
JOURNAL OF COMMUNICATIONS AND INFORMATION SYSTEMS, VOL. 30, NO. 1, MARCH 2015. 71

A Proposal of a Non-Intrusive, Global Movement

Analysis of Hemiparesis Treatment
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Abstract—Hemiparesis is the most disabling condition after
a stroke. Hemiparetic individuals suffer from a loss of muscle
strength on one side of the body, resulting in a decreased
capacity of performing movements. To assess the quality of
Physiotherapy treatment, rating scales are commonly used but
with the shortcoming of being subjective. With the aim of
developing a system that objectively outcomes how a hemiparetic
individual is responding to a Physiotherapy treatment, this paper
proposes a method to analyze human functional movement by
means of an apparatus comprised of multiple low-cost RGB-D
cameras. After extrinsically calibrating the cameras, the setup
system should be able to build a composite skeleton of the target
patient, to globally analyze patient’s movement according to a
reachable workspace and specific energy. These latter both are
proposed to be carried out by tracking the hand movements of
the patient, and the movement volume produced. Here we present
the concept of the proposed system, as well as, the idea of its
parts.

Index Terms—Movement volume; Hemiparesis; RGB-D cam-
eras; kinect; specific energy; reachable workspace.

I. INTRODUCTION

HEMIPARESIS is a loss of muscle strength on one side

of the body, resulting in decreased capacity and ability

to perform movements. Stroke is a leading cause of death and

functional dependence in the world [1]. About 60% to 80%

of persons who have had a stroke diagnosis tend to develop

hemiparesis [2]. The direct consequence of a hemiparetic

patient is a deprivation of functional independence, and grad-

ual onset of a disability process, which demands an earliest

possible Physiotherapy treatment [3]. Accurate assessment of

the disease and the determination of the precise functional

diagnosis by a Physiotherapist allows a correct monitoring of

progression and rapid rehabilitation [4].

The main focus of the functional diagnosis is the human

movement, which has different levels of complexity. Move-

ment is defined as simple when performed by one joint in a

single anatomical plan (e.g., elbow flexion or extension) or

complex. Movement complexity increases with the use of two

or three anatomical planes (e.g., shoulder circumduction) or

more joints (e.g. put the hand in the opposite elbow). Func-

tional human movements, that is, those ones applied to the

execution of a necessary human function, are always complex,

and, when there is a task-oriented execution, they are defined
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as activities [5]. Examples of activities are walk, move around,

lie down, stand up, transfers in sitting or lying position, among

others. There are many activities limitations in hemiparetic

patients, which usually arise due to hemiparesis alone or along

with problems, such as lack of coordination and spasticity.

They are mainly characterized by slower and uncoordinated

reaching and grasping movements, excessive compensatory

trunk movements, difficulties in walking, reduced gross and

fine manual dexterity [4]. A complete comprehension and

objective analysis of activities are necessary for the evaluation

and characterization of the patient conditions.

When the Physiotherapist meets the patient to start the

process of evaluation and treatment, the movement analysis

is carried out by considering each component, separately

(joint or plan), or observing all aspects in an integrated

perspective. Health professionals generally use clinical tests,

such as rating scales, which can be less comprehensive and

require subjective input [4]. Other tools are also used, such

as: Force platforms [7], wearable devices [8],optoelectronic

systems [6], [9], electrogoniometers [10], electromyography

[11] and accelerometers [12]. These latter tools are more

sophisticated, requiring more physical space, much time for

preparation of the patient and a special set up structure [13],

turning the ordinary clinical use less practical. Table I shows

a qualitative comparison among our method and others.

A. Proposal

The aforementioned instruments and clinical tests may not

establish a true picture of the patient functional situation [4],

because they can not accurate, objective and quantitatively

measure whether the performance of activities is being im-

proved or not. Thus, emerges the importance of developing

new instruments and methods to assess functional movement

in these patients. The recent availability of low-cost RGB-

D cameras opens up interesting perspectives in this field [6].

These devices can provide depth images, allowing for the

advancement of new means to evaluate human functional

movements in a non-intrusive way. On that account, the aim

of this paper is to introduce a proposal to developing a method

of functional assessment of hemiparetic subjects using RGB-D

cameras. The direct consequence of the choice of these devices

is the possibility of the ordinary utilization, with practicability

and best use of time with less need for preparation of the

patient (i.e., no use of joint markers or need to wear devices).

Furthermore, these cameras are becoming cheaper, making

this proposal quite feasible. Our purpose is then to build

an integrated hardware and software system with four RGB-

D cameras arranged in such a way that allows an entirely
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Fig. 1: Physical setup of the proposed system: four RGB-D cameras to build a 360 degree view of a person.

TABLE I: Qualitative comparison of movement analysis methods (a ’+’ correspond to the level of the feature).

Method Video analysis Intrusive Energy cost calculation Physical space/structure required Time to prepare patients

Our Method ✓ ✓ ✛

Force platforms [7] ✛ ✛

Wearable Devices [8] ✓ ✛ ✛ ✛ ✛

Optoelectronic System [6],[11] ✓ ✓ ✛ ✛ ✛ ✛ ✛ ✛

Electrogoniometers [10] ✓ ✛ ✛ ✛

Electromyography [11] ✓ ✛ ✛ ✛ ✛ ✛

Accelerometers [12] ✓ ✛ ✛ ✛

reconstruction and tracking of a human skeleton (see Fig. 1).

Inside the circle of the cameras, the patient should perform

actions requested by the physiotherapist (i.e. reach). Figure 1

illustrates the physical setup of the system. Table I shows a

qualitative comparison among our method and typical methods

used in Physiotherapy field. Note that a ’+’ indicates the

level of feature used. Although there are other methods of

movement analysis which use video-analysis (with RGB-D

cameras or not), none of them proposes to analyze activities

as we propose here, and, then, they were not deemed in

the comparison. Force plataforms, optoelectronic sysems and

electromyography require heavy preparation of physical space

and structure; the only two methods that are not intrusive and

do not demand long time to prepare patients are ours and the

force platforms; energy calculation is only presented in our

method.

Rather than calculating simple components, like angles

of the joints, our goal is to evaluate globally the entirely

functional movement volume in order to assess treatment

quality. By doing so, a critical problem should be solved:

instead of focusing on local actions, global movements need

to be compared to measure the advances of the treatment

applied in the patient. The calculation of the movement volume

will provide the amount of reachable workspace regardless of

the patient’s body mass, and, along with energy expenditure

computation by specific energy, will form the kernel of our

method. With that, the proposed method will benefit from

a fast and precise way (available in daily clinical practice)

of stochastically comparing the evolution of the patient’s

treatment, with a sequence of normalized movement volume.

To achieve all the referred goals, a composite skeleton must

be computed from all the cameras, representing then a 360

degree view of the patient. It is noteworthy that although

a single RGB-D camera could provide ways to detect 3D

movements, a composition of four cameras is supposed to

outcome a more reliable structure of the patient, deeming
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different poses and views, and also avoiding patient’s self

occlusions. Since the goal is to have a structured environ-

ment to analyze patients, patient occlusion from hand-made

objects will be avoided. After building the composite skeleton,

patient’s hand movement must be tracked, and a probabilistic

graph structure defined to represent the movement. With that, it

is possible to compare, and analyze the treatment improvement

by comparing movement volume and its specific energy in

different periods of time. In this paper, we present a framework

to accomplish these goals, at the same time that we generally

discuss how to build the proposed system and its possible

developing problems. The proposed framework addressed here

is an evolution of that one found in [14].

B. Structure of the paper

Reminder of this paper is structured as follows: in Section

II, related works are discussed; Section III presents the general

idea of the proposed system and its part; in Section IV, it is

shown how to build a composite skeleton from multiple kinect

cameras; Section V presents the traditional methods to mea-

sure hemiparesis treatment performance and our proposal to

innovate the way to do that; Section VI draw some conclusions

and future works.

II. RELATED WORK

One of the main problems in the evaluation and treatment of

neurological conditions has been the lack of outcome measures

that can be useful for clinical therapeutic efficacy studies,

especially regarding to the human functional movement [10].

This assessment in clinical practice commonly uses rating

scales, which are cheap and easy to handle. Despite the

widespread use and numerous validation studies, these scales

can be less comprehensive and often require subjective input

[7]. Instruments like Motor Activity Log (MAL)[16], Wolf

Motor Function Test (WMFT)[17], Functional Independence

Measure (FIM)[18], Fugl-Meyer Scale (FMS)[19] have been

validated for this use in Brazil.

In the assessment of functional movement by rating scales,

the individual performs actions that are graded by an appraiser.

The WMFT consists of 17 tasks, such as “pile up” and “catch

and kick”, that are graded with a scale ranging from zero

(performs no attempt to move the upper limb) to five (the

movement seems to be normal) [4]. The FIM instrument,

one of the most used in Brazil for this purpose, comprises

18 items assessed against a seven point ordinal scale. The

Physiotherapist observes the realization of activities such as

eating, dressing upper body or writing, and asks the patient,

for example, regarding to sphincters control. The rating scale

designates major graduations in behavior from dependence

(grade 1), passing by moderate and minimal assistance (grades

3 and 4) to independence (grade 7). The scale provides the

classification of individuals by their ability to carry out an

activity independently, versus their need for assistance from

another person or a device. If aid is needed, the scale assesses

the degree of that need, measured in percentage from the

applicator observation. The differences between the grades are,

for example: 2 (subject performs less than half of the effort -

25 - 49 percent), 3 (performs 50-75 percent of the action) and 4

(more than 75 percent) [18]. The measure of these percentages

is made by observation and, as much as the scale tries to be

objective and quantitative, subjective aspects of the appraiser

can influence graduation.

Scales such as MAL and FMS use similar structures, and

they are all unable to establish an objective and measurable

parameter that allows plotting a curve of the improvement of

movement execution. On the other hand, quantitative devices

such as force platforms, video analysis, optoelectronic sys-

tems, electrogoniometers, electromyography and accelerome-

ters are not only costly, but also require specialized training

to be handled. They detect and analyze the angular displace-

ment, ground reaction forces and motor control [12], and are

generally applied to the measurement of simple-plan human

movement. Important motion analysis centers [7] generally use

stereophotogrammetry with a marker-based system (MBS),

like Vicon R© [11] or Qualisys R© [9]. Figure 2 shows human

body markers and their respective skeleton made by a Vicon

system R©, with the goal of human movement analysis. Once

the markers are positioned on the skin surface, the skeleton is

obtained either via conventional photography or optoelectronic

sensors. The system proposed in [6] uses eight to twelve

cameras in order to reconstruct human body skeleton, requiring

a lot of space and additional set up structure to accomplish the

referred task.

In motion capture, joint angles and distances are measured

with the aim of evaluating human movement. Alone, these

variables do not solve the problem of quantification and

categorization of the complex human functional movement,

because they provide information only about the components

of the simple movements [10]. In fact, joints and angles

themselves do not generally show the progress of a Physiother-

apy treatment, since they are not able to show, for example,

compensation body movements during body-parts evaluation;

another drawback has been reported by Bonnechere et al. in

[6], when they claimed that accuracy and reproducibility are

main problems of MBS systems, and these evaluation systems

are still controversial for the estimation of joint centers and

relative segment orientations. In our work, the hand point in

the skeleton will be tracked, and its speed and movement

volume calculated; with that, joint positions and angles are

not necessary to be found precisely.

Other studies exploit RGB-D cameras to assess human

movement. Gabel et al. [20] and Auvinet et al. [21] analyzed

the human gait using RGB-D cameras. The first study used

an RGB-D camera and a virtual skeleton as the input to a

learned model, and found that the use of the device resulted in

accurate and robust measurements of a rich set of gait features.

The second work exploited the use of three cameras and

a mathematical process to solve symmetrical gait problems.

To establish validity and reliability of measures, in [6], the

volunteers performed simple-plan movements, which were

made by an RGB-D camera along with a MBS system.

The MBS was considered as the reference, and discrepancies

between markerless systems (MLS) and MBS were evaluated

by comparing the range of motion (ROM) of both systems.

MLS reproducibility was found to be statistically similar to
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(a) Markers in the human body used by an MBS System
(b) Human skeleton reconstruction by Vicon

R© from body
markers. Figure taken from [15]

Fig. 2: Illustration of the use of a Vicon System R©.

MBS results for the exercises accomplished. Measured ROMs,

however, were found to be different in the systems. In [7], the

authors compared a Vicon System R© with an RGB-D-based

system, considering 19 individuals to establish the accuracy of

the latter system in clinically measuring relevant movements.

III. OUTLINE OF THE PROPOSED SYSTEM

The aim of the system is to assess the quality of the

Physiotherapy treatment using a skeleton composition built

from four camera views. In a word, besides making skeletons

from each camera (following the idea of [22]), after an

extrinsic calibration, a 360 degree view of a unique composite

skeleton will be calculated similarly to [23]. Figure 3 illustrates

our proposed framework. Although it is canonically feasible

to make the calibration of the four cameras, the main problem

is the cross-talk effect when two cameras are pointing to each

other; this problem is discussed in more details, in Section

IV-A.

With the composite skeleton, the limbs of the patient will

be tracked in order to spatially define patient’s movement.

After that, the movement volume will be segmented in a

semi-automatic fashion, and normalized according a reference

coordinate axis. This latter step is of underlying importance,

when comparing 2D or 3D shapes. Comparisons will be made

by combining the idea of reachable workspace and minimum

energy cost, calculated according to the specific energy (see

more details on Sections V-B and V-A).

Comparing movement volumes is not conclusive to detect-

ing patient recovery. One patient could perform a larger move-

ment, not representing actual improvement in his/her condition

to perform the activity. This is so, since activities, as complex

movements, are composed of a sum of simple movements.

For instance, in a reaching movement, the human being uses

the shoulder, elbow and wrist joints to naturally perform the

action. In hemiparetic patients, the lack of coordination and

muscle strength in these joints may cause problems in the

activity execution. With the treatment, the improvement in

shoulder muscle strength can lead it to an increase in the range

of motion, but, without proper coordination, the individual

may still be unable to perform an accurate reach. Then, the

reachable workspace will increase without necessarily occur

improvement in functional movement. Here emerges the need

to use another variable, such as energy cost, to determine the

improvement (or not) in the activity performance. The actual

expectation is that the functional movements become more

effective, and this is done by achieving a better relationship

between the reachable workspace with the minimum energy

cost as possible (see Section V-A, for more details).

In our proposal, the system will establish this improvement

through a combination of the amount of movement and the

reduction of energy consumption within the same path or

similar trajectories. The idea is to make treatment assessment

with the analysis of energy reduction expenditure and the

movement trajectory; this latter will be achieved by compari-

son of movement volumes (see more details on Section V).

A. System Setup

The system is comprised of a desktop and four RGB-D

cameras; as the cameras demand a particular USB controller

for each one, there are four controllers in the computer used,

three in the back and one in the front. The desktop is an

Intel i7 4770 3.4GHz with 16GB of DDR3 RAM and a

GTX780 NVidia R© Geforce graphical card. Figure 4 illustrates

the system setup for our initial experiments.
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Fig. 3: Framework of the proposed system. From a pool of RGB-D cameras, after acquisition of the patient’s depth image, a

single view skeleton is built after composite calibration of the cameras. With the composite skeleton, the patient’s body parts

are tracked in order to define the movement volume. Along with the specific energy calculation, it will be possible to analyze

the movement objectively.

Fig. 4: Computer connection of the four RGB-D cameras. Each

Kinect must be connected to one USB Controller. In our case:

1) Frontal USB 2.0; 2) Motherboard USB 2.0; 3) USB 3.0; 4)

PCI USB Controller

IV. MULTI-VIEW SKELETON RECONSTRUCTION

In our work, a skeleton is a representation of body joints

of a target human. Representation similar to Fig. 5 can be

achieved from several non-invasive methods, where there is

only image acquisition to analyze the patient. Before the

existence of low-cost structured light depth sensors such as

Kinect (a type of RGB-D camera), visual representation of

body joints were achieved using other more intricate methods

in order to analyze human functional movement: Bregler et

al. [24] introduced a method based on complex exponential

maps and twist motions; Brubaker et al. [25] tracked body

joints using physics and body dynamics mathematical models.

Hou et al. [26] proposed a Gaussian Process Latent Variable

Model with multiple cameras to successfully track complex

movements from multiple views. Recently, [27] used the

Fig. 5: Front view skeleton on depth map generated by an

RGB-D camera.

intrinsic symmetry of the human body for pose detection. All

these methods do not run in real time. One interesting example

of a real time body tracking without the use of RGB-D sensors

or even cameras is [28], who used radio reflections and time

of flight calculations to 3D track an user within the field of

view of the system, even trough walls.

Nowadays, with the recent development of kinect, the use

of depth images has become one of the top trending topics

in body joint tracking. These devices provide a relatively

accurate depth map of the scene with low computational cost

and no need of markers in the body. The major part of the

computational work, to build a 3D representation of the scene,

is done within the sensor firmware, and only a stream of data
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Fig. 6: Multiple views of a target body. Misaligned skeletons

due to infra-red interference and lack of intrinsic calibration.

is sent to the connected computer [13]. This way, frames are

easily acquired in thirty hertz with that sensor. From the depth

map provided by kinect sensor, a single skeleton is obtained

after the work proposed in [22], which uses decision random

forests over millions of features extracted in order to estimate

the position of the joints of the human body, in real time. Arai

et al. [29] present a non-real time way to compute the skeleton

from depth maps.

One of the main problems of the single skeleton computed

by only one kinect is the occlusion of body parts by turning

the limbs or poor detection of movements towards the camera

axis. These problems can become a challenge for those who

want high accuracy [30]. In our proposed work, loosing hand

position is critical for the patient movement analysis; on that

account, a composite skeleton from a 360 degree view of the

tracked user is necessary. A method to calculate composite

skeletons can be found in [23].

A. Challenges in Composing a Unique Skeleton from Multiple

Views

Some challenges in composing a unique 360 degree view

skeleton come from using multiple kinects. Due to nature of

kinect active sensing, multiple infra-red (IR) emitters may

cause noise in the depth map captured. Berger et al. [31]

measured a high error in a experiment with motion capturing

and body joint calculation by using multiple kinects. In prac-

tice, errors due to noise can be easily observed with multiple

kinects, occurring even if the devices are not pointing to each

other; this occurs due to reflections of the infrared from one

kinect being captured by the others [32].

Figure 6 shows an example of misaligned skeleton over

the body, because of the use of multiple kinects, not only

because of the cross-interference among the cameras, but also

due to the lack of calibration between the integrated RGB

and IR cameras. To solve the interference problem, Schroder

et al. [33] proposed a that all IR kinect emitters are blocked

by a wooden spinning wheel with a hole; working as a time

domain modulation, the wheel only allows each kinect to emit

its infrared at a time, consequently reducing cross-talk. Butler

et al. [34] found what is arguably the best solution for this

problem, name it ”Shake ’n’ Sense”. By simply vibrating

each kinect camera, they almost completely removed problems

caused by cross-interference.

B. Our Goals

We aim to use a 3D skeleton representation of a hemiparetic

individual to track his/her hand movement by means of a

360 degree view. Although one kinect can reconstruct 3D

information from the scene, accurate 3D track may demand

more information because of possible body occlusion of limbs.

For that, our goal is to transform all coordinates to the same

coordinate system of one chosen kinect for better accuracy

and reliability. Figure 7 was created to depict a 360 degree

view skeleton in a circle of four kinects, placed in intervals

of 90 degrees. Some works have also used multiple kinects to

reach the same goal. Asteriadis et al. [35] solved the occlusion

problem by using multiple kinects in the evaluation of human

motion. Introducing a new method to solve the occlusion

problem using a Fuzzy Interference System, Kaenchan et

al. [23] used one camera as reference, and finding a fuzzy

homography of the others concerning the reference one; the

goal was to analyze walking posture.

So far, it is clear that an extrinsic calibration of the four

cameras is necessary to achieve our composite skeleton. Yang

et al. [36] discussed the importance of calibration of multiple

kinects, presenting some methods to achieve that goal. Also,

Williamson and Laviola [40] and Kaenchan et al. [23] also pro-

pose other methods to extrinsically calibrate multiple kinects

by using one of them as reference.

V. HOW TO MEASURE PHYSIOTHERAPY TREATMENT

PERFORMANCE

Reaching objects is a type of movement affected by patients

with Hemiparesis. To perform an activity such as picking up

a glass of water or a piece of paper to dry the hands, humans

can move through different paths. When leaving a starting

position, one can scroll through the possible paths (e.g., 1, 2

or 3 of Fig. 8). The differences among the infinite possibility of

paths are determined by the ability of each individual. Healthy

persons mostly always perform straight and easy trajectories

in movement, similar to the path 1, in the figure, since the

necessary coordination of muscle contractions and perfect

motor control to move is completely matched. Figure 9 shows

an example of a common reach activity performed by a person

without muscle control problems.

Persons with functional motor control problems have a nar-

row range of choices regarding to movement patterns. Hence

they try to play the activity within their means. Hemiparetic

patients tend to follow the easier path available (e.g., 2 or 3 in

Fig. 8) within their range of possibilities due to the injury in

the central nervous system. In a word, healthy persons choose

the path with the best efficiency, always trying to achieve the

minimum waste of energy as possible (path 1 in Fig. 8), while

ill patients try to do the best within their possibilities. Figures
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1 2

3 4

Fig. 7: 1, 2, 3 and 4: Conceptual representation of a 360 degree view skeleton from multiple kinects, placed in 90 degrees

from each other.

9 and 10 demonstrate these ideas with examples of reach,

with a Physiotherapist representing a common healthy person

in 9 and a hemiparetic patient in 10. In Figure 9, the path

exemplifies a choice for a smooth coordination between hand,

wrist, elbow and shoulder movements that occur, while the

trunk is virtually motionless. The result is a straight motor

trajectory. According [47], hemiparetic patients use excessive

trunk or shoulder girdle movement in reaching movements for

targets placed close to the body, as illustrated in Fig 10 –

this occurs because a compensatory mechanism by which the

central nervous system may extend the reach of the arm when

the control of the active range of arm joints is limited and

inter-joints coordination is poor. These patients have a lower

efficiency in the movement, with greater muscle participation

and body segments converging at higher energy expenditure.

In this case, the energy cost calculation could reveal the

difference between paths 1, 2 and 3 (see Fig. 8).

Regarding activities, the functional diagnosis must consider

the global movement. The simple analysis of joints ROM or

muscle force can not be sufficient to establish the correct

patient status. As previously stated, the use of scales takes

into account the movement as a whole, and has been widely

applied. However, problems with the influence of subjective

aspects generate losses in establishing the diagnosis.

Theories of motor learning establish that decreased energy

waste may indicate improvements in the performance of a

human activity [42]. This is supported by the assertion that

human body always attempts to minimize energy cost of its

movement [41]. For example, when athletes try to make an

action which demands rhythm and length, they always train

on more suitable strategies to minimize energy consumption

[41]. In rehabilitation of hemiparetic patients, there is a quest

for recovery of movement, aiming to make it as effective as

possible. The reduction in energy waste in motor learning for

hemiparetic patient activities is the main target [42]. Based on

that, it is necessary that our system allows evaluating the path

performed by the patient, calculating the energy wasted. This

allows for the establishment of improvement or worsening in

treatment. On that account, we suggest to exploit an associa-

tion between specific energy cost and reachable workspace

as determinant parameter for a “better” or “worse” motor

learning. This idea is supported by [44]. In a classic study

about motor control, Hoff used the concept of “minimum jerk

model” applied to the reach trajectory planning. The concept

is used to quantify the trade-off between trajectory, quickness

and effort in reaching movements. The author suggests that the

reach movement improves when it presents better smoothness

in the trajectory and energy minimized.

A. Energy cost

The measurement of energy cost is generally performed by

calculating the maximum oxygen consumption or estimation

of this. As the name implies, this calculation estimates the

energy consumption of the entire body. Another way is to

estimate the consumption by the metabolic equivalent (MET)

activity by means of general equations, although it is a general

measure and does not provide an accurate value [46]. The

maximum oxygen consumption and the MET estimation are

not able to determine the energy expenditure of specific

movements. Here, we propose the use of the specific energy

of each movement, defined as energy per unit of mass. For the

calculate of this variable, the velocity of the movement should
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Fig. 8: Evaluating the minimization of movement energy.

be obtained by the system. The specific energy formula derives

from kinetic energy, which is calculated as a function of mass

and velocity, given by

K =

∫ ∫
υ dmdυ (1)

where the inner integral sums over the mass element dm and

the second over the velocity dv. For a solid body with constant

mass, one can eliminates the mass dependence by estimating

the specific energy, defined as

k =

∫
υ dυ (2)

To estimate the specific energy, our system needs to measure

the velocity of movements performed in three dimensions, by

calculating the distance covered by the tracked point over time

within the movement volume. This is usually done by optical

flow methods in order to calculate pixel speed in the image.

B. Reachable workspace

The rationale of the reachable workspace is to make graph-

ical representation of the volume movement boundaries. The

concept was first used to measure the reach of a robot arm,

and its first application in humans took place in the evaluation

of activities of an airplane pilot [45].

In [10], the authors postulate that the use of 3D reachable

workspace should be used to identify clinical changes in hu-

man functional movement. Searching for new ways of analyz-

ing human functional movement, [43] proposes a methodology

to assess 3D reachable workspace of human arms. In [10],

the authors found that the use of 3D reachable workspace

should be used to identify clinical changes in human functional

movement. Kurillo et al. [43] perform a measurement of the

3D reachable workspace using a low-cost stereo camera. That

camera system was capable of capturing and reconstructing

3D reachable workspace with robustness and minimal loss of

data points. In [45], an RGB-D camera was used to analyze

the 3D reachable workspace, comparing with a motion capture

system (MCS). The results showed that RGB-D cameras are so

accurate and reliable as MCS. Here, we intend to evolve this

concept to quantify movement volume. From the comparison

between the “before” and “after” volume, one can observe

the evolution of the patient in the treatment. Along with the

computation of specific energy, it will be possible to objective

and globally quantify the improvement in the treatment.

VI. CONCLUSION

A proposal of a human functional movement analysis by

specific energy of movement volume was presented here. The

aim is to apply a system comprised of RGB-D cameras to

hemiparetic individuals in order to assess the quality of Phys-

iotherapy treatment. The rationale of using specific energy of

movement volume over the patient’s 3D reachable workspace

is to avoid common errors on the calculation of joints and

angles, which are found when using low cost RGB-D cameras.

By computing the specific energy, one can easily achieve an

amount of energy without taking into consideration the body-

part mass, which would be very expensive to compute by

using camera sensors. In the future, the goal is to build the

apparatus to develop our method and quantify its performance.

It is noteworthy that the comparison between the “before”

and “after” events, that will be analyzed by the system, must

be done stochastically, turning the method more flexible to

inherent system noises.
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Fig. 9: A sequence of reaching activity performed by a normal person.

Fig. 10: Sequence of reaching activity performed by a hypothetical patient.
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