very

different results, indicating that even though the block size

may be appropriate to capture fine motion, it may also be

more sensitive to noise and compression artifacts, and thus

misleadingly capturing background motion. The cases with

block sizes 16 and 24 seem to strike a balance between the

two previous cases, achieving the best results for BMA.
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For VSBMA tests, one more parameter is considered, the

error threshold. Also, since it is the focus of this work, we

have conducted experiments with 8 block sizes and 8 threshold

values, to a total of 8 × 8 = 64 different parameter settings.

Table II shows the parameter values used on our experiments

with VSBMA.

TABLE II
PARAMETER VALUES FOR EXPERIMENTS WITH VSBMA.

Parameter Values

Block Size 8, 16, 24, 32, 40, 48, 56, 64
Threshold 1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000

The values for block sizes were chosen based on the dataset

resolution of 160 × 120 pixels, H.264 (HEVC) specification

of block sizes ranging from 8 × 8 up to 64 × 64 [23], and

recognition rates from preliminary experiments that showed

a decrease in quality for larger blocks. As for threshold

values, the choice was based on the maximum error value

(block width×block height×#channels×255), and on the

apparently decreasing power law distribution of error values

suggested also by preliminary experiments.

Table III shows a summary of the recognition rates obtained

with VSBMA. Once again, best results are shown in bold.

Compared to its BMA counterparts, VSBMA tests show

increments on recognition rates ranging from 1% up to 15%.

This is a solid improvement, considering VSBMA still retains

BMA’s real time computation capability.

TABLE III
VSBMA EXPERIMENTS WITH VARIOUS INITIAL BLOCK SIZES AND

THRESHOLD VALUES. ACCURACIES REFER TO THE HIGHEST

PERCENTAGE OF RIGHT PREDICTIONS ACHIEVED BY THE SVM
CLASSIFIER. BEST RESULTS ARE SHOWN IN BOLD.

Block Size Threshold Accuracy

8 1000 80.4
8 2000 80.7

16 2000 86.0
16 4000 85.1
24 2000 85.2
24 4000 86.0
32 2000 86.7
32 4000 85.8
40 4000 86.2
40 8000 86.6
48 4000 84.2
48 8000 85.1
56 4000 83.6
56 8000 82.6
64 4000 85.7
64 8000 84.6

There is a tendency of increasingly better results as the

block sizes get bigger, at least up to block size 40. This

happens because the segmentation process tends to include all

relevant motion information from the cases with smaller block

sizes into the cases with bigger block sizes. Note though, that

this tendency is not a strict rule, as the cases with bigger block

sizes are much more sensitive to threshold variations, and

thus pose a tougher challenge in tuning the threshold values.

This can be more easily identified in Fig. 8. Additionally, by

observing the accuracy results to come to these conclusions,

we are assuming that these block matching settings have no

interaction or confounding with any other parameters of the

process of generating and classifying the descriptor.

8 16 24 32 40 48 56 64
Block Size

0

10

20

30

40

50
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70

80

90
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Fig. 8. Bar graph showing classifier accuracy for each parameter setting.
The bars are grouped by block size and each bar within a group shows the
accuracy value for a different threshold value.

In Fig. 8, each group of bars depicts a fixed block size

and the bars within each group show the results for different

threshold values, increasing from left to right. On high thresh-

old cases, VSBMA essentially degenerates to BMA, where the

blocks may be too big, containing more than one direction of

motion. On low threshold cases, the blocks might have become

even smaller than the object they are supposed to encapsulate,

throughout the segmentation process. Since all the vectors have

the same weight in the descriptor computation, regardless of

their size, having too many or too few vectors brings back

the same problems found with BMA: failure to capture fine

motion and sensitivity to noise. By comparing the groups, it

is possible to see the difference in behaviour regarding the

threshold values. For instance, for block sizes 8 and 16, any

threshold value above 8000 can be considered high, producing

very similar results amongst themselves.

Fig. 9 shows a contour plot of the same data. In lighter

shades we can see the higher accuracy cases. This visualization

allows for a quick recognition of what may be the optimal

parameter setting, or at least delineate a relation between the

parameters in order to achieve good results. It also shows the

effect of overestimating threshold values, leading to very poor

results, as low as 51.2% accuracy.

State-of-the-art comparison: Although still below the

state-of-the-art recognition rates like 93.2% in [10] and 95.0%
in [11], the results obtained with VSBMA are somewhat

comparable. Especially considering the technique has not

been thoroughly explored or optimized for the Human Ac-

tion Recognition application, and has real time computation

capability. Moreover, we note that the best recognition rates

from the literature are obtained with the combination of

several video characteristics [10], [11]. This often leads to

a very demanding process, in terms of computational effort.
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Fig. 9. Contour plot showing classifier accuracy for each parameter setting.
Lighter colors indicate higher accuracy values. The highest value is marked
as a black dot.

In our work, we use only motion information extracted with

VSBMA. Furthermore, in this work we do not explore pa-

rameters beyond initial block size and splitting threshold.

Throughout descriptor computation and classification, there

are other parameters to be tuned, such as descriptor size

(related to number of histogram bins), standard deviation σ

of histogram Gaussian weighing, other error functions and

search strategies, search window size, and minimum block

size. Although the results may be sensitive to changes in these

parameters, we view them as a sort of fine tuning, so we rely

on values found in the literature and previous experience with

some of the tools used in this work. We focus mainly on

VSBMA and its inherent parameters, for the sake of clarity and

to establish a proof of concept that since VSBMA is largely

employed in video compression, its output carries valuable

motion information that could be used in the action recognition

context.

B. Frame Rates

Tables IV and V show summaries of the results for VSBMA

regarding execution speed and memory usage, respectively.

The fourth column of these tables refers to relative measure-

ment errors, calculated considering a 95% confidence level.

To obtain such values, we calculate the size of the confidence

interval for said level and divide it by the mean value of the

samples. The number of samples for the frame rates is the total

number of videos in the dataset, and the number of samples

for block counts is the total number of frames in the dataset.

Note that all of the tests show frame rates higher than 25fps,

even when considering the error margins. This goes also for

the worst case scenarios, with big initial block sizes and low

thresholds, that could lead to a lot of segmentation overhead

during the process. The fairly low resolution of the videos have

to also be accounted for. It contributes to a smaller variation

of block sizes in the same frame and to higher frame rates.

TABLE IV
VSBMA RUNNING SPEED RESULTS CONSIDERING DIFFERENT INITIAL

BLOCK SIZES AND THRESHOLD VALUES.

Block Size Threshold Average FPS Relative Error

8 1000 144.217 16.07%
8 2000 151.006 10.02%

16 2000 119.511 20.36%
16 4000 139.584 11.23%
24 2000 98.233 26.63%
24 4000 117.803 22.23%
32 2000 74.557 15.35%
32 4000 96.066 25.66%
40 4000 88.897 20.60%
40 8000 108.928 26.14%
48 4000 51.773 10.97%
48 8000 63.885 17.66%
56 4000 45.687 8.53%
56 8000 55.651 11.02%
64 4000 49.460 8.47%
64 8000 59.554 13.05%

Fig. 10 shows a bar graph of the full data for these

experiments. Once again the bars are grouped by block size

and each individual bar in a group shows the frame rate for

a different threshold value, increasing from left to right. The

error bars depicted represent the confidence intervals for the

samples.

8 16 24 32 40 48 56 64
Block Size

0

20

40

60

80

100

120

140

160

180

Fr
am

er
at
e

Fig. 10. Bar graph showing running speed for each parameter setting. The
bars are grouped by block size and each bar within a group shows the frame
rate for a different threshold value. Error bars show the confidence intervals
for each case.

Just like the accuracy results, frame rates are more affected

by threshold variation on bigger block size cases. However,

this time, lower threshold values account for lower frame rates,

since the split operation becomes much more frequent than in

higher threshold cases. Another aspect that can be observed

in this graph is the drop on frame rates for block sizes greater

than 40. Although not easily verifiable, this might have to

do with the dataset resolution and border handling. In our

implementation, the intensity values for pixels beyond image

dimensions are computed by demand, whenever they need

to be evaluated. For the cases with bigger blocks, there is
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a greater chance that a portion of a block is out-of-bounds,

thus leading to a number of pixel intensities calculations in

order to compare two blocks.
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Fig. 11. Contour plot showing running speed for each parameter setting on
VSBMA. Lighter colors indicate higher frame rate values.

Fig. 11 shows a contour plot of average frame rates for

the same experiments as above. Lighter shades show higher

frame rates. This graph highlights one important aspect of

the method, that the execution speed is not a trade-off versus

recognition accuracy. Note that the best recognition rates were

obtained with block sizes 32 and 40, and threshold values of

2000, 4000, and 8000. None of these parameter combinations

are within the region of higher frame rates, but they are not

within the region of lower frame rates either. In fact, the two

contour plots represent very distinct surfaces, with no apparent

correlation between them.

C. Block Counts

Table V shows some of the block counts results. As already

mentioned, this values reflect memory usage and are also

somewhat related to running speed, since the block segmen-

tation process not only increases the number of blocks, but

also requires additional memory allocation, function calls, and

block comparisons. It is possible to notice a difference in

relative error values, when compared to Table IV. As threshold

values increase, relative error values drop much more abruptly,

especially in smaller block size cases. This can be also seen

in Fig. 12.

Fig. 12 shows a bar graph for the block counts of VSBMA.

This graph is organized like the previous ones, with bars

grouped by block size and individual bars depicting increasing

threshold values, from left to right. Note how the error bars,

corresponding to the confidence intervals, reduce greatly in

size as the threshold values increase. Lower threshold values

allow the segmentation of the frames to be much more

heterogeneous, whereas higher values lead to no variation at all

in the segmentation. In the latter cases, VSBMA degenerates

to BMA, where all the frames have the exact same number of

blocks. This phenomenon reinforces the idea that the matching

errors are much lower than the maximum value attainable and

that they may be distributed along a decreasing power law

curve.
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Fig. 12. Bar graph showing block count for each parameter setting. The bars
are grouped by block size and each bar within a group shows the block count
for a different threshold value. Error bars show the confidence intervals for
each case.

Fig. 13 shows a contour plot of block counts experiments.

Lighter shades indicate the least amount of blocks. This visu-

alization shows a much more direct and monotonic influence

of the parameters over the measurement, block count in this

case. Contrary to accuracy or frame rates, block counts have

no other parameters or events that affect the values. In the

case of accuracies, the process of generating and classifying

TABLE V
VSBMA BLOCK COUNTS. EXPERIMENTS WITH VARIOUS INITIAL BLOCK

SIZES AND THRESHOLD VALUES.

Block Size Threshold Average Block Count Relative Error

8 1000 368.713 18.66%
8 2000 315.518 0.95%
8 4000 302.474 0.09%
16 2000 155.602 24.32%
16 4000 104.480 7.17%
16 8000 85.279 0.59%
24 2000 134.677 32.21%
24 4000 77.886 13.29%
24 8000 49.591 4.30%
32 2000 143.315 33.26%
32 4000 77.792 18.90%
32 8000 42.992 7.47%
40 4000 70.426 16.39%
40 8000 39.301 8.46%
40 16000 22.242 3.51%
48 4000 100.364 23.73%
48 8000 54.117 13.28%
48 16000 29.691 6.21%
56 4000 105.414 27.46%
56 8000 55.510 13.24%
56 16000 30.123 7.41%
64 4000 90.178 23.80%
64 8000 47.771 11.58%
64 16000 25.551 6.61%
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the descriptor takes into account a number of parameters and

operations that could affect the final results. In the case of

frame rates, the two examined parameters alter the influence

of each other, and some implementation details provide an

array of events that could skew the measurements.
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Fig. 13. Contour plot showing block count for each parameter setting. Lighter
colors indicate lower number of blocks.

Once again, just like in the frame rate contour plot (Fig. 11),

there seems to be no correlation between block count and

recognition accuracy, in the sense that no trade-off or direct

relation can be observed. The parameter values that lead to

the best accuracy results produce some intermediate number

of blocks, and the surfaces depicted by Figs. 9 and 13 are

clearly distinct.

VI. CONCLUSION

We presented a tensor self-descriptor obtained from Variable

Size Block Matching Algorithm. The displacement vectors

computed by VSBMA are represented with histograms which

are then coded into orientation tensors.

This is a work that intends to integrate the Block Matching

technique into the field of Human Action Recognition. For

such purposes, it provides a baseline in terms of parameter

exploration. We regard our approach as a promising work,

since it yields results close to those of state-of-the-art methods

and still has room for a number of improvements. Moreover,

it has low complexity in terms of time and space.

Future works may include several improvements, both on

VSBMA and on its use for action recognition. Better ex-

ploration of the parameters, adaptive threshold values, block

merging operations and different block geometry are a few

examples of improvements that can be made on VSBMA. As

for human action recognition, the integration of VSBMA and

other, more complex, techniques and datasets is going to be the

next improvement of this work. Datasets containing multiple

actors and background actions per video pose an important

challenge to validate our descriptor since they are a better

representation of realistic scenarios.
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