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Inter-Frame Post-Processing for Intra-Coded Video
Edson M. Hung, Ricardo L. de Queiroz, and Debargha Mukherjee

Abstract—We propose a video codec architecture based on
mixed quality frames which allows for low-complexity intra-
coded video to undergo inter-frame post-processing to improve
its rate-distortion performance. The video sequence is divided
into key and non-key frames by applying different quantization
parameters among them. The application of different quanti-
zation parameters reduces the bit-rate, but also reduces the
quality of the non-key frames. In order to enhance the quality of
these non-key frames at the decoding process without additional
information, we propose the use of the higher quality (key) frames
through motion estimation. For that, in blocks where key and
non-key frames “match”, we try to apply details of key frames
to non-key ones. Tests were carried with H.264-Intra, Motion
JPEG 2000 and Motion JPEG video sequences, recording PSNR
improvements of up to 1 dB.

Index Terms—Video compression, video post-processing,
example-based super-resolution, intra-coding of video.

I. I NTRODUCTION

L OW-complexity video encoding is often necessary for
devices with power and computation constraints. For ex-

ample, it can be applied in devices like wireless video cameras,
low-power video sensors, surveillance cameras, multimedia
portable devices (as mobile phones and PDA), etc.

Different from the recent video codec standards, where
encoders are computationally complex, due to a predictive and
transform coding, and the decoders are simpler. Distributed
video coding permits shift the video codec complexity from
the encoder to the decoder. These codecs are based on the
Slepian-Wolf [1] theorem applied to distributed source coding
(DSC), where a set of correlated information source could
be compressed without communicating to each other. By
modeling the correlation between multiple sources at the
decoder side together with channel codes, DSC has the ability
to shift the computational complexity encoder to the decoder
side. However, the Slepian-Wolf theorem treats only cases with
lossless information. The Wyner-Ziv theorem [2] extends the
previous theorem for the lossy case.

In general, DVC architectures use different source coding,
such as H.26x or MPEG-x, and also different side-information
generation, for example: syndrome, hashes, CRC or cosets.
These schemes allow for separate encoding and joint decoding,
i.e., distributed source coding.

In [3], the authors introduced a practical distributed source
coding using syndromes framework applied to signal com-
pression. In [4] the author incorporated error information
(cosets) at the encoding of linear block codes and applied
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techniques for decoding linear block codes with random errors
and erasures in computer memory cells.

Low-complexity video compression is often achieved solely
relying on intra-frame prediction, which is known as intra-
only coding. Intra-only coding avoids the usage of the motion
estimation technique during encoding, which simplifies the
codec and makes it more robust against errors [5], [6]. Even the
“zero-motion-vector” case, where motion estimation is avoided
by assuming a no-motion vector, is often avoided in many
applications for complexity reasons [7]. Intra-only coding is
also used in digital cinema and in surveillance systems [5],
[8], [9].

There is recent interest in some distributed video coders
(DVC) which also make use of intra-coding [10]–[20].

There are related works based on video quality enhancement
[21], spatio-temporal filtering [22], or video denoising. By
using multiple motion estimation hypothesis [23], [24], we
performed a multi-hypothesis motion compensation using a
distortion-based weighted mean. Studies about flickering [25]
also yield video enhancement based on temporal correlation.
The main difference between the proposed method and those
previous ones is the mixed-quality approach, presented in the
next section.

The proposed approach to intra-coding is to allow a small
quality variation among frames in order to reduce the bit-rate.
At the decoder side, we can use the better-quality frames to
improve the lower-quality ones. In order to do that, we extract
an enhancement layer by taking the difference between the
better-quality frame and its requantized version. The requan-
tizing process is performed by quantizing the better-quality
frame to a quality that is compatible to the frame we want
to enhance. However, this information is subject to motion
estimations due to temporal variations.

In essence, our method is similar to example-based [26],
[27] video super-resolution in mixed-resolution approaches
[28], [29]. However, here, we enhance quality rather than
spatial resolution. Hence, our method can be seen as example-
based quality enhancement (as a parallel to super-resolution)
and our framework can be seen as having mixed-quality frames
rather than mixed-resolution ones.

This article is organized as follows. Section II describes
the mixed-quality frames architecture, while in Section III the
proposed enhancement method is presented. The experimental
results are shown in Section IV and Section V contains the
conclusions.

II. M IXED-QUALITY AMONG FRAMES

We propose a mixed-quality video codec architecture, i.e.,
encoding frames at time-varying quality targets. As we encode
some frames with lower quality we reduce the bit rate. But,
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different from the mixed-resolution architecture [17]–[19],
here we generate a bit stream that is still compatible with a
regular decoder. The proposed optional enhancement method
works at the decoder side and uses the higher quality frames
to enhance the lower quality ones. The decision of using
or not an enhancement method at the decoder may depend
upon application constraints like battery autonomy, processor
capacity, temporal delay, acceptable video quality, etc.

In order to encode a video sequence with mixed quality
we just need to use different quantization steps (Q) among
frames. We then have two types of frames, as illustrated in
Figure 1, depending on the value ofQ: the key frames with a
better quality (Qkey) and the non-key frames with a reduced
quality (Qnon−key > Qkey). The application of differentQs
reduces the bit-rate and reduces the quality of non-key frames
as well. So, to enhance the quality of these non-key frames
at the decoding process without additional information, we
propose the use of the higher quality (key) frames through
motion estimation. The usage of a GOP (group of pictures) is
not mandatory to the proposed method. However, to simplify
the implementation, a GOP is determined in this work.

The decoding process can be done with a regular decoder.
The optional enhancement process may add significant com-
plexity in the decoding process due to motion estimation
operations.

As previously mentioned, the proposed method is inspired
by other works in example-based super-resolution of video
[26]–[29]. However, instead of super-resolving by improving
spatial resolution, we improve the quality.

III. E XAMPLE-BASED QUALITY ENHANCEMENT

We use a regular decoder that separates key-frames from
non-key frames, as shown in Figure 2. Let a given non-
key frame be denoted asFnon−key. Let this frame be en-
hanced byn key-frames

{
Fkey, (1),Fkey, (2), . . . ,Fkey, (n)

}
.

Then, a requantization operation (withQnon−key) is applied
to the key frames resulting in a new set of “low-quality”
key frames:

{
FLQkey, (1),FLQkey, (2), . . . ,FLQkey, (n)

}
. The

layer L̃k = Fkey, (k) − FLQkey, (k) represents the information
lost through requantizing thek-th key frame.L̃k is subject
to motion compensation before applying it to enhance a
non-key frame. In this work, we use windowed overlapped
block motion compensation [30]–[32] in order to reduce the
blocking artifacts. Motion estimation (ME) is performed at the
decoder between the framesFLQkey andFnon−key. Note that
both have compatible quality degradation, for a more reliable
matching. The actual frame is divided into blocks with variable
sizes (16× 16- and 8× 8-pixels). For each one, we look for
the best-match block within a displacement window at the
reference frame. The criteria may be the minimization of the
SAD (sum of absolute differences) or SSD (sum of squared
differences).

When trying to match the current (non-key) frame and the
low quality key-frame using block motion estimation, we try
to minimize the difference between16×16-pixel macroblocks
in both images. We also test subsets as partitioned blocks of
8×8-pixels. Performing motion estimation on four partitioned

blocks, however, will lead to overall SAD/SSD equal or lower
than that for the whole macroblock. Hence, partitioned blocks
would invariably be chosen. However, we expect, and have
empirically verified, that the16 × 16-pixel blocks typically
yield better overall results. The reasoning for this is thatwe
are looking for larger structures using block-based tools.Once
a good match is found, we “borrow” details from one block
to apply to the other, but mistakes may cause artifacts. Low-
quality versions of smaller blocks of different objects may
eventually match. Thus, their details would be different, only
adding noise and artifacts to the image to be enhanced. So,
larger blocks are more reliable in estimating an object match
through block matching. Hence, we suggest a penalty factor
(with an empirical value of two) to be applied to the partitioned
block prediction error.
L̃k is motion compensated using motion vectors between

Fnon−key andFLQkey, (k) in order to find a contribution layer
Lk such that

Lk = MC

(
Fkey, (k) − FLQkey, (k),Vk

)
, (1)

whereMC (·) is the motion compensation operation andVk is
the set of motion vectors resulting from theME (Fnon−key,
FLQkey, (k)

)
operation. The enhanced non-key frame is then

given by:
F̂non−key = Fnon−key + pcf L̂, (2)

where L̂ is a function of all{Lk} and pcf is a confidence
factor.

The side information generation method at the DISCOVER
Distributed Video Codec proposes equal weights for the for-
ward and backward predictions [14]. Here, we use multiple
predictions in a weighted average as formulated in [29]:

L̂(i, j) =

(
n∑

k=1

Lk(i, j)
Dk(i, j)

)(
n∑

k=1

1

Dk(i, j)

)
−1

, (3)

where L̂(i, j) is the enhancement of a block at the(i, j)
position of the fused enhancement layer,Lk(i, j) is the en-
hancement block prediction in the(i, j) position at thek-th
reference (forward or backward) key frame, andDk(i, j) is
the SSD distortion at the given position.

The motion estimation method always picks a prediction
block to enhance a non-key frame block. However, at sud-
den scene changes, the enhancement layer may decrease the
objective and the subjective quality of a non-key frame. In
order to reduce this problem, we only apply a percentage
(pcf ) of the fused enhancement layer (L̂) to the non-key
frames (Fnon−key). That percentage is interactively obtained
by finding

argpcf
min

(
n∑

k=1

MSE
(
Fnon−key + pcf L̂ ,Fkey (k)

))
. (4)

Thepcf parameter is obtained by minimizing the mean square
error (MSE) among the enhanced non-key frame and the
closest key-frames. In other words, we calculate the MSE in
(4) for each possible value ofpcf and choose thepcf that
results in the smallest MSE. This may reduce the flicker and
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Fig. 1. Video encoding with mixed-quality frames. (a) Encoding key and non-key frames with different parameters. (b) Decoder with low-quality frame
enhancement using the key-frames.
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Fig. 2. The proposed architecture for enhancement at the decoder.

may also diminish the influence of mismatches between a non-
key frame and the enhancement layer. Finally, we add the
enhancement layer to the low quality key frame as in (2).

IV. EXPERIMENTS

In order to evaluate the performance of the proposed tech-
nique, we processed video sequences at CIF (352×288 pixels)
and high definition (1280×720 pixels) resolutions. They were
encoded with H.264-Intra with GOP length of 4 (that is, for
each key frame, there are three non-key frames), using the
JM 15.1 reference codec implementation. At mixed-quality
encoding, the key frames were encoded with quantization
parameter (QP) in the set{22, 27, 32, 37} in order to generate
the rate-distortion (RD) curves. We setQnon−key = 2Qkey ,
i.e. QPnon−key = QPkey + 6 [33], [34]. In the enhancement
method, we use a motion estimation window of32×32 pixels
for both full macroblocks and partitioned blocks.

The process of changing the quality of frames may cause
flickering. Larger differenceQnon−key − Qkey implies more
intense flickering, but also higher quality improvement. How-
ever, reducing the quality of the non-key frames too much
yields more sizeable bit-rate savings but also may cause ob-
jectionable flickering after the enhancement process. One has
to carefully weigh the trade-off, in order to avoid subjective
image quality degradation.

Figure 3(a) shows the performance of fixed-QP intra-only
H.264 compression compared to the mixed-QP H.264-intra
with the enhancement technique using different configurations.
In order to plot the curves, we selected for the fixed-QP
encoding theQPs that yield the closest bit-rates compared

to the mixed-QP case. Tests using two key-frame references
(the closest forward and backward key frames) and four
references (the two closest in each direction) were performed.
We also compared the overlapped block motion compensation
(OBMC) technique with the ordinary motion compensation
(MC). Figure 3(b) is a differential version of Figure 3(a),
where the fixed-QP rate-distortion curve was used as reference.
Despite the decrease in codec performance when we use
mixed-QP decoding (compared to the fixed QP case), we can
achieve significant RD gains when we apply the proposed post-
processing technique.

In Figure 3(c) we show results for the sequence Foreman
encoded withQPkey = 32 and QPnon−key = 38. In this
case, with two reference frames and overlapped block motion
compensation we obtain an average gain of0.49dB. With
four reference frames and regular block motion compensation,
there is an average gain of0.87dB. Finally, there is an
average gain of0.91dB when using four reference frames
and overlapped motion compensation. Despite the modest
objective video quality gains, we show in Figure 4 a sig-
nificant visual improvement. In order to evaluate the gains,
we compare the original 51-st frame of sequence Foreman
with a non-key frame, with and without enhancement. Figure
5(a) shows a comparison among the proposed methods and
the regular fixed-quality compression applied to a low-motion
video sequence. Figures 5(b) and (c) show the differential
results for a sequence with low- and high-motion scenes,
respectively. Figure 6(a) shows RD plots for the Shields video
sequence which has high- and complex-motion scenes. Figures
6(b) and 6(c) also shows the differential curves of the proposed
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Fig. 3. Results for encoding sequence Foreman, comparing regular fixed quality H.264 intra-only; mixed frame-quality; and mixed frame-quality video
sequence approach with the proposed enhancement. (a) RD curves. (b) The differential plot of (a), taking the regular fixedquality parameter video as
reference. (c) Comparison of the frame-by-frame enhancement gains to the sequence Foreman encoded withQkey=32,Qnon−key=38 and GOP=4.
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Fig. 4. Subjective comparison of the proposed technique in a region of the 51-st frame of the sequence Foreman. (a) Non-key frame. (b) Original frame. (c)
Enhanced non-key frame. The sequence was encoded withQkey=32,Qnon−key=38 and GOP=4.
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Fig. 5. Results comparing H.264 intra-only regular fixed frame-quality parameter video, mixed frame-quality video sequenceand mixed frame-quality
video sequence enhanced with the proposed method applied to Akiyo video sequence. (a) RD curves. (b) The differential plot of the previous curve. (c)
Differential RD curves of the Mobile video sequence comparing H.264 intra-only performance for regular fixed frame-quality, mixed frame-quality and the
mixed frame-quality approach enhanced with the proposed method.
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Fig. 6. Results comparing H.264 intra-only regular fixed frame-quality parameter video, mixed frame-quality video sequenceand mixed frame-quality video
sequence enhanced with the proposed method applied to Shields video sequence. (a) RD curves of the sequence. (b)(c) Differential RD curves comparing
H.264 intra-only performance for regular fixed frame-quality, mixed frame-quality and the mixed frame-quality approach enhanced with the proposed method.
The tests were performed with Shields and Parkrun video sequences, respectively.

method for high resolution sequences.
We have also applied the same enhancement technique to

CIF-size video sequences compressed with the Motion JPEG
2000 (implemented with the Kakadu software [35]). In this
case, instead of determining a fixed quantization, we set a fixed
bit rate to each frame. At the mixed quality version, the bit
rate ratio between the low quality frames (non-key frames) and
high quality frames (key frames) was set to7/10. As shown in
7(a)-7(c), we can observe a performance improvement, after
enhancement.

We further applied our method to motion JPEG (MJPEG).
In an MJPEG mixed quality architecture we performed the
tests using a quantization matrix at the non-key frames whose
entries are three times larger than those of the key-frames.
Figure 8(a)-(c) also shows a performance improvement of
the use of the mixed quality approach with inter-frame post-
processing.

In Table I, we use an objective metric [36] to calculate the
bit-rate savings of the mixed quality (or rate) frames sequence
compared to a fixed-quality (or rate) parameter coding. The
results show a performance reduction in the RD relation when
the mixed quality is used. However, it can outperform the fixed
quality (or fixed rate) approach when applying the proposed
enhancement technique. Observe that the sequence Foreman
compressed with H.264-intra achieves the best enhancement
configuration when we add the overlapped motion compensa-
tion within multi-hypothesis motion estimation/compensation
(in this experiment we used two and four reference frames).

V. CONCLUSIONS

We proposed a simple architecture that allows for a decoder-
side enhancement for an intra-only video coding scheme. For
that, a mixed quality approach, i.e. varying frame quality,is
applied. The proposed method is an example-based quality
enhancement, similar to super-resolution for spatial resolu-
tion enhancement. In this sense, the proposed mixed-quality
framework is a parallel to mixed-spatial-resolution approaches.

TABLE I
BIT-RATE SAVINGS [36]

Compressed video sequence Rate savings over
fixed quality parameter

Foreman→ H.264MQno enh. -4.28%
Foreman→ H.264MQOBMC (2 refs) 5.29%
Foreman→ H.264MQMC (4 refs) 6.62%
Foreman→ H.264MQOBMC (4 refs) 7.19%
Foreman→ MJPG2kMQno enh. -0.84%
Foreman→ MJPG2kMQOBMC (4 refs) 5.01%
Foreman→ MJPGMQno enh. -4.22%
Foreman→ MJPGMQOBMC (4 refs) 5.43%

Akyio → H.264MQno enh. -4.22%
Akyio → H.264MQMC (4 refs) 12.05%
Akyio → H.264MQOBMC (4 refs) 12.70%
Akyio → MJPG2kMQno enh. -0.95%
Akyio → MJPG2kMQOBMC (4 refs) 13.28%
Akyio → MJPGMQno enh. -3.58%
Akyio → MJPGMQOBMC (4 refs) 25.64%

Mobile → H.264MQno enh. -1.47%
Mobile → H.264MQOBMC (4 refs) 3.47%
Mobile → MJPG2kMQno enh. -0.61%
Mobile → MJPG2kMQOBMC (4 refs) 7.63%
Mobile → MJPGMQno enh. -0.48%
Mobile → MJPGMQOBMC (4 refs) 2.16%

Shields→ H.264MQno enh. -4.08%
Shields→ H.264MQOBMC (4 refs) 7.73%

Parkrun→ H.264MQno enh. -2.04%
Parkrun→ H.264MQOBMC (4 refs) 2.81%

Experiments show that the proposed technique works for
many types of video codecs to enhance low quality frames
using high-frequency details from the key-frames, without
any additional information being sent to the decoder. An
improvement in performance occurs when we use multiple
reference frames and overlapped block motion compensation.
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Fig. 7. Differential RD curves comparing Motion JPEG 2000 performance for regular fixed-frame-rate, mixed-frame-rate and the mixed-frame-rate approach
enhanced with the proposed method. The tests were performed with (a) Foreman, (b) Akiyo and (c) Mobile video sequences.
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Fig. 8. Differential RD curves comparing Motion JPEG performance for regular fixed frame-quality, mixed frame-quality and the mixed frame-quality
approach enhanced with the proposed method. The tests were performed with (a) Foreman, (b) Akiyo and (c) Mobile video sequences.
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